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Abstract
Deep Neural Networks are often brittle on im-
age classification tasks and known to misclassify
inputs. While these misclassifications may be in-
evitable, all failure modes cannot be considered
equal. Certain misclassifications (eg. classifying
the image of a dog to an airplane) can create sur-
prise and result in the loss of human trust in the
system. Even worse, certain errors (eg. a person
misclassified as a primate) reinforces harmful so-
cietal biases. Thus, in this work, we aim to reduce
inexplicable errors. To address this challenge, we
first discuss how to obtain the class-level seman-
tics that capture the human’s expectation (Mh)
regarding which classes are semantically close vs.
ones that are far away. Second, we propose the use
of Weighted Loss Functions (WLFs) to penalize
misclassifications by the weight of their inexpli-
cability. Finally, we show that training (or even
fine-tuning) existing classifiers with the proposed
methods lead to Deep Neural Networks that have
comparable accuracy, explicable failure modes,
comparable robustness and significantly less cost
in teams of additional human labels required.

1. Introduction
While researchers have invested effort in trying to make
neural networks in vision more interpretable (Montavon
et al., 2018; Rudin, 2019; Li et al., 2018; Melis & Jaakkola,
2018), we still lack a good formal understanding of how
they work internally, making them questionable for everyday
use in real-world systems. While mispredictions are bound
to exist for any classifier that has less than cent percent
accuracy, expecting a user to trust a classification system
solely based on accuracy values is unreasonable. Indeed,
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Figure 1. Examples showing that state-of-the-art neural networks
exhibit different failure modes (on CIFAR-100 dataset), often
resulting in inexplicable mistakes can lead to a loss of trust at best
and have societal impacts at worst (Vincent, 2020).

not all failures have the same effect on a user; while some
mistakes are acceptable, others can be deemed inexplicable,
causing surprise and an eventual loss of human trust. Even
worse, failure modes may often exacerbate societal biases
learned from data (Vincent, 2020).

We believe that egregious mistakes are a by-product of the
existing loss/objective functions used by state-of-the-art
classifiers; they are simply too sparse to encode meaningful
information about failure modes. For example, the popular
Categorical Cross-Entropy (CCE) loss penalizes all misclas-
sifications equally. In this work, we argue that incorporating
the human’s expectation about the failure modes (Mh) into
the classification system (Mr) can help us develop expli-
cable classifiers whose failure modes are aligned with the
user’s expectations.

In this regard, we answer two questions– (1) how to rep-
resent and obtain expectations of a human (that captures
the notion of egregious vs. explicable misclassification) and
(2) how to utilize such a representation to ensure that the
trained classifier adheres to the human’s expectation. To
answer the first question, we posit that the notion of expli-
cability can be represented as a semantic distance between
the actual and the predicted label, i.e misclassifications to
semantically closer classes (to the ground-truth) are consid-
ered explicable. To obtain Mh, we strongly advocate the
use of a human labeling approach and, in cases, where the
classification task is generic, we suggest leveraging existing
linguistic knowledge-bases. Finally, to incorporate this no-
tion of explicability into classifiers, we employ the idea of
weighted loss functions to train (or fine-tune) classifiers.

We compare the trained classifiers with existing baselines
and find that our methods achieve (1) similar accuracy re-
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sults on in-distribution samples, (2) higher explicability
when misclassifying inputs, (3) higher robustness to random
noise and comparable accuracy against adversarial exam-
ples and (4) significantly lesser cost in gathering human
labels. We discuss the implication of our methods on ad-
dressing operational issues and calibrating societal impacts
and showcase experiments on other datasets in the appendix.

2. Related Works
Researchers have shown that deep neural networks demon-
strate inexplicable behavior in the presence of out-of-
distribution (Hendrycks et al., 2019; Hendrycks & Gim-
pel, 2016) or adversarially perturbed test data (Moosavi-
Dezfooli et al., 2017; Goodfellow et al., 2014a), leading to
a loss of human trust in the automated system. To address
these concerns, works have proposed techniques to help
detect out-of-distribution (Lee et al., 2017) or adversarial
examples (Pang et al., 2018). In this paper, we show that
the problem is even more acute– egregious failure modes
are ubiquitous even in the context of in-distribution inputs,
i.e. when the test and training distributions are similar.

The notion of explicability (Zhang et al., 2017; Kulkarni
et al., 2016) and legibility (Dragan et al., 2013) has been
recently investigated in the context of sequential decision-
making problems in task and motion planning respectively.
As opposed to considering structured models to represent
Mh, which is easier in the case of task planning scenarios
(Kulkarni et al., 2016), we consider using labels over classifi-
cation outputs to capture the human’s notion of explicability
in the context of computer vision tasks.

In classification tasks, existing works tackle the issue of
improving trust by examining a classifier’s failure modes
(Hendrycks & Gimpel, 2016; Jiang et al., 2018; Selvaraju
et al., 2016; Agrawal et al., 2016). Unfortunately, they lever-
age self-defined notions of trust and ignore human subject
studies. Thus, their understanding of human expectation
may be completely wrong. We address this concern by
proposing methods to represent, obtain and incorporate hu-
man’s expectation in preventing egregious misclassifications
that can lead to loss of trust.

Our approach is similar to the idea of using soft labels, as
opposed to the popular notion of one-hot encoding, to under-
stand a human’s confusion about a particular test instance
being misclassified. Works have considered interactive vi-
sual question answering (Branson et al., 2010) and obtaining
humans’ soft-labels for several instances of a data-set (Pe-
terson et al., 2019). It should be no surprise that the latter
approach (a baseline) requires an enormous human effort.
On the other hand, we propose to gather Mh at an abstract
level and tackle the problem of incorporating Mh from a
class-level perspective. Note that our method thus helps

to augment incomplete instance-based labeling similar to
collaborative filtering (Sarwar et al., 2001).

While class-label hierarchies (Tousch et al., 2012) have been
well-studied, works have mostly focused on obtaining a for-
mal representation structure (Fergus et al., 2010; Deng et al.,
2014) or improving the speed of obtaining them (Chilton
et al., 2013; Bragg et al., 2013). On the other hand, the
use of weighted loss functions (WLFs) is a common tool to
penalize certain misclassifications more than others (Duda
et al., 2012; Sengupta et al., 2018)– weighing misclassifica-
tion of inputs belonging to minorities can help in soothing
existing biases in audio data (Phan et al., 2017) or using a
convex loss function with weighted penalties to differentiate
between quality variables can help to find the best parame-
ters (Chang et al., 2009). We follow suit and utilize WLFs
to penalize egregious misclassifications (from a human’s
semantic similarity perspective).

3. Semantic Similarity
Semantic similarity aims to capture the amount of inexplica-
bility evoked in a human if a classifier were to misclassify
the image of a particular class (eg. dog) to a different class
(eg. ship). To get a holistic view, it is important to obtain
a pair-wise similarity metric over class labels, the distance
values inversely proportional to the amount of explicability.
We now describe three ways of obtaining these values.

3.1. Instance-Level Human labeling (IHL)

To represent semantic similarity between the class-labels,
we can ask humans to provide probability distributions over
individual instances in the data-set. Beyond (average) se-
mantic similarity, this can capture robustness of Mh to noise
(Krizhevsky et al., 2009). However, this method suffers from
three major drawbacks. First, instance-based labeling is of-
ten expensive to obtain, each image needing a significant
number of humans labels. Second, when number of classes
increase, providing such labels result in increased cognitive
overload. Third, labeling at such a fine-grained level is an
overkill of many tasks. For example, humans might find it
unreasonable that the image of a dog (regardless of which
one) was misclassified to an airplane. Hence, obtaining
multiple instance-specific labels seems inefficient.

3.2. Class-Level Human labeling (CHL)

We obtain similarity labels for pairwise class labels. For
CIFAR-10, this corresponds to finding the weights on each
edge of a bipartite graph matching actual class-labels to pre-
dicted ones. We gather this by performing a user study over
50 people in Amazon Mechanical Turk (Turk, 2012).1 To
avoid noisy answers, we only allowed participation of mas-

1Link to the user study: https://bit.ly/3bHceX6.
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Figure 2. Different methods to learn explicability labels over class-level misclassifications.

ter turkers. Further, we pruned four low-quality data-points
based on answers to two simple questions and ended up
with a total of 46 data-points. We paid a turker $2 for their
work, which took 10 minutes on average. Given 36 images
of a class (randomly sampled from CIFAR-10), we asked
user to rate the explicability of misclassification on a Likert
scale that ranged from Highly Unreasonable (Surprised) to
Highly Reasonable (Explicable).

3.3. Utilizing Existing Knowledge for labeling (EKL)

Often, existing image classification data sets consist of class-
labels that are nouns. Relations between nouns are repre-
sented in popular linguistic hierarchies such as WordNet
(Miller, 1998) using a tree-like structure. We leverage Word-
Net’s APIs to query the path similarity between class
labels and use it to represent semantic similarity (based on
the hyperonym/hyponym taxonomy). The score ranges be-
tween [0, 1] where 1 means the identity mapping of class-
labels. As WordNet represents a task-independent mapping,
it may not be as informative for tasks that require expertise
(a discussion ensues in Appendix B).

4. Incorporating Semantic Similarity with
Weighted Loss Functions

Weighted loss functions are often used to represent asym-
metric misclassification costs for a classification task (Duda
et al., 2012). If a task has n classification labels, we con-
sider a n × n weight matrix W that encodes the different
penalties when an image belonging to the ground-truth class
i (represented as the row) classified to class j with weight
Wij . This lets us introduce biases in the loss function to
favor explicable misclassification and discourage egregious
failure modes. Given the true class yi and prediction vector
p, we can formally represent the weighted loss function for

the single image over a loss function L, as:

WLF (yi, p) = L(Wi, p) (1)

We posit that weighted loss functions can capture the expec-
tations about the failure modes encoded in Mh. In Figure 2,
we plot a heat-map showcasing the W -s obtained using the
different methods discussed in section 3.

5. Experimental Results
We present classification results on the CIFAR-10 data-set
(Krizhevsky et al., 2009) using the ResNet-v2 architecture
(He et al., 2016). Our primary goal is to compare and con-
trast the different methods in terms of accuracy, the cost
of developing them, the explicability measure and robust-
ness to out-of-distribution samples. The results along each
dimension are summarized in Table 1.2

Functionality In an operational setting, the output of a
vision classifier may be used to inform the decision of an
agent. In such cases, having uncertainty about multiple
classes, championed by the baseline IHL (Peterson et al.,
2019), isn’t useful. As per the top-1 accuracy, ResNet-v2
trained using the categorical cross-entropy loss proves to
be the best with the ResNet-v2 trained on CHL-weighted
loss having approximately the same value. For the propose
EKL-weighted loss, the accuracy drops by 5.82% and by
8.24% for IHL.
Explicability Similar to IHL, we use the loss function
values on the test set to represent, in the context of this work,
the explicability of the different classifiers. Note that each
W represents a specific notion of explicability. Hence, it is
reasonable that we gauge the performance of the classifiers
with respect to all of them. To figure out which methods
aligns well with the true explicability, a human subject study
to evaluate outputs of each classifier is essential. We plan to
conduct one as a part of the future work.

2More experimental results can be found in Appendix A.
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Functionality Explicability Robustness Cost

Model
Top-1

Accuracy ↑ LIHL ↓ LCHL ↓ LEKL ↓
Gaussian
Noise ↑

Adversarial
(FGSM) ↑

Additional
Human Labels ↓

ResNet-v2
(W = I) 91.85% 14.761 5.044 16.047 17.03% 9.98% 0

ResNet-v2
(W = IHL) 83.61% 2.258 1.889 2.311 17.08% 12.14% +511,400

ResNet-v2
(W = CHL) 91.17% 3.054 1.305 3.274 21.45% 11.73% +460

ResNet-v2
(W = EKL) 86.03% 2.353 1.567 2.461 28.76% 12.63% 0

Table 1. The accuracy, explicability and cost of developing individual classifiers trained with the various loss functions for CIFAR-10. As
indicated by the arrows in the top-column, higher values for accuracy and lower values for the loss function and the cost are better.

The vanilla ResNet-v2 has the highest values for all three
explicability measures, indicative of their failure to capture
the human’s expectation over failure modes. While vanilla
classifiers tend to look at features derived from individual
pixels, humans often utilize context and knowledge, beyond
pixel values, to make decisions. Augmenting the loss func-
tion with this context, represented as weights over failure
modes, can thus help in training more explicable classifiers.

As expected, a classifier trained using a particular weight
matrix (say WIHL) performs best on the corresponding
explicability metric (i.e. LIHL). Thus, the lowest loss
values occur on the diagonal of the three rows under the
explicability criteria. The off-diagonal column values for
the classifiers that optimize a different loss are compara-
ble. It turns out that the explicability scores for IHL and
EKL-weighted networks are similar– the ResNet-EKL has
LIHL value that is just 0.005 more than the best loss value
achieved by ResNet-IHL. Thus, even with a huge differ-
ence in terms of costs (discussed later), the proposed EKL
achieves explicability similar to IHL. Evaluating which ex-
plicability score represents the human expectation demands
a post-facto human study, which is a future endeavour.

Robustness In Table 1, we highlight the accuracy values
of the various classifiers on (1) noisy and (2) adversarially
perturbed test inputs. We use pixel-level Gaussian Noise
(N (0, 0.2)) and the Fast Gradient Sign Methods (FGSM)
(Goodfellow et al., 2014b) respectively.

It is well known that existing classifiers are brittle to noise
and the accuracy drop for the vanilla ResNet-v2 confirms
this. The IHL based weighted-loss function training helps
to improve robustness to adversarial examples slightly, con-
gruous to the claims made in (Peterson et al., 2019). Unfor-
tunately, we discover that the claims significantly weaken
in the context of noisy test inputs injected with pixel-level
Gaussian noise. On the other hand, we observe that ResNet-
CHL outperforms vanilla ResNet and ResNet-IHL against
Gaussian noise while ResNet-EKL dominates all the classi-
fiers on both noisy and adversarially perturbed test inputs.

We believe that the reason for this improved robustness
is the use of (small) bounded noise that tries to make the
classifier misclassify noisy inputs to semantically distant
classes. The high penalty of such a mistake ensures the
classifier choose the correct class. Although, for CIFAR-10,
we see that adding noise can often force misclassifications
to semantically similar classes resulting in low accuracies.

Cost Given ground truth labels and the WordNet hierarchy
are readily available, we ignore the labeling cost invested
in obtaining them. To measure the cost of the various meth-
ods, we consider the number of additional labels required
by each of the methods. Thus, the additional costs for the
vanilla ResNet-v2 and ResNet-EKL are zero. In contrast,
our proposed method CHL, which gathers class-level seman-
tics via human labeling, requires 460 labels compared to the
baseline method IHL that required human 511, 400 labels
(Peterson et al., 2019), a 1000-fold reduction. In Appenix
A, we discuss that IHL, beyond becoming cost-prohibitive,
imposes unreasonable cognitive overload on human subjects
for datasets with larger number of output classes.

6. Conclusions and future work
In this paper, we showed that the popular objective functions
for training Deep Neural Networks that weigh all misclassi-
fications equally lead to inexplicable failure modes in turn
leading to a loss of human trust in the system. To prevent
these inexplicable misclassifications for vision classification
tasks, we proposed two methods that can help us obtain
the human’s model Mh about which errors are inexplicable
and can thus lead to a loss of trust in the system. We note
that, beyond the explicability scenario, our methods can be
generalized to provide operational benefits or prevent mis-
classifications that have negative societal impacts. We then
utilized the notion of weighted loss functions to incorporate
Mh into the classifier’s model and showed that our method
not only helps the classifier reduce the number of egregious
errors, but also have comparable accuracy and improve the
robustness of the baseline model.
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7. Appendix A – Experiments
7.1. Experiments on CIFAR-100

The CIFAR-100, as evident from its name, contains im-
ages belonging to 100 classes (Krizhevsky et al., 2009). In
this case, the IHL baseline requires human subjects to (1)
provide a probability distribution of 100 classes for each
data-point, and (2) annotate a significantly larger number of
labeled samples. Clearly, this increases both the additional
cost of labeling and the cognitive overload on the human
subject. In the case of CHL, the cost of labeling, while still
significantly less than IHL, also increases because we now
need weights for a bipartite graph with

(
100
2

)
= 4950 edges.

Further, to reduce cognitive overload on the human, we can
show just a subset of classes that a class can be misclassified
to; this leads to an increase in the population size. Note that
such a breakdown is difficult to do in the context of IHL.
Owing to the added cost for both the methods, we consider
only EKL in this setting. Similar to the case of CIFAR-10,
all the class labels present in CIFAR-100 are also a part of
WordNet, and thus, the path similarity between the labels to
populate the weight matrix W .

We use the VGG (Simonyan & Zisserman, 2014) classifier
for this task. VGG needs to train ≈ 183 million parameters
compared to ≈ 25 million for ResNet and thus, training
from scratch becomes time and resource-intensive. Thus,
we consider fine-tuning pre-trained models. This helps
showcase the benefit of our approach even when considering
classifiers for tasks that are significantly larger.

Model Accuracy ↑ LEKL ↓
VGG (vanilla) 70.48% 16.377
VGG (w EKL) 70.55% 5.686

Table 2. The accuracy and explicability (represented by LEKL) of
the vanilla VGG classifier and the one fine-tuned with EKL.

Results In Table 2, we show the accuracy and the expli-
cability score, computed using the weighted loss function
value, on the test set. In contrast to the results in the previous
section, the use of a weighted loss function that enforces a
soft-labeling scheme behaves as a regularizer increasing the
top-1 accuracy of the pre-trained vanilla VGG from 70.48%
to 70.55%. Further, the explicability score of VGG fine-
tuned with the EKL weighted loss function (VGG-EKL) has
a loss function value of 5.686 compared to 16.377 for the
vanilla VGG classifier. Now, we analyze the failure modes
of the two classifiers.

In Figure 3, we showcase three scenarios that arise when
both the classifiers misclassify a given test input to an in-
correct class. We show the true class, the class label it
was classified to by the vanilla VGG followed by VGG
fine-tuned using WLF. The numbers beside the predicted
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Figure 3. Images misclassfied by both the classifiers for CIFAR-100 are classified to semantically closer classes by the VGG classifier
fine-tuned using EKL (VGG-EKL). In cases where the vanilla VGG does better, the VGG-EKL rarely makes egregious mistakes. In many
examples, the VGG-EKL learns to pick up an object that is present in the picture but is not equal to the correct label.

labels show the similarity between the predicted class and
the true class as per WordNet’s path similarity metric. In the
majority of the cases, precisely 69.19% of them, both the
classifiers misclassify an input to the same incorrect class.
This should not be surprising because the VGG-EKL simply
fine-tunes the weight of the vanilla VGG network. There ex-
ist two other scenarios– (1) when VGG-WLF misclassifies
an input image to a semantically closer class and (2) when
the vanilla VGG does so. The former happens 18.3% of the
time while the latter occurs 12.6% of the time.

Examples of the first case show that flowers like tulip
and orchid are classified as crabs and plates, images
of people are classified as animals (girl → dolphin),
and animals are classified to inanimate objects (kangaroo
→ bottle) by the vanilla VGG classifier. On the other
hand, the VGG-EKL preserves these semantics learned from
WordNet. In the latter case, examples highlight that mis-
classifications made by VGG-WLF, while worse-off than
the vanilla VGG, are less egregious as per the Word-Net
similarity metrics. This is also supported by the fact that
the explicability metric (in Table 2) is significantly better
for VGG-WLF compared to vanilla VGG. In both these
scenarios, there exists a subset of test inputs on which the
misclassifications made by VGG-WLF refer to an object
present in an input image but is regarded as the incorrect
label as per the gold/true class labels of CIFAR-100. For
example, the image labeled as a television shows the
picture of a person inside a television. While vanilla VGG

labels it as a snake, VGG-WLF labels it as boy referring
to the person.

8. Appendix B – Discussion
While we talk of explicable classification, our goal is to train
a classifier that agrees to the human’s view of the failure
modes, thereby reducing the surprise caused by a particular
misclassification. A more nuanced view should consider the
penalty of a mistake in terms of the various impacts a par-
ticular misclassification may have on the downstream task.
In this regard, we consider two perspectives– an operational
one and the other about societal biases.

Operationally-reasonable misclassifications Often mis-
classifications may be inexplicable to a human but, given
the downstream task, considered reasonable. For example,
in Figure 3, classifying a kangaroo to a bottle may be
deemed unsafe for autonomous driving scenarios (in Aus-
tralia) whereas a system classifying it to a boy is better as
the underlying decision of stopping the car remains unaf-
fected. Without the context of the underlying task, classify-
ing a kangaroo to a boy may be considered inexplicable.
Thus, the class-level penalty scores for explicability may not
align with the task-specific class-level penalties for opera-
tional purposes. Thus, leveraging existing knowledge bases,
unless created specifically for the task at hand, becomes
unreasonable. In these scenarios, CHL is the only choice.
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Reducing Impacts of Societal Biases In several domains,
a particular misclassification may be viewed as reinforcing
societal biases on test inputs belonging to marginalized
classes. A classic example is state-of-the-art classifiers
labeling the image of a dark-skinned person as a gorilla
(Vincent, 2020). In such cases, failure modes that are unac-
ceptable from a social standpoint can have a high penalty.
Thus, when crafting human studies in such domains, one
has to either find a group of people who are aware of these

biases and can account for them or, at the very least, provide
cues to participants as to what failure modes encode societal
biases and impact downstream tasks.

In reality, a classifier may often be required to trade-off
between explicability, operational costs, and consider the
societal impacts of misclassifications. Thus, the weights of
the WLF can simply be considered a function of the three
individual weights, i.e. explicability weights, operational
impact weights, and weights to neutralize societal biases.


