
URSABench: Comprehensive Benchmarking of Approximate
Bayesian Inference Methods for Deep Neural Networks

Meet P. Vadera * 1 Adam D. Cobb * 2 Brian Jalaian 2 Benjamin M. Marlin 1

Abstract
While deep learning methods continue to improve
in predictive accuracy on a wide range of applica-
tion domains, significant issues remain with other
aspects of their performance including their abil-
ity to quantify uncertainty and their robustness.
Recent advances in approximate Bayesian infer-
ence hold significant promise for addressing these
concerns, but the computational scalability of
these methods can be problematic when applied to
large-scale models. In this paper, we describe ini-
tial work on the development of URSABench (the
Uncertainty, Robustness, Scalability, and Accu-
racy Benchmark), an open-source suite of bench-
marking tools for comprehensive assessment of
approximate Bayesian inference methods with a
focus on deep learning-based classification tasks.1

1. Introduction
As deep learning models continue to improve their predic-
tive accuracy across many application domains, significant
issues remain with respect to other highly important aspects
of performance including their ability to robustly quantify
uncertainty (Guo et al., 2017) and their ability to provide ro-
bust predictions in the presence of adversarial manipulations
(Goodfellow et al., 2015) and out-of-distribution examples
(Ovadia et al., 2019).

Approximate Bayesian inference methods (Neal, 1996;
Jaakkola & Jordan, 2000) hold considerable promise for ad-
dressing such issues, and recent advances have significantly
improved the feasibility of deploying approximate Bayesian
inference methods to increasingly larger deep learning mod-
els (Welling & Teh, 2011; Zhang et al., 2020).
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This paper describes initial work on URSABench, an open
source suite of benchmarking tools for assessment of approx-
imate Bayesian inference methods applied to deep neural
network classification tasks. URSABench includes bench-
mark models, data sets, tasks and evaluation metrics focused
on simultaneously assessing the uncertainty quantification
performance, robustness, computational scalability and ac-
curacy of learning and inference methods. We begin by
briefly reviewing approximate Bayesian supervised learn-
ing. We then discuss principles for evaluation of such meth-
ods, followed by a description of the initial URSABench
infrastructure and initial benchmarking results.

2. Bayesian Supervised Learning
In supervised learning, the data set D consists of a set of
labeled instances {(xi, yi)|1 ≤ i ≤ N}. xi ∈ RD is the
feature vector and yi ∈ Y is the prediction target. We let
Dx be the set of feature vectors and Dy be the set of tar-
gets. A probabilistic supervised learning model provides a
conditional probability model of the form p(y|x, θ) where
θ ∈ RK are the model parameters. The conditional likeli-
hood of the targets given the feature vectors and parameters
is given by p(Dy|Dx, θ). The standard assumption that the
data cases are independent and identically distributed leads
to p(Dy|Dx, θ) =

∏N
i=1 p(yi|xi, θ) (Neal, 1996). Bayesian

inference also requires asserting a prior distribution over
the model parameters p(θ|θ0) that itself depends on prior
parameters θ0 (Neal, 1996).

The two key problems in Bayesian inference applied to
supervised learning are the computation of the posterior dis-
tribution over the unknown parameters given a training data
set Dtr as shown in Equation (1), and the computation of
the posterior predictive distribution over the target variable
y given a feature vector x and a data set Dtr as shown in
Equation (2) (Neal, 1996).

p(θ|Dtr, θ0) =
p(Dytr|Dxtr, θ)p(θ|θ0)∫
p(Dytr|Dxtr, θ)p(θ|θ0)dθ

(1)

p(y|x,Dtr, θ0) = Ep(θ|Dtr,θ0)[p(y|x, θ)] (2)

It is well known that for neural network models the integrals
required in Equations (1) and (2) are intractable. Approxi-
mate Bayesian inference methods thus aim to approximate
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either the parameter posterior or expectations taken with re-
spect to the parameter posterior such as Equation (2). Below,
we briefly review three categories of Approximate Bayesian
inference methods: Monte Carlo methods, surrogate density
methods, and posterior distillation methods.

Monte Carlo Methods: Monte Carlo methods are a clas-
sical approach to Bayesian computation that approximate
the intractable parameter posterior p(θ|D, θ0) via a distri-
bution constructed from a finite set of samples θs drawn
from the true posterior p(θ|D, θ0) (Smith & Roberts, 1993).
This leads to the following approximate posterior predictive
distribution: p(y|x,D, θ0) ≈ 1

S

∑S
s=1 p(y|x, θs).

Of course, for complex models the problem of drawing sam-
ples from the true parameter posterior is also often compu-
tationally intractable. Markov chain Monte Carlo (MCMC)
methods solve this problem by constructing a Markov chain
with the true posterior p(θ|D, θ0) as its equilibrium distribu-
tion. While classical MCMC methods are typically to slow
to apply to large models (Casella & George, 1992; Chib
& Greenberg, 1995; Duane et al., 1987; Neal, 2003; Giro-
lami & Calderhead, 2011), a number of recent approaches
have addressed this problem either by enabling sampling
based on mini-batches of data (Welling & Teh, 2011; Chen
et al., 2014; Zhang et al., 2020), or by sampling in reduced-
dimensional parameter spaces (Izmailov et al., 2019).

Surrogate Density Methods: Another major family of
methods are approaches based on approximating the true
posterior density via an analytically tractable surrogate dis-
tribution q(θ|D, θ0, φ) where φ are auxiliary parameters of
the surrogate distribution (Jordan et al., 1999; Jaakkola &
Jordan, 2000; Ghosh et al., 2016; Minka, 2001). The most
commonly used approaches in this family learn the parame-
ters φ by minimizing the Kullback-Leibler (KL) divergence
KL(p||p′) = Ep[log(p/p

′)] (MacKay, 2003). When the sur-
rogate posterior is used as the first argument, the result is the
variational inference (VI) framework (Jaakkola & Jordan,
2000). When it is used as the second argument, it yields
the expectation propagation (EP) framework (Minka, 2001).
Advances in the past decade have led to significantly more
scalable methods in this family (Hoffman et al., 2013; Gal
& Ghahramani, 2016; Dusenberry et al., 2020).

Distillation-Based Methods: The final class of methods
that we review are posterior distillation-based methods in-
cluding Bayesian Dark Knowledge (BDK) (Balan et al.,
2015) and Generalized Posterior Expectation Distillation
(GPED) (Vadera et al., 2020a). These methods directly ap-
proximate statistics of the posterior distribution by learning
an auxiliary neural network model to mimic the output of
corresponding Monte Carlo approximations. Importantly,
their goal is not to improve over the Monte Carlo approxi-
mation, but rather to reduce the computation time required
to compute the Monte Carlo average at deployment time.

3. URSABench Evaluation Principles
While advances in supervised deep learning methods have
focused heavily on accuracy over the last decade, there are
multiple aspects of models and inference algorithms that
are of great interest. URSABench focuses on simultane-
ously assessing the uncertainty quantification performance,
robustness, computational scalability and accuracy of learn-
ing and inference methods. In this section, we describe the
evaluation principles that underlie URSABench. In the next
section, we describe their current implementation.

Accuracy: Predictive performance is by far the most widely
considered property of supervised machine learning models.
In the classification setting, evaluation measures that only re-
quire that the true label y be correctly predicted provide the
coarsest measures of the predictive performance. Accuracy
is the most common such measure.

Uncertainty Quantification: A number of metrics are help-
ful for assessing the degree to which a method results in
properly quantified predictive uncertainty. Predictive log
likelihood can provide more insight into the predictive dis-
tribution than accuracy as it is sensitive to the predicted
value of p(y|x,Dtr, θ0). Both high-confidence errors and
low-confidence correct predictions will result in lower log
likelihood values.

Calibration is also an important property of predictive mod-
els and recent evaluations of deep learning methods have
shown that their calibration properties can be quite poor
(Guo et al., 2017). In the binary case, a classifier is said
to be perfectly calibrated if exactly p percent of instances
are predicted to be positive with p percent probability. The
degree of calibration of a binary classifier can be quanti-
fied using the expected calibration error (ECE) (Guo et al.,
2017). In the case of multi-class classification, a one-vs-all
formulation of calibration error can be used. The Brier score
provides an alternate measure of calibration (Brier, 1950)
that can be interpreted as mixing together aspects of cali-
bration and accuracy. Finally, misclassification detection
performance (Hendrycks & Gimpel, 2017) is also helpful in
assessing the utility of various uncertainty metrics.

Robustness: Another key property of models and infer-
ence methods is their robustness. Both predictive perfor-
mance and uncertainty quantification metrics are typically
computed on a test data set Dte that is assumed to be sam-
pled from the same distribution as the training data set Dtr.
Out-of-distribution (OOD) detection tasks instead assess
the ability of methods to detect examples from a set Dood
drawn from a different distribution than Dtr (Ovadia et al.,
2019). The ability of methods to resist adversarial input
perturbations as measured by the success rate of different
adversarial attacks is also an important property (Goodfel-
low et al., 2015; Madry et al., 2018; Carlini & Wagner,
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Table 1. URSABench small-scale benchmark performance. Results presented as mean ± std. dev. across 5 trials.)
Inference Accuracy ↑ NLL ↓ Robustness ↑ Uncertainty ↑ Scalability ↓

HMC 0.9819 ± 0.0010 0.0593 ± 0.0016 0.9570 ± 0.0075 0.9734 ± 0.0012 0.72 ± 0.01
SGLD 0.9839 ± 0.0004 0.0492 ± 0.0022 0.9065 ± 0.0377 0.9679 ± 0.0233 2.02 ± 0.02

SGHMC 0.9862 ± 0.0003 0.0446 ± 0.0003 0.9426 ± 0.0048 0.9807 ± 0.0003 2.03 ± 0.02
cSGLD 0.9857 ± 0.0003 0.0476 ± 0.0011 0.9521 ± 0.0022 0.9795 ± 0.0007 14.08 ± 0.05

cSGHMC 0.9836 ± 0.0009 0.0533 ± 0.0016 0.9276 ± 0.0094 0.9759 ± 0.0015 14.77 ± 0.03
PCA + ESS (SI) 0.9840 ± 0.0007 0.0520 ± 0.0016 0.9360 ± 0.0038 0.9695 ± 0.0012 70.67 ± 0.20

MC dropout 0.9858 ± 0.0007 0.0501 ± 0.0031 0.9429 ± 0.0059 0.9769 ± 0.0019 2.02 ± 0.03
SGD 0.9860 ± 0.0002 0.0452 ± 0.0012 - - 2.03 ± 0.02

Table 2. URSABench medium-scale benchmark performance.
Inference Accuracy ↑ NLL ↓ Robustness ↑ Uncertainty ↑ Scalability ↓

SGLD 0.869 0.524 0.803 0.916 129.3
SGHMC 0.868 0.539 0.808 0.916 129.3
cSGLD 0.892 0.396 0.810 0.912 2103.3

cSGHMC 0.886 0.443 0.798 0.898 2114.9
SWAG 0.824 0.735 0.759 0.885 1351.7

PCA + ESS (SI) 0.869 0.482 0.804 0.901 1940.0
MC dropout 0.872 0.554 0.775 0.914 127.6

SGD 0.861 0.625 - - 127.7

2017). We note that in the Bayesian supervised learning
context, these attack methods require access to the poste-
rior predictive distribution function and in many cases its
gradients (Vadera et al., 2020b).

Scalability: Of primary interest in this work are how the ac-
curacy, uncertainty quantification and robustness properties
of methods trade off against their computational scalabil-
ity properties with the goal of better understanding which
methods offer the best trade-offs in different computational
contexts (e.g., cluster, embedded system, etc.). The storage
cost can be estimated via the number of parameters and the
size of stored models (if variable bit depth is considered).
The run-time of methods can be assessed in different ways
including wall clock time as well as more portable statistics
such as the number of floating point operations (flops) or
multiply-accumulate operations (MACs).

4. URSABench Implementation Framework
In this section, we describe the current URSABench imple-
mentation framework, which leverages multiple datasets,
models and tasks to implement the evaluation principles
described in the previous section. The current framework
includes small-scale and medium-scale benchmarks.

Models and Data Sets: The small-scale benchmark uses a
basic, fully connected MLP with two hidden layers contain-
ing 200 units each as the benchmark model, with MNIST
providing the benchmark in-domain data set (LeCun, 1998).
At the medium-scale, we use ResNet50 (He et al., 2016)
and WideResNet as the benchmark models (Zagoruyko &
Komodakis, 2016), with CIFAR10 and CIFAR100 as the
benchmark in-domain data sets (Krizhevsky et al., 2009).

Tasks and Metrics: The approximate parameter poste-
rior and posterior predictive distribution are produced us-
ing each benchmark in-domain training set. Accuracy is
assessed using the corresponding in-domain test sets. To
assess uncertainty quantification, we compute negative log
likelihood, Brier score, and performance on a misclassifica-
tion detection task, all using the in-domain test sets. We also
consider a decision-making task that focuses on assessing
the quality of the tail of the predictive distribution using
imbalanced data sets and costs that strongly penalize errors
on the rare classes (Cobb et al., 2018) (see Appendix A for
details). We assess robustness using an out-of-distribution
(OOD) classification task (Ovadia et al., 2019; Vadera et al.,
2020a) leveraging knowledge uncertainty (see Appendix B
for a review of uncertinaty decomposition). The small-scale
benchmark uses FashionMNIST (Xiao et al., 2017) and KM-
NIST (Clanuwat et al., 2018) as OOD test sets, while the
medium-scale benchmark uses SVHN (Netzer et al., 2011)
and STL10 (Coates et al., 2011) as OOD test sets. Perfor-
mance on OOD tasks is assessed using AUROC. Finally, the
current version of the benchmark focuses on computation
time as the measure of computational scalability, measured
in seconds/sample.

Composite Scores: The simultaneous assessment of mul-
tiple aspects of performance is the focus of URSABench.
However, this yields many individual results for each infer-
ence method. An important design choice in URSABench
is thus to summarize performance in terms of key selected
individual metrics along with composite scores that com-
bine related individual metrics. For accuracy we include
an average over all benchmark models and all in-domain
test sets. For robustness, we use an average over all mod-



URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks

els and OOD data sets. For uncertainty quantification, we
separately compute an average over models and data sets in
terms of negative log likelihood (NLL) and misclassification
task performance.

5. URSABench Benchmark Results
In this section we report the initial benchmark results ob-
tained using URSABench.

Inference Methods: We focus on bencmarking Monte
Carlo methods including HMC2, SGLD (Welling & Teh,
2011), SGHMC (Chen et al., 2014), cSGLD, cSGHMC
(Zhang et al., 2020), SWAG (Maddox et al., 2019) and PCA-
based subspace inference + elliptical slice sampling (PCA+
ESS (SI)) (Izmailov et al., 2019). As baselines, we also
provide MC dropout (Gal & Ghahramani, 2016) and an
SGD-point estimated model. Implementation details for the
inference schemes have been provided in Appendix D.

Small-Scale Benchmark Results: The small-scale results
are displayed in Table 1. The detailed experimental results
behind each composite score can be found in Appendix
E. The small-scale results show how challenging it can
be to distinguish between different approximate inference
schemes using relatively simple models and data sets. SGD
and SGHMC are both marginally ahead in accuracy and
NLL; HMC appears to show the most robust performance
in OOD and SGHMC does best for the uncertainty metric.
However the minor relative difference between all the per-
formance metrics points to focusing on the compute time
which shows HMC to be significantly less time consum-
ing. This is due to the ability to fit all the data and model
parameters on the GPU.

Medium-Scale Benchmark Results: The medium-scale
results are displayed in Table 2. The detailed experimental
results behind each composite score can again be found in
Appendix E. Overall, the medium-scale experiments indi-
cate a slight improvement on the predictive performance and
decision-making tasks from both cSGHMC, and cSGLD
followed by PCA + ESS (SI). However, once again a user
may prefer using MC dropout or SGLD/SGHMC as they
provide respectable performance in significantly less time.
This is due to the large proportion of time that the cyclic
schemes spend exploring without sampling. Furthermore, if
the goal is to compute uncertainty metrics and ultimately use
them for misclassification detection or OOD detection, then
SGHMC/SGLD provide better performance in a majority of
the cases. Another important result that can be seen from
the Tables 6, 9, 12 and 15 in Appendix E is the demonstrated
utility of the decision-making task in its ability to highlight

2HMC is only implemented for tasks where the model and full
data set can fit on the GPU. We use the hamiltorch Python
package (Cobb et al., 2019).

the top performing approximate inference schemes for each
model and data set, via its correlation with low NLL and
high accuracy.

6. Conclusion and Future Work
This paper describes initial work on URSABench, a frame-
work for benchmarking the performance of approximate
Bayesian inference methods for deep neural networks. We
hope that the development of this benchamrking toolbox
will help to accelerate research in the domain of approxi-
mate Bayesian inference by helping to expose the trade-offs
achieved by methods in terms of uncertainty, robustness,
scalability and accuracy. We believe the simultaneous as-
sessment of these properties is critical to better understand
which methods are most effective on different downstream
tasks and in different deployment contexts.

A further clear challenge in the development of this toolbox
is ensuring a fair comparison between approaches. How-
ever, this can be difficult for new model/method/data set
combinations without established hyperparameters, requir-
ing careful hyperparameter optimization. This requirement
highlights the issue of how to benchmark the end-to-end
process of hyperparameter optimization and inference in
terms of computational resource use.

As a first line of future work, we plan to continue to imple-
ment tasks and metrics to fully reflect all of the evaluation
principles described in this paper. Important tasks and met-
rics yet to be implemented include robustness to adversarial
examples (Vadera et al., 2020b) and common corruptions
(Hendrycks & Dietterich, 2019), and assessment of test-
time computational scalability. We further plan to add a
large-scale benchmark that current approximate inference
schemes will find challenging. Finally, we aim to expand
the scope of models and data sets to include architectures
such as recurrent neural networks and graph convolutional
networks to provide a broader assessment of approximate
inference methods.
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A. Decision-making task
Bayesian decision theory takes Monte Carlo samples and
averages them over a predetermined cost function, C(h, y)
to result in an expected risk:

R(h|x) ≈ 1

S

S∑
s=1

p(y|x, θs)C(h, y).

The expected risk is a function of the decision, h, whereby
the Bayesian optimal decision, h∗ minimises the risk:

h∗ = argmin
h

R(h|x).

Once we have applied Bayesian decision theory to find an h∗

for every input x, for supervised classification, we can then
determine the true cost of the decision taken by averaging
over the test data (i.e. 1

N

∑N
n=1 C(yTruen , h∗n)), where the

arguments have been reversed such that we compare the
true label yTruen , with the Bayesian optimal decision h∗n
(i.e. what cost did we actually have to pay when we took
decision h∗n for labelling yn, when it was in fact yTruen ).
A more detailed discussion can be seen in Ch. 4 of Cobb
(2020).

The purpose of the decision-making task is to penalise in-
ference schemes that provide poor calibrated uncertainty
over the rarer (and hence more uncertain) classes. In par-
ticular, for MNIST, we retrain our models over a highly
imbalanced data set, where 99% of the labels corresponding
to classes 3 and 7 are removed. However, we then use the
predictive distribution to with a predefined cost function to
select the Bayes optimal decision for each predicted label.
We then calculate the expected decision cost by averaging
over the costs attributed to each decision compared to the
true label. False negatives of the less frequent classes are
penalised 1000 times more than false positives for the rest
of the classes.

The small-scale setting for the decision-making task requires
retraining over an imbalanced training set. However, for
the medium-scale task we limit ourselves to using the same
materialised samples from the balanced data set (although
we expect to extend this to imbalanced training data in future
work). We define our cost matrix to penalise false negatives
10 times as much as false positives. In particular, the task
for the CIFAR10 penalises planes, automobiles, ships and
trucks with a cost of 1.0 for false negatives and 0.1 for false
positives. All other errors are penalised with 0.1 and correct
decisions accrue zero cost. The same cost structure applies
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to CIFAR100, where tanks, rockets and pick-up trucks are
deemed the critical classes.

The decision costs in Tables 6, 9, 12 and 15 demonstrate the
utility of this task as they show a correlation with the NLL
and the accuracy across all models and data sets.

B. Uncertainty Decomposition for
downstream tasks

The posterior predictive distribution is not the only statistic
of the posterior distribution that is of interest. The decom-
position of posterior uncertainty has also received recent
attention in the literature. For example, Depeweg et al.
(2017) and Malinin et al. (2020) describe the decomposi-
tion of the entropy of the posterior predictive distribution
(the total uncertainty) into expected data uncertainty and
knowledge uncertainty. These three forms of uncertainty
are related by the equation shown below:

I [y, θ|x,D]︸ ︷︷ ︸
Knowledge Uncertainty

= H
[
Ep(θ|D) [p (y|x, θ)]

]︸ ︷︷ ︸
Total Uncertainty

− Ep(θ|D) [H [p (y|x, θ)]]︸ ︷︷ ︸
Expected Data Uncertainty

(3)

Total uncertainty, as the name suggests, measures the total
uncertainty in a prediction. Expected data uncertainty mea-
sures the uncertainty arising from class overlap. Knowledge
uncertainty corresponds to the conditional mutual informa-
tion between labels and model parameters and measures
the disagreement between different models in the posterior.
However, it can be efficiently computed as the difference be-
tween total uncertainty and expected data uncertainty, both
of which are (functions) of posterior expectations. In recent
work, Wang et al. (2018), Malinin et al. (2020) and Vadera
et al. (2020a) have leveraged this decomposition to explore
a range of down-stream tasks that rely on uncertainty quan-
tification and decomposition.

C. Composite Score Breakdown
As alluded to in the main text, we build composite scores
for robustness and uncertainty. The robustness relies on
averaging both the total uncertainty AUROC and the model
uncertainty AUROC over the OOD data sets. We then aver-
age once again over the mean total uncertainty and model
uncertainty. The uncertainty composite score is built from
the average misclassification AUROCs (e.g. the first three
columns of Tables 5, 8, 11, 14, 17). For the medium-scale
experiment the uncertainty score is then averaged across
CIFAR10 and CIFAR100 as well as ResNet50 and WideRes-
Net28x10.

D. Implementation Details
In this section, we describe the implementation details for
the different inference methods used in our benchmark. It
must be noted that for all inference methods using ResNet50
and WideResNet28x10 models, we use a pretrained SGD
solution to warm-start our samplers. This is a standard pre-
training procedure followed to make the methods more com-
petitive (Maddox et al., 2019). Further, the ensemble size is
set to 50 for CIFAR datasets, and 100 for MNIST dataset.
The difference in ensemble size is due to the large amounts
of computational requirements for training ResNet50 and
WideResNet28x10 on CIFAR datasets. While tuning hy-
perparameters for MNIST, we apply Bayesian optimization
with a limit of 200 evaluations for each approach (Balandat
et al., 2019). On the other hand, for CIFAR datasets, we
refer to existing literature and use the same hyperparameters
if directly applicable, or search around the hyperparameters
obtained for similar models and datasets.

SGLD: For CIFAR datasets, we use a burn-in of 100 epochs
and initial learning rates of 0.1 for WideResNet28x10 model
and 0.05 for ResNet50. The prior std. dev. is set to 1 for
both the cases. We decay the learning rate using cosine
annealing schedule to its half value by the end of sampling.
For MNIST, the optimal hyperparameter values obtained
are: initial learning rate of 0.099, prior std. dev. of 0.16 and
50 burn in epochs.

SGHMC: We use the same hyperparameters and learning
rate schedule as described for SGLD for the CIFAR datasets.
Additionally, we set the friction term to 0.5 (Chen et al.,
2014). This is equivalent to the α term shown in Zhang et al.
(2020). For MNIST, the optimal hyperparameter values
obtained are: initial learning rate of 0.03, prior std. dev. of
0.14, 50 burn in epochs, and friction term set to 0.1.

cSGHMC: We use the same hyperparameters given in
Zhang et al. (2020) for CIFAR datasets. For MNIST, the
optimal hyperparameter values obtained are: initial learning
rate of 0.06, prior std. dev. of 0.33, cycle length of 22
epochs, of which 17 epochs are used for SGD-exploration
phase, and samples are collected from the last 4 epochs, and
friction term set to 0.21.

cSGLD: We use the same hyperparameters given in Zhang
et al. (2020) for CIFAR datasets. For MNIST, the optimal
hyperparameter values obtained are: initial learning rate of
0.06, prior std. dev. of 0.33, cycle length of 22 epochs, of
which 17 epochs are used for SGD-exploration phase, and
samples are collected from the last 4 epochs, and friction
term set to 0.21.

SWAG: We use the same hyperparameters given in Izmailov
et al. (2019) for CIFAR models, except that we set the
weight decay for ResNet models to 10−4 and borrow its
remaining hyperparameters from WideResNet28x10. This
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means that we utilize last 20 SGD iterates to find parameters
for the gaussian approximation to the mode. For MNIST, we
start with an initial learning rate of 0.018 and decay it 0.0006
over 50 epochs. Further, we run SGD at the same learning
rate for another 30 epochs and collect the final 20 iterates
to construct our SWAG approximation. The momentum
for our SGD optimizer is set to 0.7 through the entire run.
Furthermore, the variant of SWAG used in our benchmark
is SWAG-diagonal.

PCA + ESS (SI): We use the same hyperparameters given
in Izmailov et al. (2019) for CIFAR models, except that we
set the weight decay for ResNet models to 10−4 and borrow
its remaining hyperparameters from WideResNet28x10. We
construct a subspace of rank 20 for all models and datasets.
For MNIST, we start with an initial learning rate of 0.04
and decay it 0.002 over 50 epochs. Further, we run SGD

at the same learning rate for another 50 epochs and collect
the iterates from each of the final 20 epochs to construct
our PCA subspace. The momentum for our SGD optimizer
is set to 0.54 through the entire run. For all the dataset
and model combinations, we use elliptical slice sampling
(Murray et al., 2010) on the low rank PCA subspace with a
prior of 2. and a temperature of 5000.

MC Dropout: For all the models on CIFAR datasets, we
use a dropout of 0.2 before the final linear layer while we
use dropout after both hidden layers for MNIST-MLP200
with a dropout rate of 0.04.

E. Additional Experimental Results
Additional experimental results are provided in Tables 3 -
17.
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Table 3. Comparison of predictive performance and decision making cost while using an MLP [784, 200, 200, 10] on MNIST. Results
presented as mean ± std. dev. across 5 trials.

Inference Accuracy ↑ NLL ↓ BS ↓ ECE ↓ Decision Cost ↓ Samples/second ↓
HMC 98.19 ± 0.10% 0.0593 ± 0.0016 0.0280 ± 0.0008 0.0079 ± 0.0008 7101 ± 346 0.72 ± 0.01
SGLD 98.39 ± 0.04% 0.0492 ± 0.0022 0.0236 ± 0.0005 0.0041 ± 0.0024 5410 ± 778 2.02 ± 0.02

SGHMC 98.62 ± 0.03% 0.0446 ± 0.0003 0.0210 ± 0.0002 0.0073 ± 0.0004 5408 ± 240 2.03 ± 0.02
cSGLD 98.57 ± 0.03% 0.0476 ± 0.0011 0.0223 ± 0.0003 0.0056 ± 0.0003 6526 ± 2241 14.08 ± 0.05

cSGHMC 98.36 ± 0.09% 0.0533 ± 0.0016 0.0256 ± 0.0010 0.0033 ± 0.0003 4824 ± 1855 14.77 ± 0.03
PCA + ESS (SI) 98.40 ± 0.07% 0.0520 ± 0.0016 0.0251 ± 0.0007 0.0036 ± 0.0005 3809 ± 1150 70.67 ± 0.20

MC dropout 98.58 ± 0.07% 0.0501 ± 0.0031 0.0218 ± 0.0008 0.0042 ± 0.0006 15236 ± 1184 2.02 ± 0.07
SGD 98.60 ± 0.02% 0.0452 ± 0.0012 0.0213 ± 0.0003 0.0032 ± 0.0005 8613 ± 1428 2.03 ± 0.02

Table 4. Comparison of OOD detection performance while using an MLP [784, 200, 200, 10] on MNIST. Results presented as mean ±
std. dev. across 5 trials.

Inference
OOD

Dataset
AUROC- Model

Uncertainty ↑
AUROC - Total
Uncertainty ↑

HMC Fashion MNIST 0.966 ± 0.013 0.946 ± 0.017
KMNIST 0.968 ± 0.013 0.948 ± 0.017

SGLD Fashion MNIST 0.867 ± 0.110 0.944 ± 0.005
KMNIST 0.871 ± 0.103 0.944 ± 0.005

SGHMC Fashion MNIST 0.933 ± 0.009 0.953 ± 0.010
KMNIST 0.932 ± 0.009 0.952 ± 0.010

cSGLD Fashion MNIST 0.954 ± 0.004 0.950 ± 0.005
KMNIST 0.954 ± 0.004 0.950 ± 0.005

cSGHMC Fashion MNIST 0.923 ± 0.021 0.931 ± 0.017
KMNIST 0.923 ± 0.020 0.933 ± 0.017

PCA + ESS (SI) Fashion MNIST 0.933 ± 0.006 0.938 ± 0.009
KMNIST 0.934 ± 0.006 0.940 ± 0.009

MC dropout Fashion MNIST 0.942 ± 0.013 0.943 ± 0.010
KMNIST 0.943 ± 0.013 0.944 ± 0.010

SGD Fashion MNIST N/A 0.945 ± 0.010
KMNIST N/A 0.943 ± 0.010

Table 5. Comparison of misclassification detection while using an MLP [784, 200, 200, 10] on MNIST.

Inference
AUROC- Model

Uncertainty ↑
AUROC - Total
Uncertainty ↑

AUROC- Model
Confidence ↑

AUCPR- Model
Uncertainty ↑

AUCPR - Total
Uncertainty ↑

AUCPR- Model
Confidence ↑

HMC 0.9706 0.9734 0.9743 0.3429 0.3888 0.4145
SGLD 0.9739 0.9800 0.9800 0.3530 0.4502 0.4632

SGHMC 0.9786 0.9815 0.9823 0.3546 0.3929 0.4131
cSGLD 0.9769 0.9801 0.9798 0.3695 0.4477 0.4478

cSGHMC 0.9730 0.9786 0.9786 0.3260 0.4255 0.4404
PCA + ESS (SI) 0.9539 0.9774 0.9772 0.2059 0.4298 0.4248

MC dropout 0.9754 0.9763 0.976 0.4085 0.43 0.4199
SGD N/A 0.9795 0.9794 N/A 0.4273 0.4389
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Table 6. Comparison of predictive performance and decision making cost while using ResNet50 on CIFAR10.

Inference Accuracy ↑ NLL ↓ BS ↓ ECE ↓ Decision Cost ↓
SGLD 0.954 0.144 0.069 0.009 139.500

SGHMC 0.954 0.144 0.068 0.011 138.100
cSGLD 0.966 0.128 0.053 0.020 112.100

cSGHMC 0.951 0.243 0.086 0.106 153.900
SWAG 0.931 0.311 0.114 0.047 200.900

PCA + ESS (SI) 0.949 0.174 0.080 0.027 166.600
MC dropout 0.948 0.208 0.083 0.032 159.500

SGD 0.943 0.274 0.095 0.040 171.700

Table 7. Comparison of OOD detection performance while using ResNet50 on CIFAR10.

Inference
OOD

Dataset
AUROC- Model

Uncertainty ↑
AUROC - Total
Uncertainty ↑

SGLD STL10 0.677 0.684
SVHN 0.948 0.945

SGHMC STL10 0.682 0.687
SVHN 0.949 0.955

cSGLD STL10 0.624 0.641
SVHN 0.966 0.968

cSGHMC STL10 0.631 0.657
SVHN 0.920 0.945

SWAG STL10 0.618 0.671
SVHN 0.878 0.908

PCA + ESS (SI) STL10 0.673 0.677
SVHN 0.949 0.947

MC dropout STL10 0.665 0.695
SVHN 0.926 0.938

SGD STL10 N/A 0.682
SVHN N/A 0.892

Table 8. Comparision of Misclassification detection while using ResNet50 on CIFAR10.

Inference
AUROC- Model

Uncertainty ↑
AUROC - Total
Uncertainty ↑

AUROC- Model
Confidence ↑

AUCPR- Model
Uncertainty ↑

AUCPR - Total
Uncertainty ↑

AUCPR- Model
Confidence ↑

SGLD 0.945 0.949 0.950 0.422 0.468 0.480
SGHMC 0.943 0.949 0.950 0.434 0.466 0.488
cSGLD 0.927 0.943 0.946 0.321 0.355 0.382

cSGHMC 0.885 0.935 0.943 0.311 0.390 0.444
SWAG 0.890 0.927 0.927 0.418 0.479 0.472

PCA + ESS (SI) 0.932 0.934 0.941 0.391 0.419 0.472
MC dropout 0.946 0.947 0.947 0.455 0.485 0.477

SGD N/A 0.937 0.936 N/A 0.464 0.456
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Table 9. Comparison of predictive performance and decision making cost while using ResNet50 on CIFAR100.

Inference Accuracy ↑ NLL ↓ BS ↓ ECE ↓ Decision Cost ↓
SGLD 0.751 1.079 0.364 0.107 277.500

SGHMC 0.755 1.084 0.362 0.103 272.500
cSGLD 0.804 0.711 0.272 0.019 211.900

cSGHMC 0.814 0.667 0.261 0.012 198.500
SWAG 0.735 1.221 0.400 0.135 295.200

PCA + ESS (SI) 0.761 0.920 0.335 0.032 261.200
MC dropout 0.786 1.006 0.330 0.115 233.100

SGD 0.732 1.302 0.408 0.148 303.700

Table 10. Comparison of OOD detection performance while using ResNet50 on CIFAR100.

Inference
OOD

Dataset
AUROC- Model

Uncertainty ↑
AUROC - Total
Uncertainty ↑

SGLD STL10 0.769 0.782
SVHN 0.772 0.802

SGHMC STL10 0.773 0.784
SVHN 0.809 0.823

cSGLD STL10 0.806 0.827
SVHN 0.809 0.816

cSGHMC STL10 0.804 0.832
SVHN 0.791 0.823

SWAG STL10 0.748 0.778
SVHN 0.732 0.771

PCA + ESS (SI) STL10 0.779 0.797
SVHN 0.816 0.807

MC dropout STL10 0.785 0.801
SVHN 0.755 0.752

SGD STL10 N/A 0.765
SVHN N/A 0.763

Table 11. Comparision of Misclassification detection while using ResNet50 on CIFAR100.

Inference
AUROC- Model

Uncertainty ↑
AUROC - Total
Uncertainty ↑

AUROC- Model
Confidence ↑

AUCPR- Model
Uncertainty ↑

AUCPR - Total
Uncertainty ↑

AUCPR- Model
Confidence ↑

SGLD 0.870 0.882 0.879 0.648 0.683 0.672
SGHMC 0.863 0.873 0.871 0.635 0.659 0.651
cSGLD 0.872 0.880 0.891 0.564 0.623 0.654

cSGHMC 0.873 0.879 0.890 0.572 0.593 0.626
SWAG 0.855 0.870 0.869 0.625 0.671 0.667

PCA + ESS (SI) 0.858 0.863 0.877 0.618 0.634 0.667
MC dropout 0.875 0.880 0.877 0.613 0.639 0.624

SGD N/A 0.873 0.870 N/A 0.687 0.680
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Table 12. Comparison of predictive performance and decision making cost while using WideResNet28x10 on CIFAR10.

Inference Accuracy ↑ NLL ↓ BS ↓ ECE ↓ Decision Cost ↓
SGLD 0.965 0.113 0.054 0.004 115.800

SGHMC 0.965 0.114 0.053 0.004 112.200
cSGLD 0.967 0.104 0.050 0.006 102.900

cSGHMC 0.957 0.196 0.072 0.079 140.800
SWAG 0.919 0.260 0.121 0.028 270.000

PCA + ESS (SI) 0.951 0.177 0.082 0.054 163.100
MC dropout 0.957 0.158 0.067 0.019 149.000

SGD 0.963 0.138 0.060 0.018 117.100

Table 13. Comparison of OOD detection performance while using WideResNet28x10 on CIFAR10.

Inference
OOD

Dataset
AUROC- Model

Uncertainty ↑
AUROC - Total
Uncertainty ↑

SGLD STL10 0.680 0.680
SVHN 0.951 0.963

SGHMC STL10 0.678 0.683
SVHN 0.956 0.967

cSGLD STL10 0.685 0.686
SVHN 0.968 0.974

cSGHMC STL10 0.614 0.648
SVHN 0.864 0.952

SWAG STL10 0.649 0.667
SVHN 0.914 0.943

PCA + ESS (SI) STL10 0.663 0.673
SVHN 0.897 0.970

MC dropout STL10 0.672 0.688
SVHN 0.897 0.922

SGD STL10 N/A 0.667
SVHN N/A 0.963

Table 14. Comparision of Misclassification detection while using WideResNet28x10 on CIFAR10.

Inference
AUROC- Model

Uncertainty ↑
AUROC - Total
Uncertainty ↑

AUROC- Model
Confidence ↑

AUCPR- Model
Uncertainty ↑

AUCPR - Total
Uncertainty ↑

AUCPR- Model
Confidence ↑

SGLD 0.952 0.954 0.955 0.402 0.414 0.435
SGHMC 0.954 0.956 0.958 0.380 0.415 0.439
cSGLD 0.949 0.952 0.953 0.354 0.383 0.406

cSGHMC 0.889 0.936 0.945 0.298 0.382 0.452
SWAG 0.900 0.915 0.916 0.375 0.468 0.468

PCA + ESS (SI) 0.918 0.931 0.948 0.337 0.387 0.478
MC dropout 0.946 0.947 0.947 0.432 0.467 0.467

SGD N/A 0.941 0.942 N/A 0.390 0.387
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Table 15. Comparison of predictive performance and decision making cost while using WideResNet28x10 on CIFAR100.

Inference Accuracy ↑ NLL ↓ BS ↓ ECE ↓ Decision Cost ↓
SGLD 0.809 0.760 0.278 0.066 204.300

SGHMC 0.798 0.815 0.292 0.076 216.200
cSGLD 0.832 0.640 0.242 0.033 179.300

cSGHMC 0.821 0.666 0.258 0.059 191.800
SWAG 0.710 1.149 0.414 0.110 316.900

PCA + ESS (SI) 0.817 0.656 0.263 0.038 196.600
MC dropout 0.798 0.846 0.293 0.081 214.300

SGD 0.806 0.785 0.280 0.046 205.100

Table 16. Comparison of OOD detection performance while using WideResNet28x10 on CIFAR100.

Inference
OOD

Dataset
AUROC- Model

Uncertainty ↑
AUROC - Total
Uncertainty ↑

SGLD STL10 0.797 0.822
SVHN 0.784 0.791

SGHMC STL10 0.799 0.814
SVHN 0.768 0.794

cSGLD STL10 0.791 0.846
SVHN 0.767 0.782

cSGHMC STL10 0.816 0.845
SVHN 0.786 0.837

SWAG STL10 0.732 0.753
SVHN 0.672 0.704

PCA + ESS (SI) STL10 0.813 0.827
SVHN 0.760 0.814

MC dropout STL10 0.798 0.815
SVHN 0.642 0.645

SGD STL10 N/A 0.820
SVHN N/A 0.732

Table 17. Comparision of Misclassification detection while using WideResNet28x10 on CIFAR100.

Inference
AUROC- Model

Uncertainty ↑
AUROC - Total
Uncertainty ↑

AUROC- Model
Confidence ↑

AUCPR- Model
Uncertainty ↑

AUCPR - Total
Uncertainty ↑

AUCPR- Model
Confidence ↑

SGLD 0.881 0.888 0.892 0.579 0.616 0.629
SGHMC 0.884 0.893 0.894 0.625 0.650 0.654
cSGLD 0.870 0.874 0.892 0.499 0.543 0.595

cSGHMC 0.854 0.865 0.888 0.516 0.553 0.609
SWAG 0.837 0.857 0.860 0.601 0.675 0.686

PCA + ESS (SI) 0.853 0.868 0.888 0.520 0.559 0.603
MC dropout 0.883 0.887 0.887 0.617 0.638 0.637

SGD N/A 0.869 0.879 N/A 0.586 0.622


