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Abstract

This paper experimentally reports on predictive
uncertainty for real-world text classification tasks.
We define a straightforward protocol to evaluate
the quality of Deep Learning uncertainty estima-
tion. We report on a Monte Carlo Dropout-based
model and data uncertainties using 1-D convolu-
tional neural networks on multi-class news topic
and sentiment classification datasets. We find that
our protocol effectively enables to test for nov-
elty detection robustness showing that Bayesian
quantities underestimate uncertainty and predic-
tive entropy demonstrates superior performance.

1. Introduction
Reliable uncertainty quantification is indispensable for any
machine learning system trusted in decision-making in many
application domains such as medical diagnosis, self-driving
cars and automated document processing. In any typical
industrial application, predictive uncertainty is expected
to communicate on a model’s inability to learn from the
training data, deal with noisy data and train-test skew. Su-
pervised Deep Learning (DL) algorithms have been found to
provide “catastrophically overconfident predictions” (Foong
et al., 2019) under data distribution shift. Specifically, novel
class distributions can emerge at inference time (Pimentel
et al., 2014), which desirably should be detectable in a
model’s uncertainty. The early work of Bishop (1994) al-
ready proposed novelty detection as “the basis of a practical
system for network validation”.
The context of our study is a production-level text classi-
fication system for automatically handling incoming com-
munications in information-intensive industries (e.g. legal,
banking, insurance). Imagine an insurance client’s surprise
when a novel request for insuring a hobby drone prompts
an automated email with a proposal to sign a car insurance
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contract. This shows that detection of novel class distribu-
tions is critical to keep errors in automation low.
We will focus on probabilistic novelty detection in the con-
text of text classification, as it poses an important source
of errors for a learned data-to-decisions automation system.
More specifically, we investigate the reliability of Monte
Carlo Dropout-based uncertainty estimates for unsupervised
detection of novel class data in text classification and find
that the studied methods underestimate uncertainty.
Our main contributions can be summarized as follows:

• We experimentally demonstrate on real-world text
classification datasets that uncertainty modelling with
Bayesian DL methods does not guarantee performance
increase on classification and calibration metrics.

• We propose a methodology of leave-one-class-out
to empirically compare the robustness of uncertainty
quantities under novel class distribution shift.

2. Related work
In modern Deep Learning two common uncertainty (or in-
versely “confidence”) estimates are the prediction proba-
bility over classes, known as softmax-score, and the pre-
dictive entropy over posterior class probabilities (Shannon,
1948; Zaragoza & d’Alché Buc, 1998). However, Guo et al.
(2017)’s work on confidence calibration demonstrated these
to be unreliable estimates of DL uncertainty.
Bayesian DL methods build on solid mathematical foun-
dations and hold promise for more reliable learned uncer-
tainty estimates (Wilson, 2020). The seminal work of Gal
& Ghahramani (2016) on Monte Carlo (MC) Dropout and
extensions (Kendall & Gal, 2017; Li & Gal, 2017; Gal et al.,
2017) proposes efficient model uncertainty estimation by
exploiting dropout regularization as a method for approxi-
mate variational inference.
Arguably, most research on uncertainty estimation focuses
on regression and image classification tasks as they offer vi-
sual validation on uncertainty quality. Xiao & Wang (2019);
Zhang et al. (2019) present some of few works focused on
obtaining uncertainty in natural language processing (NLP)
classification tasks. More specifically, the uncertainty esti-
mation methods of Xiao & Wang (2019) form a major source
of inspiration for our work. However, their study focuses
on the performance increase of non-probabilistic measures
(mean-squared error) and only reports sentiment regression
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results. Moreover, we find no quantitative evaluation of the
quality of the uncertainty scores and comparison to simpler
measures of uncertainty, e.g., softmax score or predictive
entropy. As such, we have formulated our experiments to
verify how well the methods can estimate uncertainty.
In order to measure the quality of uncertainty estimates,
robustness under data distribution shift is considered an ap-
propriate probing task. Previous work on out-of-distribution
(OOD) detection shows maximum softmax probability as a
solid baseline (Hendrycks & Gimpel, 2016) often improved
upon by Bayesian uncertainty estimation methods (Ovadia
et al., 2019). Concretely, MC dropout-based uncertainties
have been successfully assessed for novelty detection of un-
known phenotypes (Dürr et al., 2018). However, Vernekar
et al. (2019) argues against predictive uncertainties given
by MC Dropout as they can only measure uncertainty in
in-distribution settings. With the goal of a fair assessment of
unsupervised novelty detection with MC Dropout uncertain-
ties, we derive a new evaluation protocol where we consider
cohesive class distributions close to the in-distribution data.

3. Methodology
Firstly, this section motivates a set of representative datasets
and a baseline architecture with static hyperparameters for
multi-class text classification. Subsequently, we introduce
how to obtain uncertainty information during training and
quantify predictive uncertainty in practice. Finally, we sum-
marize the model setups and elaborate on the protocol to
test unsupervised novelty detection.

3.1. Data and Architecture

Data We use three real-world text corpora characterized
by a different number of classes and size of the documents
(Table 1).

corpus task D K I W V

SemEval-2017 4A message polarity 64,772 3 0.09 19 64,405
IMDB movie review 348,415 10 0.03 325,6 115,073

Reuters ApteMod* newswire topic 9,120 48 0.28 112,5 57,420

Table 1: D denotes the number of documents in the dataset, K the
number of classes, I the class imbalance ratio (Tanwani & Farooq,
2009), W the average number of words per document, V the total
vocabulary size respectively.

The first two datasets, SemEval 2017 task 4A (Rosenthal
et al., 2017) comprising short social media text (Twitter),
and IMDB movie reviews (Diao et al., 2014), share the task
of sentiment classification which is characterized by ordinal
labels (“negative-neutral-positive” and “1-10”). For both
corpora we use pre-defined splits. We have modified the fi-
nal corpus, Reuters-21578 (“ApteMod” version) (Apté et al.,
1994), originally a multi-label text categorization dataset
with 90 possible labels, to only contain documents with a
single label attribution with a minimum label frequency of

3 in the corpus. This ensures an output space with mutually-
exclusive and unambiguous classes (Liu et al., 2019). We
generate randomized (seed 42) stratified splits of 65% for
training, 15% validation and 20% for testing.

Base architecture We use 1-D Convolutional neural net-
works (TextCNN) for text classification, following the
model structure of Kim (2014). We chose this architec-
ture for its comparative simplicity and solid performance on
a range of text classification tasks. Even as a light-weight
model, it can deal with feeding in text sequences of varying
sizes and learning n-gram-like structures over word embed-
dings, allowing a fair comparison across text datasets. An
extensive hyperparameter study determined that regulariza-
tion does not impact performance much (Zhang & Wallace,
2015).

Hyperparameters Our choice of hyperparameters is heav-
ily based on Zhang & Wallace (2015) and Xiao & Wang
(2019), where we propose one static setting. We constrain
the input vocabulary to the 20,000 most frequent words,
retain the original document lengths, upon which 300-D
embeddings are uniformly initialized, and UNK/PAD tokens
are masked throughout. Our TextCNN uses three different
kernels (3,4,5) with 100 feature maps per kernel followed
by a max pooling operation.
Additionally, for uncertainty estimation goals we apply
dropout (Srivastava et al., 2014) with a rate of 0.5 after
each non-linear layer, i.e., after each convolutional layer
and before passing logits to the output layer, and adopt a
global weight decay rate of 1e-4 (Krogh & Hertz, 1992;
Loshchilov & Hutter, 2017). During training, Adam opti-
mizes a categorical cross-entropy or heteroscedastic loss
(see section 3.2) with a learning rate of 1e-3; batch size is
set to 32 and training runs 45 epochs for 2000 iterations per
epoch. At evaluation time, we estimate predictive mean and
uncertainties by drawing T samples from the approximated
posterior distribution. We have empirically set T to 10.

3.2. Quantification methods

In our experiments we replicate the model and data uncer-
tainty quantification methods for text classification from
Xiao & Wang (2019).
Quantifying “epistemic” model uncertainty using MC
Dropout involves applying dropout both during training and
evaluation. In the latter case, T stochastic weights are sam-
pled from the variational Bernoulli distribution θ̂t ∼ q(θ) in
order to calculate the lower-order moments of the approxi-
mate Gaussian posterior, respectively the predictive mean
and variance.
To estimate input-dependent, “heteroscedastic aleatoric”,
data uncertainty we slightly modify the model’s architec-
ture and objective function following Kendall & Gal (2017).
Firstly, the output layer of model fθ̂ is extended with a set of
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learnable variance variables σ per unique class output. The
model’s output logits, u, are sampled from the stochastic
output layer parametrized byN (fθ̂(x), diag(σ(x)2)). This
model adaptation will be referred to as the heteroscedastic
model. Fig. 1 (Appendix) visualizes the difference in archi-
tecture with shared hyperparameters. Next, we incorporate
a residual heteroscedastic loss:

Lclf(θ̂) =

N∑
i=1

log
1

T

T∑
t=1

exp

(
u
(t)
i,c − log

∑
k

expu
(t)
i,k

)
+ log T (1)

with N the number of training examples passing through
an instance t of the model fθ̂t (x) + σ(t) to generate for
example i a sampled logit vector uti, where predicted value
for class k, u(t)

i,k, and c the index of the ground truth class.
By learning to predict log variance with T dropout-masked
samples, the model will be able to predict high variance
(uncertainty) for inputs where the predictive mean is far
removed from the true observation, which by design has a
smaller effect on the total loss. This uncertainty modelling
method is referred to as Learned Loss Attenuation.
Below follows a categorization of the uncertainty quan-
tities within the scope of the experiments. To estimate
for a new test sample x∗ the prediction and uncertainty of
model fθ̂(x

∗) we typically seek to obtain the predictive pos-
terior distribution P (y∗|x∗, θ̂) over class membership prob-
abilities with y∗k ∈ {1, . . . ,K}. Particularly when using
MC Dropout at inference time we presume P (y∗|x∗, θ̂) ≈
1
T

∑T
t=1 P (y∗|x∗, θ̂t), with prediction obtained after apply-

ing softmax function for sample t, p̂t = P (y∗|x∗, θ̂t), and
predictive mean p̄ = 1

T

∑T
t=1 p̂t.

Quantity Formula

Softmax-score S = argmax
k

exp fθ̂,k(x∗)∑K
i=1 exp fθ̂,i(x

∗)

Predictive Entropy H = −
∑K
k=1 P (yk|x∗, θ̂) logP (yk|x∗, θ̂)

Model Uncertainty σ̂model = 1
T

∑T
t=1 (p̂t − p̄)2

Data Uncertainty σ̂data = 1
T

∑T
t=1

1
K

∑K
k=1 σ

(t)
k (x∗)

3.3. Benchmarking uncertainty quantities

Setups Table 2 summarizes the model setups. During train-
ing models [1-3] are optimized by cross-entropy minimiza-
tion, whereas models [4-5] also optimize the heteroscedastic
loss. During testing, models [1,2,4] provide simple predic-
tions, whereas models [3,5] estimate prediction and uncer-
tainties from T stochastic forward samples. For all clas-
sification models we can compute the softmax-score and
predictive entropy. When changing to the heteroscedastic
architecture, we then quantify data uncertainty, and when
stochastically sampling using MC dropout, model uncer-
tainty is quantified. More specifically, data uncertainty in

models [4,5] is quantified with as surrogate the average over
variance logits σ. Model uncertainty in models [3,5] is
quantified by calculating the average softmax variance over
the predictive mean from MC samples. Throughout the rest
of the work we will respectively refer to the model setups as
No Dropout (ND), Baseline (B), Model Uncertainty (MU),
Data Uncertainty (DU), Data & Model Uncertainty (DMU).

Monte Carlo dropout

Architecture deterministic stochastic *no dropout

softmax 2 3 1
heteroscedastic 4 5

Table 2: A summary of the 5 model setups, varying across the base
architecture and if MC Dropout sampling is activated. For a fair
comparison, we include a softmax model without any dropout.

Novelty detection - how well can the model identify and
communicate uncertainty on samples of novel class distri-
butions? In the worst case, classifiers “fail silently” and
wrongly attribute high confidence to an in-distribution class.
(Goodfellow et al., 2014; Amodei et al., 2016). In the best
case, the model either lowers its confidence or signals un-
certainty. Prior work hypothesizes model uncertainty to be
mostly impacted (Kendall & Gal, 2017; Leibig et al., 2017).
With this experiment we simulate the conditions of novel
class data by removing a single class during training. For the
Reuters dataset, this class is very distinct from the remain-
ing classes, i.e., (i) by not appearing often in the originally
multi-label annotated dataset jointly with the remaining
classes, and (ii) occurring frequently enough to guarantee
representative results. Since the dataset has been explicitly
annotated for multi-label, we can draw statistics on the label
co-occurrence rates, and find that the second-most frequent
topic “Acquisitions” (id:0) occurs in 94% of documents as
a single topic. This makes it an ideal candidate for testing
novelty detection in a multi-class text classification setting.
For both sentiment classification datasets, we isolate the
middle class (respectively, “neutral” and rating “5” out of
the 10 ratings) from training and expect the models to al-
locate prediction mass to a label close to the holdout class
(ratings “4” or “6”).

4. Experimental results and discussion
Text classification results The results in Table3 show that
for Reuters newswire classification, learned loss attenua-
tion and applying the MC Dropout procedure improves all
metrics. Surprisingly, uncertainty quantification does not
guarantee classification improvement over a model without
dropout regularization in the case of both sentiment classifi-
cation tasks. Relative to the other regularized models, mod-
elling uncertainty does marginally improve performance.
Xiao & Wang (2019) conjectures a limited classification out-
put space to be the reason for only marginal classification
increase when modelling uncertainty. While this also holds
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Method
Measure

Acc MSE (↓) F1(m) F1(M) NLL(↓) ECE(↓) Brier(↓) Softmax (µ) Entropy (µ) MU (µ) DU (µ)

SemEval No Dropout 0.5831 0.5389 0.5766 0.5618 0.9979 0.1494 0.5728 0.7325 0.901 / /
SemEval Baseline 0.568 0.5923 0.5652 0.5525 0.9158 0.0195 0.5491 0.5838 1.2829 / /

SemEval Model Uncertainty 0.5712 0.5785 0.5666 0.5526 0.9601 0.0979 0.5653 0.6692 1.0765 0.115 /
SemEval Data Uncertainty 0.567 0.5928 0.5657 0.5554 0.9172 0.0245 0.55 0.5895 1.2718 / 0.0181

SemEval DMU 0.5808 0.5591 0.5761 0.563 0.9466 0.0915 0.558 0.6714 1.0741 0.0055 0.0143
IMDB No Dropout 0.4164 3.0908 0.3958 0.3563 1.4786 0.0139 0.6807 0.4208 2.142 / /

IMDB Baseline 0.405 3.5007 0.3724 0.3287 1.5641 0.0671 0.7034 0.3379 2.5217 / /
IMDB Model Uncertainty 0.4069 3.4787 0.3787 0.3349 1.5247 0.0124 0.6932 0.3954 2.2661 0.1426 /
IMDB Data Uncertainty 0.4067 3.3854 0.377 0.3358 1.558 0.0536 0.7022 0.3531 2.4685 / 0.0033

IMDB DMU 0.4071 3.3377 0.3774 0.3371 1.5263 0.0148 0.6945 0.4131 2.2109 0.0026 0.0026
Reuters No Dropout 0.923 30.2168 0.9145 0.6464 0.3329 0.0265 0.1147 0.9403 0.3308 / /

Reuters Baseline 0.9293 28.1707 0.9228 0.7193 0.3364 0.0337 0.1123 0.8978 0.6704 / /
Reuters Model Uncertainty 0.9277 27.8746 0.9209 0.7131 0.3311 0.0147 0.1054 0.9351 0.3667 0.052 /
Reuters Data Uncertainty 0.9301 25.0199 0.9243 0.7184 0.3286 0.0314 0.1112 0.8993 0.6555 / 0.0246

Reuters DMU 0.932 26.0086 0.9255 0.6957 0.319 0.016 0.1023 0.9369 0.3539 0.0003 0.0087

Table 3: This table reports on the effectiveness of the text classification using the 3 datasets.We report all metrics on the test data,
respectively classification scores: Accuracy, Mean-Squared Error, weighted and macro F1; calibration metrics: Negative Log Likelihood,
Expected Calibration Error (Guo et al., 2017) and Brier score (Brier, 1950); uncertainty measures when available and averaged over all
samples, Softmax-score, Predictive Entropy, Model Uncertainty and Data Uncertainty.

for our results, we additionally suspect that the ambiguous
and complex class decision boundaries counterbalance the
benefits of quantifying uncertainty. Another clear obser-
vation is that applying MC Dropout increments average
softmax-score, providing calibration for IMDB and Reuters,
yet raising Expected Calibration Error for SemEval.
Since modelling uncertainty does not guarantee strictly in-
creasing accuracy or calibration, we have formulated the
novelty experiment to tease out what exactly the uncertainty
quantities can measure.

Novelty detection The main results are collected quantita-
tively in Table 4 and visually in Fig. 2 (Appendix).
While in some cases model uncertainty does significantly
increase when presented with novel class data, our exper-
iments do not support its hypothesized top ranking. Over-
all, the same trend holds over the datasets with predictive
entropy resulting in the most robust novelty uncertainty es-
timate. While the complexity of OOD-tasks differs greatly
with respect to classification boundaries, the quantities mea-
sured are impacted similarly given only small relative dif-
ferences in quantity rank across datasets. The visual results
detail how the different quantities are impacted.
Generally, adding dropout regularization (B) and modelling
data uncertainty (DU) have the most positive effect on en-
tropy, closely followed by softmax. As already indicated in
the standard results, MC Dropout increments the average
softmax-score of the most probable class, which deteriorates
the measure’s ability to discriminate novel samples. Overall,
the experiment demonstrates that quantifying model and
data uncertainty does not yield a good estimator for novel
class presence in input data in contrast to predictive entropy.

5. Conclusion
We have evaluated predictive uncertainty and their value in
novel class detection in a text classification setting. This

Dataset SemEval IMDB Reuters
measure PCC Rank PCC Rank PCC Rank Avg Rank
nodropout softmax-score 0.0922* 12 0.1035* 10 0.2894* 12 12
nodropout entropy -0.1115* 11 -0.1339* 6 -0.3381* 11 10
baseline softmax-score 0.1419* 6 0.1332* 8 0.6066* 5 6
baseline entropy -0.1590* 1 -0.1636* 1 -0.6367* 3 1
MU softmax-score 0.1339* 8 0.1304* 9 0.5270* 9 9
MU entropy -0.1571* 4 -0.1471* 3 -0.5732* 6 4
MU model uncertainty -0.0734* 13 0.0052 14 0.0027 14 14
DU softmax-score 0.1396* 7 0.1414* 5 0.6370* 2 5
DU entropy -0.1590* 2 -0.1595* 2 -0.6558* 1 1
DU data uncertainty -0.1465* 5 0.0106 12 -0.5539* 8 8
DMU softmax-score 0.1298* 9 0.1336* 7 0.5677* 7 7
DMU entropy -0.1585* 3 -0.1440* 4 -0.6118* 4 3
DMU data uncertainty -0.0170 14 -0.0546* 11 -0.0849* 13 13
DMU model uncertainty -0.1253* 10 0.0098 13 -0.4635* 10 11

Table 4: We report the Pearson Correlation Coefficient and p-
value<0.05 with * between uncertainty values and binary variable
IID-OOD. Higher absolute correlation score points to stronger as-
sociation of uncertainty and novelty detection. The final rank over
datasets confirms the superior robustness of predictive entropy.

study has led to the following conclusions:
• Necessary regularization for uncertainty estimation

proves to not always guarantee increase in model per-
formance. This is an important insight to be considered
when adopting uncertainty quantification.
• MC Dropout-based uncertainty quantities do not per-

form well under extrapolation. In the novelty detection
experiment predictive entropy and softmax-score out-
perform current data and model uncertainty metrics.

Admittedly, it is hard to compare uncertainty estimates with-
out a controlled setting. In our experiments we adopted
the logic of evaluating uncertainty using a well-tuned re-
liable base classification model on a representative set of
real-world text classification datasets. As such we have em-
pirically verified the drawbacks and the applicability scope
of uncertainty methods, most notably their underestimation
of uncertainty under novel class distribution shift.
Going forward, we seek to extend our methodology with
(i) a larger scope of uncertainty estimation methods and
(ii) more probing experiments covering situations where we
expect predictive uncertainty to be crucial.
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Figure 1: Visualization of the two architectures used with appropriate hyperparametrization (K=5). The left architecture denotes the
standard softmax model, and on the right, the heteroscedastic model outputs a Normal distribution N (µ(x), diag(σ(x)2) parametrizing
mean and variance by the logits coming from two separate preceding feedforward layers. Visualization source: Netron v 4.01 (Lutz
Roeder)

(a) ND: Softmax (b) B: Softmax (c) MU: σmodel

(d) DU: Softmax (e) DU: Entropy (f) DU: σdata

(g) DMU: Softmax (h) DMU: σmodel (i) DMU: σdata

Figure 2: A selection of most interesting Gaussian kernel density plots over (abbreviated) model setup metrics evaluated on Reuters. Each
plot captures probabilistic density over correct IID (green), incorrect IID (red) and OOD (purple).
(a) demonstrates “overconfidence” due to no regularization, which already improves in (b). Model uncertainty (c) seemingly captures
OOD samples, yet they are unrecognizable from wrong IID. Predictive entropy (e) demonstrates a clearer separation, at least with respect
to correct IID samples, with the same trend to a lesser degree in (d). Data uncertainty (f) and (i) show no awareness on novel class samples.
The combined methods and quantities (g), (h) and (i) perform worse overall.


