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Abstract

Replacing discriminative classifiers which model
p(y|x) with energy-based models of the joint
distribution over data and labels p(x, y) has re-
cently been shown to produce models with bet-
ter calibrated uncertainty, robustness, and out-of-
distribution detection abilities while also retaining
the strong predictive performance of discimina-
tive baselines. We further explore the capabilities
of energy-based classifiers for semi-supervised
learning. We find our approach works well across
domains and in settings where other recently pro-
posed semi-supervised learning methods do not
perform well.

1. Introduction
Semi-supervised learning (SSL) is a core problem in ma-
chine learning. In most real-world settings, unlabeled data
can be obtained for small fraction of the cost of labeled
data. Unfortunately, unlabeled examples are not straightfor-
ward to leverage in discriminative learning, leading most
compelling applications of machine learning today to be the
result of large-scale supervised learning.

Despite this, considerable progress has recently been made
in SSL. Most of these approaches rely on data-augmentation
strategies heavily tuned for image data (Berthelot et al.,
2019; Sohn et al., 2020) leading to impressive performance
in this domain but providing limited application outside
of it. A standout approach is Virtual Adversarial Train-
ing (VAT) (Miyato et al., 2018) which does not rely on
data-augmentation and instead enforces norm-bounded per-
turbation insensitivity on unlabeled data. While this requires
far less domain knowledge, it too may be overly tuned to the
image domain in which the l2 and linf norm are reasonable
choices but this may be not true in other domains.

A more domain-agnostic approach to SSL is based on gener-
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ative models. We train a model of p(x, y). When we observe
labels y, we maximize p(x, y), and when the label is unob-
served we marginalize it out and maximize p(x). Unfortu-
nately, when used for classification, conditional generative
models tend to perform much worse than their discrimina-
tive counterparts (Fetaya et al., 2019).

Recently, energy-based models (EBMs) (Du & Mordatch,
2019; Xie et al., 2016; Nijkamp et al., 2019) have become
a promising approach for generative modeling. Grathwohl
et al. (2019) have demonstrated that unlike other classes of
generative models, EBMs can be used to build conditional
generative models which perform on par with the state-of-
the-art discriminative models at classification while rivaling
GANs at generative modeling.

In this work we extend the method of Grathwohl et al.
(2019), JEM, and apply it to SSL. We find that JEM classi-
fiers provide noticeable benefit to SSL, perform comparably
to VAT in the image domain, and outperform VAT on non-
image data, such as arbitrary tabular data.

2. Related Work
2.1. Virtual Adversarial Training

Virtual Adversarial Training (VAT) is a recently proposed
method for SSL which stands apart from other success-
ful methods in that it does not require pre-specified data-
augmentation. VAT enforces classifiers to be invariant
within an ε-ball of an unlabeled input x with respect to
an `p-norm. This is achieved by finding the example x′

within the ball which maximally changes the model’s output
and then enforcing the model’s predictions to be the same
at both points. For a model which outputs a distribution
over k classes as a function f(x), the training objective for
unlabeled data is:

x′ = x+ argmax
||r||p<ε

[DKL(f(x)||f(x+ r))]

L(x) = DKL(f(x)||f(x′)). (1)

The method’s hyperparameters include the chosen norm,
perturbation size ε, and the weight of the unlabeled objective
compared to the supervised objective. This method has been
quite successful, but later we discuss settings where these
choices may be too restrictive.
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2.2. Energy-Based Models and JEM

As observed in Grathwohl et al. (2019), a typical classifier
using a softmax activation function can be interpreted as a
generative energy-based model. Energy-based models (Le-
Cun et al., 2006) express any probability density p(x) for
x ∈ RD in terms of:

pθ(x) =
exp(−Eθ(x))

Z(θ)
(2)

where Eθ(x) : RD → R is known as the energy function,
and Z(θ) =

∫
x exp(−Eθ(x)). A standard classifier models

pθ(y|x) =
exp(fθ(x)[y])∑
y′ exp(fθ(x)[y′])

(3)

where fθ : RD → RK and K is the number of classes. The
same parametric function fθ can be reinterpreted to define a
joint distribution pθ(x, y) as follows:

pθ(x, y) =
exp(fθ(x)[y])

Z(θ)
(4)

We can obtain pθ(x) by marginalizing out y, resulting in:

pθ(x) =
∑
y

pθ(x, y) =
∑
y exp(fθ(x)[y])

Z(θ)
(5)

which is an energy based model, where Eθ(x) =
− log(

∑
y exp(fθ(x)[y])).

A Joint Energy-based Model (JEM) that works jointly as a
discriminative and generative model can be trained using
the above formulation, by factoring the joint log likelihood:

log pθ(x, y) = log pθ(x) + log pθ(y|x) (6)

where pθ(y|x) is optimized in the same way as a typical clas-
sifier and pθ(x) is optimized as an energy based model using
Persistent Contrastive Divergence (PCD) (Tieleman, 2008)
with samples drawn using Stochastic Gradient Langevin Dy-
namics (Welling & Teh, 2011). JEMs were shown to com-
bine the advantages of discriminative and generative models,
achieving near state-of-the-art performance in classification
and generative tasks simultaneously, while achieving better
calibration, out-of-distribution detection, and adversarial
robustness than a standard classifier.

3. Proposed Approach
Motivated by the calibration and robustness of energy-based
classifiers, we now investigate whether these benefits trans-
late into improved performance in SSL, where we have
limited labeled data. To adapt the JEM training procedure
to this setting, labeled data points are trained using the fac-
torization in Eq. 6 above, optimizing both log pθ(x) and the

standard classification term log pθ(y|x), whereas for unla-
beled data points, we optimize just log pθ(x). In this way,
unlabeled data also helps us better model the joint distri-
bution. The generative modeling term can be thought of
intuitively as a form of regularization or consistency en-
forcer, dependent on the shape of the data distribution. This
should help the model avoid overfitting on the limited train-
ing data and generalize better to unlabeled and unseen data.

3.1. Beyond Pre-Specified Invariance

Most recent SSL approaches work by enforcing the classi-
fier to be invariant to a pre-specified set of transformations.
Berthelot et al. (2019) and Sohn et al. (2020) use traditional
data-augmentation for images such as random shifts and
color changes. Miyato et al. (2018) enforces their model to
be invariant to norm-bounded perturbations, requiring spec-
ification of a suitable `p-norm. We believe JEM provides
similar benefits while making far fewer assumptions. In less
studied domains, powerful data-augmentation strategies are
not known so these approaches cannot be applied. Similarly,
in many domains there may not exist a single norm and
perturbation size where a decent classifier can be learned
(see Figure 1 for an illustrative toy example). In fact, it can
be proven that finding an optimal norm and perturbation size
even on relatively well-understood data like natural images
is impossible (Tramèr et al., 2020). In consequence, aug-
mentation and adversarial-training based approaches always
require many heuristic decisions, which are mainly limited
to domains where humans have a strong intuition for the
structure of the data.

By tying the classifier to the log-density of the unconditional
data distribution, we enforce the classifier’s decisions to
be invariant in areas where the data density is relatively
constant. This forces the classifier’s decision boundary to
lie in an area where the data density is low. Since we learn
this density alongside our classifier on unlabeled data, this
pushes the decision boundary to not cut though the modes
of the data, providing strong semi-supervised classification
results. This behavior is illustrated in Figure 1.

4. Training Details
As in (Grathwohl et al., 2019), we optimize log pθ(y|x)
using the standard cross-entropy loss, and we optimize
log pθ(x) using the well-known estimator:

∂ log pθ(x)
∂θ

= Epθ(x′)

[
∂Eθ(x′)

∂θ

]
− ∂Eθ(x)

∂θ
(7)

where the expectation is approximated with a sampler
based on Stochastic Gradient Langevin Dynamics (SGLD)
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JEMVAT ϵ = 0.0 VAT ϵ = 0.03 VAT ϵ = 0.3 VAT ϵ = 3.0

Accuracy:  57% Accuracy:  58% Accuracy:  55% Accuracy:  58% Accuracy:  100%

Accuracy:  80% Accuracy:  84% Accuracy:  100% Accuracy:  83% Accuracy:  100%

Figure 1. Comparison of VAT with various ε in `2 norm and JEM on the concentric circle (top row) and two moons dataset (bottom row).
Blue and red dots denote labeled data, grey dots denote unlabeled data, background red and blue denote learned decision boundaries. Note
how JEM only places decision boundaries in low density regions. VAT is agnostic to the underlying data density and only concerned with
learning a smooth map, whose smoothness is determined by hand-chosen ε. For the two moons dataset we can find an optimal ε that gives
100% test accuracy. However, for the concentric circles dataset, `2 distance is semantically meaningful, making it impossible to find a
good choice of ε, hence VAT fails. JEM achieves 100% accuracy on both datasets as it does not make any assumptions about semantic
meaning of a certain norm-bounded perturbation.

(Welling & Teh, 2011) which generates samples following:

x0 ∼ p0(x), εi ∼ N (0, β2)

xi+1 = xi −
α

2

∂Eθ(xi)
∂xi

+ εi. (8)

For a proper Langevin diffusion we set α = β2. For high
dimensional distributions this leads to prohibitively small
step sizes α causing the sampler to be too slow to work
with. In practice the sampler is tempered which equates to
decoupling α and β. Typically β is set to a sufficiently small
value to allow samples to resemble data (0.01 is typical for
images) and then α is tuned for stable training.

We use PCD (Tieleman, 2008), with a replay buffer and
random restarts as in Du & Mordatch (2019); Grathwohl
et al. (2019). In all experiments we use a buffer with 10,000
samples and random restart probability 0.05. At each train-
ing iteration the buffer samples are updated for 40 steps.
Fewer steps could be used to achieve similar accuracy to
our reported results but training was less stable.

5. Experiments
We demonstate the performance of semi-supervised JEM
on a number of datasets and domains. We begin with a 2D
toy example which demonstrates how and why JEM per-
forms well at SSL and why it works in settings where VAT
fails. Next we focus on two standard benchmark datasets
for SSL; MNIST and SVHN. Finally, to demonstrate that
our approach has promise outside of the image domain we

provide results on tabular data from the UCI data repository.

We compare the performance of JEM against three baselines:
a standard regularized classifier trained only on the labeled
data, VAT (Miyato et al., 2018), and the semi-supervised
variational auto-encoder (VAE) (Kingma et al., 2014). For
the VAE, we focus on the best-performing stacked model
(M1 + M2) which uses representations from a latent-feature
discriminative model (M1) as embeddings for a generative
semi-supervised model (M2). For all experiments, we keep
network architectures and as many hyperparameters as we
can constant. Code is available here: https://github.
com/Silent-Zebra/JEM.

5.1. Visualizing the Advantages of JEM on Toy Data

We start with toy datasets consisting of two rings or two
half-moons, visualizing the results in Figure 1. We train
using only 4 labeled examples. Our baseline classifier (VAT
ε = 0.0) achieves poor performance even with strong reg-
ularization. After a thorough hyperparameter search, VAT
achieves strong performance on the moons dataset but fails
on the rings dataset. Conversely, JEM is able to achieve
100% accuracy on both datasets. Full experimental details
can be found in Appendix A.1.

We can intuitively understand why VAT fails on the rings
data. All members of each class lie very close to the optimal
decision boundary (in-between the rings). If VAT’s ε is
larger than this distance, this will encourage the classifier’s
decision to remain constant across this decision boundary,

https://github.com/Silent-Zebra/JEM
https://github.com/Silent-Zebra/JEM
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ALGORITHM TEST ACCURACY

BASELINE CLASSIFIER 86.0% ±1.6%
JEM 95.4% ±0.3%
VAT 98.4%± 0.3%

VAE (M1 + M2) 96.7% ±0.1%

Table 1. TEST ACCURACY FOR JEM, VAT, AND BASELINE CLAS-
SIFIER ON MNIST WITH 100 LABELS.

resulting in incorrect predictions. On the other hand, if ε
is small, smoothness far from the labeled data cannot be
enforced, leading to incorrect predictions on data far from
the labeled examples. Conversely, JEM learns that the data
density is relatively constant around both rings but low in-
between, and places the decision boundary in the low density
region between the two rings.

5.2. 100-Labels MNIST

The MNIST dataset with 100 labeled examples is a standard
benchmark task for SSL algorithms. As in Miyato et al.
(2018) we treat the data as permutation-invariant, meaning
we do not use convolutional architectures. Baseline MLP ar-
chitectures with strong regularization perform poorly (with
a 14% error rate) when trained on only 100 examples. We
show results averaged over 5 random seeds in Table 1. JEM
significantly outperforms the baseline classifier (reducing
the error rate below 5%). VAT performs best, possibly
because of its stronger inductive bias. Surprisingly, JEM
performs nearly as well despite making fewer modeling
assumptions.

5.3. 1000-Labels SVHN

SVHN represents a more challenging dataset, with larger,
more natural images. As with MNIST we treat this data
in the permutation-invariant setting and do not use convo-
lutional models. Results are shown in Table 2. On this
dataset we again find JEM improves performance over the
baseline classifier, demonstrating that JEM training provides
benefits even when using models with limited inductive bi-
ases, limited expressive capacity, and on more challenging
datasets.

JEM outperforms VAT and the VAE (Kingma et al., 2014).
While the baseline, JEM and VAT share the same architec-
ture, the stacked (M1 + M2) VAE model is deeper and wider,
thus it is not directly comparable. Despite its strong perfor-
mance on MNIST, we found VAT to provide only a marginal
improvement on SVHN. We found smaller ε values to work
well on this dataset compared to MNIST (1.0 compared to
4.0). Note that the VAT results reported here are with our
MLP architecture, whereas the original VAT paper reports
results using a Conv-Net architecture.

ALGORITHM TEST ACCURACY

BASELINE CLASSIFIER 62.7% ±0.5%
VAT 62.8% ±0.6%
JEM 66.0%± 0.7%

VAE (M1 + M2) 64.0% ±0.1%

Table 2. TEST ACCURACY FOR JEM, VAT, AND BASELINE CLAS-
SIFIER ON SVHN WITH 1000 LABELS.

5.4. Tabular Data

We take two large datasets from the UCI dataset reposi-
tory commonly used for regression (Gal & Ghahramani,
2016; Hernández-Lobato & Adams, 2015); Protein Struc-
ture Prediction and Year Prediction MSD. We convert them
to classification tasks by binning the targets into 10 equally
weighted buckets. We preprocess the inputs by standardiz-
ing each feature to have mean 0 and standard-deviation 1.
We perform semi-supervised classification using a labeled
subset with 100 examples and treat the remainder of the data
as unlabeled. Results can be seen in Table 3. In this setting
we find that VAT in fact decreases performance (for all hy-
perparameter settings tested) over the baseline. Conversely,
JEM provides a modest improvement in test performance.

On tabular datasets such as these, the distributions of each
of the inputs may be considerably different. This means
that a different scale of sensitivity may be needed for each
feature. VAT enforces invariance to perturbations of a given
norm in any direction, weighting each feature equally. In
the image domain, the per-pixel image statistics are roughly
identical so this assumption may hold, explaining VAT’s
strong performance with images. This assumption does not
hold on these tabular datasets, providing an explanation as
to why VAT decreases performance over the baseline here.

DATA (# UNLABELED) BASELINE JEM VAT

PROTEIN (45,730) 17.5 % 19.6% 17.0 %
YEAR (515,345) 15.6 % 17.1% 13.1%

Table 3. TEST ACCURACY FOR JEM, VAT, AND BASELINE CLAS-
SIFIER ON TABUALR DATASETS WITH 100 LABELS.

6. Conclusion
We have shown that recent advances in energy-based models
can be leveraged for SSL. This approach requires much
less domain-specific knowledge compared to recent SSL
approaches based on data-augmentation (Berthelot et al.,
2019) or adversarial training (Miyato et al., 2018). JEM
performs on par with VAT on multiple image datasets and
outperforms it on domains other than images.
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A. Experimental Details
A.1. Toy Data Experiments

All networks had 4 layers with 500 units and used ReLU
activations. All models were trained with the Adam opti-
mizer (Kingma & Ba, 2014) with a learning rate of 0.001
and default hyperparameters.

We experimented with dropout and batch normalization to
regularize the baseline classifier and VAT but this did not
improve accuracy.

For VAT, we search over choices of the perturbation size
hyperparameter ε ∈ [0.01, 0.03, 0.1, 0.3, 1.0, 3.0]. We find
that ε = 0.03 performed the best.

For JEM we apply slight L2 regularization on the energy out-
puts, which helps stabilize training; the same performance
can be achieved without L2 regularization on the energy
outputs. We set the strength of this regularization to 0.001.

A.2. MNIST

For all models (baseline classifier, JEM, and VAT), we used
a neural net consisting of a 4-layer MLP with 500 hidden
units at each fully connected layer and ReLU activation
function, and we applied preprocessing of 4-pixel padding,
random crop, and logit transform (log(x) − log(1 − x)).
We found the logit transform improved performance for all
models (baseline classifier, JEM, and VAT). We trained over
200 epochs and report the test accuracy which corresponds
to the epoch with highest validation accuracy. We used a
learning rate of 0.0002 in all experiments.

Batch-norm and dropout were applied to the baseline classi-
fier and VAT models. Entropy regularization (Miyato et al.,
2018) was not found to be helpful for VAT or JEM (possibly
because of our use of the logit transform).

VAT models had equal weighting of the regularization (LDS)
loss and the classification loss.

VAE results were taken directly from (Kingma et al., 2014).
For the M1+M2 model, the overall algorithm, including
network architecture, preprocessing (the VAE uses PCA),
and multi-stage training are different from our setup and
thus results are not directly comparable.

For JEM we temper our MCMC sampler. This equates to
using a larger stepsize for the SGLD sampler compared to
the amount of noise added. We use stepsize α = 2.0 and
β2 = 0.012. We use an equal weighting of the p(x) loss
and p(y|x).

Hyperparameter search was done on the learning rate in
all settings, weighting of the JEM objective, weighting of
the LDS loss in VAT, epsilon used in VAT, and we report
the best results in Table 1. Different activation functions

(Leaky ReLU, Swish, Softplus) were not found to impact
performance.

A.3. SVHN

In all of our experiments (classifier, JEM, and VAT), we
used a neural net consisting of a 3-layer MLP, with 1000
hidden units in each fully connected layer and ReLU activa-
tion function. We applied preprocessing of 4-pixel padding,
random crop, normalization and Gaussian noise. We trained
over 200 epochs and report the test accuracy which corre-
sponds to the epoch with highest validation accuracy. We
used a learning rate of 0.0002 in all experiments.

Batch-norm and dropout were applied to the baseline clas-
sifier and VAT models. For JEM we apply slight L2 reg-
ularization on the energy outputs, which greatly stabilizes
training. We set the strength of this regularization to 0.01.
MCMC sampling parameters are identical to our MNIST
experiments.

A.4. Tabular Data

Tabular data was pre-processed by standardizing each fea-
ture to have mean 0 and standard-deviation 1. The two
datasets used are meant for regression tasks. The target
values over the training set were binned into 10 equally
weighted histograms to convert the regression task to a clas-
sification task. Labeled subsets were created by taking 10
examples at random from each of the 10 classes. A valida-
tion set of 100 examples was also selected in this way. All
other data was treated as unlabeled.

All models used a 3-layer MLP with 500 hidden units and
ReLU activations. No other pre-processing was used.

For the JEM models a small l2 penalty was place on the
energy with weight 0.01. We used a replay buffer of 10,000
examples and set the SGLD parameters α = 0.00125, β =
0.05.

For VAT we searched over ε ∈ [0.01, 0.03, 0.1, 0.3, 1.0].

Models were trained for 100 epochs and we report the test
accuracy that corresponds to the training epoch with highest
validation accuracy.


