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Abstract
We introduce CIFAR-10.2, a new variant of the
CIFAR-10 image classification dataset. CIFAR-
10.2 is derived from the same source as CIFAR-10
and assembled via a similar process. In contrast
to the CIFAR-10.1 reproduction, our new dataset
is six times larger and contains both a training
split (size 10,000) and a test split (size 2,000).
This allows us to probe the distribution shift from
CIFAR-10 by comparing the performance of clas-
sifiers trained on the original and new datasets.
We decompose the accuracy drop due to shift into
“harder” and “different” components based on the
performance gain from training on the shifted data.
Our experiments show that the “different” compo-
nent is nearly constant across the 33 models in our
testbed. We complement our experiments with a
theoretical model that predicts similar behavior.

1. Introduction
Over the past decade, machine learning has made tremen-
dous progress on benchmarks such as CIFAR-10, ImageNet,
and SQuAD (Krizhevsky, 2009; Deng et al., 2009; Rus-
sakovsky et al., 2015; Rajpurkar et al., 2016). At the same
time, small deviations away from existing test sets still lead
to substantial performance degradation, which poses ob-
stacles for safety-critical applications (Quionero-Candela
et al., 2009; Torralba & Efros, 2011). For instance, small
changes in the dataset creation process of CIFAR-10 and
ImageNet reduce the accuracy of popular ResNet models
by 9% and 12%, respectively (Recht et al., 2019). Since
these new test sets are different from the distributions the
models are trained on, the following fundamental question
arises: What would happen if we trained the models instead
on data from the new test distribution?
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To explore the space of possible answers, we consider two
extreme scenarios. In the first scenario, training a model on
the new distribution does not improve the test performance
at all. We then say that the new distribution is purely harder
than the original distribution for this model. This can happen
if, for example, the new distribution contains a larger portion
of blurry objects or if the model architecture cannot capture
aspects of the new distribution.

In the second scenario, training on the new distribution re-
covers the entire performance drop. We then say that the
new distribution is merely different for this model, for in-
stance because the new distribution contains images from
different perspectives or with different backgrounds. Per-
formance drops due to “harder” distributions shift may be
inevitable for current techniques, while drops due to “differ-
ent” distribution shifts can at least be addressed by changing
the training data. It is therefore important to quantify where
distribution shifts stand in the spectrum between “harder”
and “different.”

We experimentally instantiate our different vs. harder frame-
work in the context of a distribution shift stemming from a
CIFAR-10 reproduction. Similarly to the CIFAR-10.1 test
set introduced in (Recht et al., 2019), we build a reproduc-
tion of CIFAR-10 by following the original dataset creation
process. However, our dataset, which we call CIFAR-10.2,
is six times larger than CIFAR-10.1. This allows us to
form a train-test split of size 10,000 and 2,000, respectively.
As in CIFAR-10.1, there is an accuracy drop when testing
CIFAR-10 models on the CIFAR-10.2 test set. Using our
CIFAR-10.2 training set, we find evidence that CIFAR-10.2
is both harder and different than CIFAR-10.

For example, a ResNet-32 trained on 10,000 images from
CIFAR-10 achieves an accuracy of 68.4% on CIFAR-10.2,
compared to an accuracy of 83.0% on CIFAR-10. Training
the model on 10,000 images from CIFAR-10.2 increases
the accuracy to 73.8%. This 5.4% improvement indicates
that CIFAR-10.2 is different, but the remaining 9% show
that CIFAR-10.2 is also harder. Interestingly, we find that
the roughly 5% “different” component of the accuracy drop
is a consistent trend across the 33 models in our testbed
spanning a wide range of accuracies. Models with a smaller



Harder or Different? Distribution Shift in Dataset Reproduction

accuracy drop on CIFAR-10.2 make progress mainly by
reducing the “harder” component. We exhibit a similar
trend in simulations with a simple Gaussian data model.

We hope that our new dataset CIFAR-10.2 and the distinc-
tion between harder and different distributions will be useful
for future research. CIFAR-10.2 is available at https:
//github.com/modestyachts/cifar-10.2.

2. Formal setup
We now formally describe our classification protocol and the
distribution shift metrics of interest. We fix a learning ruleA
(a combination of model architecture and training algorithm)
that takes in a training set sampled i.i.d. from a distribution
D and outputs a classifier. To measure the accuracy of this
classifier, we sample a test set from a (possibly different)
distribution D′ and evaluate the classifier on it. We denote
the resulting accuracy by accAD→D′ .1

To measure the performance change when training on distri-
butionD and testing on distributionD′, it natural to consider
the accuracy gap accAD→D−accAD→D′ , i.e., the performance
loss a classifier suffers when trained on distribution D and
tested on D′. In this work, we seek a more fine-grained un-
derstanding of this accuracy gap. To this end, we decompose
the quantity into two terms:

accAD→D − accAD→D′ =

accAD→D − accAD′→D′︸ ︷︷ ︸
Hardness gap

+ accAD′→D′ − accAD→D′︸ ︷︷ ︸
Difference gap

.

The hardness gap quantifies how much accuracy drop we
should expect even if we had had access to the second
distribution at training time. Note that the hardness gap
depends on the learning algorithm A: it is possible that
there is a different classifier that achieves perfect accuracy
on both D and D′, but the hardness gap w.r.t. A is still non-
zero due to limitations of the hypothesis class or training
algorithm. In particular, “harder” distributions could arise
from presence of less informative features or more label
noise (and thus higher Bayes risk), but they could also exist
when the Bayes risks for D and D′ are the same.

The difference gap quantifies the advantage of applying
A on the matching training distribution D′ as opposed to
the original training distribution D. A large difference gap
indicates that A could in principle perform well on the
second distribution D′, but fails to generalize when trained
on the original distribution D.

Recht et al. (2019) evaluate the accuracy gap for a distribu-

1Note that accAD→D′ is a random variable. As is commonly
done in machine learning, we estimate it from a finite number of
samples. In the full version of the paper, we will quantify the
resulting random variation in more detail.

tion shift between CIFAR-10 and a reproduction (CIFAR-
10.1) for multiple learning algorithms. They reveal a notable
pattern: the accuracy gap accAD→D − accAD→D′ is roughly
linear in accAD→D. The goal of our paper is to provide addi-
tional insight into this pattern by evaluating the hardness and
difference gaps for a similar distribution shift and learning
algorithms.

3. Dataset construction
The overall goal for our new dataset CIFAR-10.2 was to
create a similar (but not identical) distribution as the original
CIFAR-10 dataset. Hence we closely followed the original
dataset creation process (Krizhevsky, 2009). In particular,
all images in CIFAR-10.2 also come from the Tiny Images
dataset (Torralba et al., 2008). Tiny Images contains about
80 million color images of size 32× 32 pixels and is orga-
nized into about 75,000 different keywords. Each class in
CIFAR-10 was assembled by human annotators reviewing
candidate images from Tiny Images for about 10 – 25 cor-
responding keywords per class (e.g., “airbus” is one of the
keywords for the class “airplane”). We followed a similar
process with the authors of this paper taking the role of the
human annotators.

The CIFAR-10.2 dataset size of 12,000 images (10,000
train and 2,000 test) balances two goals. On the one hand,
a larger dataset has multiple advantages: larger test sets
lead to smaller error bars and a larger training set makes the
training setup more similar to the original CIFAR-10 dataset,
which has 50,000 training images. On the other hand, using
the same keywords as CIFAR-10 is desirable to minimize
distribution shift. However, some of these keywords have
only few images remaining. In particular, we found only
791 suitable cat images in Tiny Images among the keywords
used for the cat class in CIFAR-10, while other classes
have at least 1,200 usable images remaining within their
corresponding keywords.

To balance these competing desiderata, we obtained ad-
ditional images for the cat class from other keywords in
Tiny Images but kept the keywords for the other classes
unchanged. Concretely, we utilized the following addi-
tional keywords: feline, tiger cat, Egyptian cat, Persian cat,
Siamese cat, and Siamese. We identified about 1,000 ad-
ditional suitable cat images among these keywords, which
allowed us to manually assess roughly 32,000 candidate
images per class and assemble a dataset of size 12,000.

We took two steps to ensure data quality. First, we removed
all exact matches and near-duplicates between our candi-
date images and all images contained in CIFAR-10 (train
and test) as well as CIFAR-10.1. In particular, we filtered
out images with structural similarity index (SSIM) above
a threshold of 0.6 (Wang et al., 2004); see Appendix A

https://github.com/modestyachts/cifar-10.2
https://github.com/modestyachts/cifar-10.2
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for additional details. After removing near-duplicates, we
performed a final data cleaning step to remove mislabeled
images. We reviewed all images that were misclassfied by
most of the classifiers in our testbed and removed the images
that were incorrectly labeled.

4. Experiments
Our experiments have two main goals. The first goal is to
check whether our new CIFAR-10.2 dataset is qualitatively
similar to the recent CIFAR-10.1 reproduction from Recht
et al. (2019). In particular, do models again exhibit a sub-
stantial accuracy drop? The second goal is to decompose
this accuracy drop into a harder and different component as
outlined in Section 2.

Before we proceed to our results, we briefly outline our
experimental setup. We assembled a testbed of 33 image
classification models, largely following Recht et al. (2019).
Among other models, the testbed includes common archi-
tectures such as ResNets, VGG, Shake-Shake models as
well as the original AlexNet and random feature models (He
et al., 2016a; Simonyan & Zisserman, 2014; Xavier, 2016;
Krizhevsky et al., 2012; Coates et al., 2011). We adapted
the models from published code (see Appendix B for the a
list of all models). For each model, we verified that the code
reproduces the original published accuracies when trained
and tested on CIFAR-10.

Comparing CIFAR-10.1 and CIFAR-10.2. Figure 1
plots CIFAR-10.1 and 10.2 test accuracies as a function
of CIFAR-10 accuracy for models trained on CIFAR-10.
Similar to CIFAR-10.1, the models exhibit a substantial
accuracy drop with a linear trend between CIFAR-10 and
CIFAR-10.2 accuracies. The accuracy drop for CIFAR-
10.2 is larger than for CIFAR-10.1, e.g., the accuracy of a
ResNet-32 model now drops by 12%, as oppposed to 9% on
CIFAR-10.1. The slope of the linear fit on CIFAR-10.2 is
1.34, which is lower than the slope of 1.7 for CIFAR-10.1.
This indicates that higher performing models do not close
the accuracy drop as much as on CIFAR-10.1.

Decomposing the accuracy drops. Next we decompose
the accuracy drop described in the previous paragraph into
different and harder components. These experiments in-
volved training models on both the CIFAR-10 and 10.2
distributions. To match the size of the CIFAR-10.2 training
set, we sampled a random class-balanced subset of the orig-
inal CIFAR-10 training set with size 10,000 for training on
the CIFAR-10 distribution.

For training on the smaller datasets, we did not change
the model or training hyper-parameters (e.g., we kept the
learning rate schedules as for training on the full CIFAR-10
training set). Optimizing hyperparameters for the smaller

training sets may improve accuracy, and exploring whether
there are better hyperparameter settings for CIFAR-10.2
is an interesting direction for future work. However, for
this paper we are interested in broad trends that apply to a
range of training algorithms and hence we do not pursue
this avenue further.
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Figure 1. Comparison of CIFAR-10.1 and CIFAR-10.2. Similar to
CIFAR-10.1, the accuracies of several models follow a linear trend
on CIFAR-10.2. The accuracy drop on CIFAR-10.2 is larger and
the slope of the linear fit is smaller than on CIFAR-10.1. Overall
CIFAR-10.2 is still qualitatively similar to CIFAR-10.1.
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Figure 2. Decomposition of the CIFAR-10.2 accuracy drop into
“harder” and “different” components. The “different” component
is approximately constant across the models in our testbed.

Table 1 contains the accuracies for a few key models and the
full experimental results are detailed in Appendix B. Figure
2 depicts the overall accuracy drop, harder component, and
different component as a function of model accuracy when
trained on the 10,000 image subset of CIFAR-10. Interest-
ingly, the “different” component is mostly flat while the
slope of the overall accuracy gap is largely accounted for by
the “harder” component.
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Trained on CIFAR-10.0 Trained on CIFAR-10.0 Trained on CIFAR-10.2
ntrain = 50,000 ntrain = 10,000 ntrain = 10,000

Model 10.0 Acc. 10.2 Acc. 10.0 Acc. 10.2 Acc. 10.0 Acc. 10.2 Acc.

autoaug shake shake 112 98.0 89.5 93.6 82.4 90.1 86.2
wide resnet 28 10 96.0 84.5 87.6 75.0 84.0 80.8

resnet basic 32 92.8 79.9 83.0 68.4 79.1 73.8
alexnet 82.5 68.7 67.1 53.0 59.5 58.0

randomfeatures16k 79.9 61.9 72.8 54.3 62.1 58.1

Table 1. Test set accuracies for five representative models. The first two columns show the accuracies for models trained on the full
CIFAR-10 training set with ntrain = 50,000. We use 10.0 as a shorthand for the original CIFAR-10 dataset and for consistency with the
10.1 and 10.2 reproductions. The other four columns show the accuracies for models with the same architecture and training algorithm,
but trained on training sets with size ntrain = 10,000 for CIFAR-10.0 and 10.2, respectively. All numbers are percentage points. Tables 4
and 5 in the appendix contain the accuracy numbers for all 33 models in our testbed.

5. Theoretical model
To further our understanding of the different vs. harder dis-
tinction, we analyze distribution shift in a simple Gaussian
linear discriminant setting. Our setting aims to capture the
salient: a family of learning rules with growing capacity and
a “natural” (non-adversarial) distribution shift. The setting
provides explicit control over the “hard” and “different” part
of the distribution shift, allowing us to explore how they
affect drops in accuracy.

Formally, we consider a C-way classification task with in-
put x ∈ Rd and target label y ∈ {1, . . . , C}. For every
dimension q ≤ d, we consider linear classifiers operating
only on the first q coordinates of x. That is, we consider
models of the form θ ∈ Rq×C that for input x predict out-
put ŷ = argmaxi≤C [θ

>x:q]i, where x:q denotes the first
q coordinates of x. Clearly, the capacity of these linear
classifiers grows with q, but how does their sensitivity to
distribution shift behave?

The answer to this question depends closely on how the
distribution shift affects the different coordinates of x. To
capture non-adversarial “average case” shifts, we consider
two transformations that are agnostic to the choice of co-
ordinate system: (1) making the distribution “harder” by
adding standard Gaussian noise to x and (2) making the
distribution “different” by applying a random rotation to x.

For concreteness and simplicity, we consider the distri-
bution D corresponding to y uniform on {1, . . . , C} and
x|y ∼ N (µy, σ

2I), where µ1, . . . , µC ∈ Rd are orthog-
onal unit vectors (chosen randomly). For q-dimensional
linear classifiers, we consider the optimal learning rule (re-
alizable with infinite training data) that takes θi to be the
first q coordinates of µi.

We parameterize the shifted distribution D′ by coefficients
αhard, αdiff ∈ [0, 1]. The closer the coefficients are to zero,
the larger the shift is. Specifically, under D′ we set x|y ∼

N (µ′y, σ
2I) for

µ′i = αhard ·
(
αdiff · µi +

√
1− α2

diff · µ̃i

)
,

where µ̃1, . . . , µ̃C are orthonormal vectors chosen uni-
formly from the subspace orthogonal to {µi}.

Figure 3 shows the different accuracy drops as a function
of accuracy on the original distribution, with every point
corresponding to a different model dimension q. The figure
shows a single realization of D and D′ as described above,
but due to concentration in high d, the results depend only
on αhard and αdiff and not the draw of µ and µ̃. Compar-
ing Figure 3 to Figure 2, we see similar trends: accuracy
drops are decreasing as original accuracy increases, but the
“different” part of the accuracy drop is more stable.
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Figure 3. Distribution shift effect in the setting of Section 5, with
d = 104, C = 10 and distribution shift parameters αhard = 0.85
and αdiff = 0.95. Similar to real data (see Figure 2), the difference
gap is approximately constant.
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A. Dataset details
To create CIFAR-10.2, we first selected the TinyImages data with keywords appearing in CIFAR-10, and manually reviewed
roughly 32k images per class, keeping only images whose content matches the class label. We then filtered out any image
whose SSIM metric to any of the images in CIFAR-10 and CIFAR-10.1 was above 0.6; we marked the remaining images
as “suitable.” We then selected 1,200 suitable images for each class to create CIFAR-10.2. Table (2) provides a per-class
breakdown of the numbers of candidate, reviewed, suitable, and selected images. As we mention in Section 3, for the “cat”
label we had to include additional keywords not appearing in CIFAR-10; see Table 3 for a per-keyword breakdown.

We determined the SSIM threshold for near-duplicate removal by manually reviewing the nearest neighbors for a large
number of images and picking a threshold for which very few duplicates appear. Figure 4 illustrates that 0.6 is a valid
threshold by showing, for 10 random “suitable” images, the nearest neighbors (in CIFAR-10 and CIFAR-10.1) in terms of
SSIM. The near-duplicate removal stage decreased the number of suitable images by roughly 15%.

Airplane Automobile Bird Cat† Deer Dog Frog Horse Ship Truck

Candidates 37,458 40,052 55,046 32,511 45,340 40,051 40,454 45,666 87,121 56,017
Reviewed ≈32k ≈32k ≈32k ≈32k ≈32k ≈32k ≈32k ≈32k ≈32k ≈32k
Suitable 1,656 2,031 1,957 1,889 1,237 1,755 1,207 2,137 2,226 2,031
Selected 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200

Table 2. Class breakdown of CIFAR-10.2 creation process. †For the “cat” class there were only 21,394 candidate (and 791 suitable)
images with keywords appearing in CIFAR-10. We therefore collected images from additional “cat” keywords shown in Table 3 below.

egyptian cat feline persian cat siamese siamese cat tiger cat

Candidates 1,303 1,997 2,167 1,957 1,972 1,721
Suitable 140 208 214 114 226 196

Table 3. Breakdown of images from additional “cat” keywords.

B. Experiment details
Table 4 lists the CIFAR-10 and CIFAR-10.2 test accuracies for three different training set, from which we compute the
hardness and difference gaps shown in Figure 2; we also list them in Table 5 for ease of reference. Finally, in Table 6 we
provide a url and reference for the learning algorithms in our testbed.
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Figure 4. Illustration of near-duplicate filtering. The left column shows one random CIFAR-10.2 candidate image from each class, and the
remaining columns contain their nearest neighbors in CIFAR10 and CIFAR10.1 (in terms of SSIM).
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Trained on CIFAR10.0 Trained on CIFAR-10.0 Trained on CIFAR-10.2
ntrain = 50,000 ntrain = 10,000 ntrain = 10,000

Model 10.0 Acc. 10.2 Acc. 10.0 Acc. 10.2 Acc. 10.0 Acc. 10.2 Acc.

autoaug shake shake 112 98.0 89.5 93.6 82.4 90.1 86.2
autoaug shake shake 96 98.0 89.5 93.9 82.6 90.3 86.7
autoaug shake shake 32 97.5 87.7 93.4 80.8 89.4 85.9

autoaug wide resnet 97.4 88.0 92.5 81.4 88.7 86.2
wide resnet 28 10 cutout 96.9 86.9 86.0 82.7 89.9 77.9
shake shake 26 2x32d ssi 96.6 84.9 85.5 80.8 90.0 76.8

resnext 29 8x64d 96.5 85.2 85.1 80.7 88.3 75.4
wide resnet 16 8 cutout 96.3 85.2 89.3 75.5 84.7 81.2

resnext 29 4x64d 96.0 84.9 85.4 81.5 89.3 76.1
wide resnet 28 10 96.0 84.5 84.0 80.8 87.6 75.0
wide resnet 16 8 95.5 83.7 87.5 73.4 83.4 78.2

googlenet 95.5 83.4 81.7 78.1 86.5 71.6
densenet121 95.5 82.9 80.6 76.7 85.6 71.2

resnext29 95.4 84.1 81.0 76.8 86.3 71.3
dpn92 94.9 82.3 79.2 75.1 84.4 68.8

preactres 94.8 81.5 81.8 77.4 86.1 72.2
mobilenetv2 94.8 81.8 78.5 75.3 84.3 68.1

resnet preact bottleneck 164 94.5 82.0 78.1 73.7 82.7 66.1
resnet basic 110 94.1 81.6 75.1 71.0 81.5 66.4

resnet preact basic 110 93.6 81.0 77.4 72.4 83.5 68.0
resnet basic 56 93.5 81.0 77.7 71.2 83.5 69.3
resnet basic 44 93.2 80.1 77.8 72.6 83.2 68.5
vgg 15 bn 64 93.1 80.1 79.4 72.4 83.6 68.6

resnet basic 32 92.8 79.9 79.1 73.8 83.0 68.4
resnet basic 38 92.7 80.8 82.6 68 78.4 73.5
resnet basic 26 91.9 79.5 82.6 69 77.6 72.8

vgg19 91.3 78.6 78.1 74.2 83.0 68.2
shufflenetv2 90.3 76.0 72.5 70.0 80.5 65.1
efficientnet 88.8 74.2 70.1 65.9 76.9 61.5

alexnet 82.5 68.7 59.5 58.0 67.1 53.0
pnasneta 81.4 65.2 61.3 58.9 68.2 54.6

randomfeatures32k 81.2 63.7 63.1 59.3 73.0 55.3
randomfeatures16k 79.9 61.9 62.1 58.1 72.8 54.3

lenet 74.9 59.1 58.4 55.5 65.2 50.8

Table 4. Full experiment results. The first two columns show the accuracies when the models are trained on the full CIFAR-10 training set
of ntrain = 50,000 images. The other four columns show training on ntrain = 10,000 images from CIFAR10.0 or 10.2.
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Model accA10.0(50K)→10.0 accA10.0(10K)→10.0 accA10.0(10K)→10.2
Accuracy

gap
Hardness

gap
Difference

gap

autoaug shake shake 112 98.0 93.6 82.4 11.3 7.5 3.8
autoaug shake shake 96 98.0 93.9 82.6 11.3 7.2 4.1
autoaug shake shake 32 97.5 93.4 80.8 12.6 7.5 5.1

autoaug wrn 97.4 92.5 81.4 11.1 6.3 4.8
wide resnet 28 10 cutout 96.9 89.9 77.9 11.9 7.2 4.7

shake shake 26 2x32d SSI 96.6 90.0 76.8 13.3 9.2 4.0
resnext 29 8x64d 96.5 88.3 75.4 13.0 7.6 5.4

wide resnet 16 8 cutout 96.3 89.3 75.5 13.8 7.8 6.1
resnext 29 4x64d 96.0 89.3 76.1 13.3 7.9 5.4

wrn 28 10 96.0 87.6 75.0 12.6 6.8 5.7
wrn 16 8 95.5 87.5 73.4 14.1 9.4 4.7
googlenet 95.5 86.5 71.6 15.0 8.4 6.5

densenet121 95.5 85.6 71.2 14.4 9.0 5.4
resnext29 95.4 86.3 71.3 15.0 9.5 5.5

dpn92 94.9 84.4 68.8 15.6 9.3 6.3
preactres 94.8 86.1 72.2 13.9 8.8 5.1

mobilenetv2 94.8 84.3 68.1 16.2 9.0 7.3
resnet preact bottleneck 164 94.5 82.7 66.1 16.6 9.0 7.7

resnet basic 110 94.1 81.5 66.4 15.1 10.5 4.6
resnet preact basic 110 93.6 83.5 68.0 15.5 11.1 4.5

resnet basic 56 93.5 83.5 69.3 14.3 12.4 1.9
resnet basic 44 93.2 83.1 68.5 14.6 10.5 4.1
vgg 15 BN 64 93.1 83.6 68.6 15.0 11.2 3.8
resnet basic 32 92.8 82.8 68.4 14.4 9.0 5.3
resnet basic 38 92.7 82.6 68.0 14.7 9.2 5.5
resnet basic 26 91.9 82.6 69.0 13.6 9.9 3.8

vgg19 91.3 83.0 68.2 14.8 8.8 6.1
efficientnet 88.8 76.9 61.5 15.4 11.1 4.3

alexnet 82.5 67.1 53.0 14.2 9.1 5.0
pnasneta 81.4 68.2 54.6 13.6 9.3 4.3

randomfeatures32k 81.2 73.0 55.3 17.7 13.7 4.0
randomfeatures16k 79.9 72.8 54.3 18.5 14.8 3.8

lenet 74.9 65.2 50.8 14.4 9.7 4.7

Table 5. Tabulation of Figure 2; column titles of the form accAx(n)→y denote the accuracy when training on n images from CIFAR-x and
testing on the test set of CIFAR-y.
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Model Code Repository Reference

autoaug shake shake 96 https://github.com/tensorflow/models/tree/master/research/autoaugment (Cubuk et al., 2018)
autoaug shake shake 112 https://github.com/tensorflow/models/tree/master/research/autoaugment (Cubuk et al., 2018)
autoaug shake shake 32 https://github.com/tensorflow/models/tree/master/research/autoaugment (Cubuk et al., 2018)

autoaug wrn https://github.com/tensorflow/models/tree/master/research/autoaugment (Cubuk et al., 2018)

wide resnet 28 10 cutout https://github.com/hysts/pytorch image classification/
(Zagoruyko & Komodakis, 2016)

(DeVries & Taylor, 2017)
shake shake 26 2x32d SSI https://github.com/hysts/pytorch image classification/ (Xavier, 2016)

resnext 29 8x64d https://github.com/hysts/pytorch image classification/ (He et al., 2016a)

wide resnet 16 8 cutout https://github.com/hysts/pytorch image classification/
(Zagoruyko & Komodakis, 2016)

(DeVries & Taylor, 2017)
resnext 29 4x64d https://github.com/hysts/pytorch image classification/ (Xie et al., 2017)

wrn 28 10 https://github.com/hysts/pytorch image classification/ (Zagoruyko & Komodakis, 2016)
wrn 16 8 https://github.com/hysts/pytorch image classification/ (Zagoruyko & Komodakis, 2016)
googlenet https://github.com/kuangliu/pytorch-cifar (Szegedy et al., 2015)

densenet121 https://github.com/kuangliu/pytorch-cifar (Huang et al., 2016)
resnext29 https://github.com/hysts/pytorch image classification/ (Xie et al., 2017)

dpn92 https://github.com/kuangliu/pytorch-cifar (Chen et al., 2017)
preactres https://github.com/kuangliu/pytorch-cifar (He et al., 2016b)

mobilenetv2 https://github.com/kuangliu/pytorch-cifar (Howard et al., 2017)
resnet preact bottleneck 164 https://github.com/hysts/pytorch image classification/ (He et al., 2016b)

resnet basic 110 https://github.com/hysts/pytorch image classification/ (He et al., 2016a)
resnet preact basic 110 https://github.com/hysts/pytorch image classification/ (He et al., 2016b)

resnet basic 56 https://github.com/hysts/pytorch image classification/ (He et al., 2016a)
resnet basic 44 https://github.com/hysts/pytorch image classification/ (He et al., 2016a)
vgg 15 BN 64 https://github.com/hysts/pytorch image classification/ (Simonyan & Zisserman, 2014)
resnet basic 32 https://github.com/hysts/pytorch image classification/ (He et al., 2016a)
resnet basic 38 https://github.com/hysts/pytorch image classification/ (He et al., 2016a)
resnet basic 26 https://github.com/hysts/pytorch image classification/ (He et al., 2016a)

vgg19 https://github.com/hysts/pytorch image classification/ (Simonyan & Zisserman, 2014)
shufflenetv2 https://github.com/kuangliu/pytorch-cifar (Zhang et al., 2018)
efficientnet https://github.com/kuangliu/pytorch-cifar (Tan & Le, 2019)

alexnet https://github.com/dansuh17/alexnet-pytorch (Krizhevsky et al., 2012)
pnasneta https://github.com/kuangliu/pytorch-cifar (Liu et al., 2018)

randomfeatures32k https://github.com/modestyachts/nondeep (Coates et al., 2011)
randomfeatures16k https://github.com/modestyachts/nondeep (Coates et al., 2011)

lenet https://github.com/kuangliu/pytorch-cifar (LeCun et al., 1998)

Table 6. Repositories for the models in our testbed.


