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Abstract
Among the existing uncertainty estimations ap-
proaches, only Dirichlet Prior Network (DPN) dis-
tinctly models different uncertainty types. How-
ever, in this paper, we show that for in-domain
examples with high data uncertainties among mul-
tiple classes, a DPN also produces almost in-
distinguishable representations from the out-of-
distribution (OOD) examples, compromising their
OOD detection performance. We address this
shortcoming by proposing a new loss function for
DPN models that maximizes the representation
gaps between the in-domain and OOD examples.
Experimental results suggest that our proposed
technique consistently improves OOD detection
performance by solving this issue.

1. Introduction
Predictive uncertainties of a classification model can arise
from three different sources (Gal, 2016; Malinin & Gales,
2018): Model or epistemic uncertainty captures the uncer-
tainty to estimate the model parameters, conditioned on
training data (Gal, 2016). Data or aleatoric uncertainty
arises from the complexities of the underlying distribution,
such as class overlap, label noise, homoscedastic, and het-
eroscedastic noise (Gal, 2016). Distributional uncertainty
arises due to the distributional mismatch between the train-
ing and test examples (Candela et al., 2009). That is, the
test data is out-of-distribution (OOD).

Recently notable progress has been made for predictive
uncertainty estimation using both Bayesian (Hernandez-
Lobato & Adams, 2015; Gal, 2016; Gal & Ghahramani,
2016; Lakshminarayanan et al., 2017; Hein et al., 2019;
Meinke & Hein, 2020) and non-Bayesian neural networks
(Lee et al., 2018a; Hendrycks et al., 2019; Liang et al., 2018;
Lee et al., 2018b). However, none of these approaches
robustly determine the source of predictive uncertainty (Ma-
linin & Gales, 2018). In particular, the presence of high data
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uncertainty among multiple classes leads the non-Bayesian
classifiers to produce uniform categorical predictions for
in-domain examples, making them indistinguishable from
the OOD examples.

Dirichlet Prior Network (DPN) separately models different
uncertainty types by producing sharp Dirichlet distributions
for in-domain examples, and flat Dirichlet distributions for
OOD examples (Malinin & Gales, 2018; 2019). However,
we show that for in-domain examples with high data uncer-
tainties, the existing loss function for DPN leads to much
flatter distributions.

In this paper, we propose an alternative approach for a DPN
classifier that instead produces sharp multi-modal Dirichlet,
that uniformly spreads the density at each corner of the sim-
plex, for OOD examples to maximize the “representation
gap” from in-domain examples. We propose a new loss
function that separately models the mean and the precision
of the output Dirichlet distributions by introducing a novel
explicit precision regularizer along with the soft-max cross-
entropy loss. Experimental results demonstrate that our
proposed approach consistently improves OOD detection
performance by addressing this issue.

2. Dirichlet Prior Network
A DPN classification model directly parametrizes a Dirich-
let distribution as the prior to the predictive categorical
distribution over a simplex (Malinin & Gales, 2018; 2019).
It attempts to produce a sharp Dirichlet in one corner of
a simplex when it predicts confidently for the in-domain
examples (Fig 1a), inducing a sharp uni-modal categorical
distribution over the class labels. For in-domain examples
with high data uncertainty, it attempts to produce a sharp
distribution in the middle of the simplex (Fig 1b), inducing
a multi-modal categorical distribution over the class labels.

Finally, for OOD examples, an existing DPN model attempts
to produce a flat Dirichlet distribution to indicate high-order
distributional uncertainty (see Fig 1c). However, in section
3, we demonstrate that in the case of higher data uncer-
tainty among multiple classes, an existing DPN model also
produces flatter Dirichlet distribution for in-domain exam-
ples, leading to indistinguishable representations from the
OOD examples. Hence, we propose to produce sharp multi-
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Figure 1. Desired outputs of a DPN under different predictive un-
certainty types.

modal Dirichlet distributions, that uniformly spreads the
densities at each corner of the simplex, for OOD examples
(see Fig 1(d)). It increases their “representation gap” from
in-domain examples, leading to improve the OOD detection
performance. Note that, both Dirichlet distributions in Fig
1c) and 1d) induces uniform predictive categorical distribu-
tion over the class labels for OOD examples. As we see that,
compared to Fig 1a or Fig 1b, the probability densities of
both Dirichlet distribution in Fig 1c and Fig 1d are more
diverse over the simplex. We compute this “diversity” using
measures, such as mutual information (MI) to distinguish
the OOD examples (Malinin & Gales, 2018; 2019).

A Dirichlet distribution is parameterized using its concen-
tration parameters, α = {α1, · · · , αK}, as: Dir(µ|α) =

Γ(α0)∏K
c=1 Γ(αc)

∏K
c=1 µ

αc−1
c , αc > 0. Here, α0 =

∑K
c=1 αc

is the precision of the Dirichlet. A larger α0 produces a
sharper uni-modal Dirichlet distribution (Fig 1a). How-
ever, as we uniformly decrease αc < 1 ∀c, we obtain a
sharp multi-modal Dirichlet with the densities uniformly
distributed at each corner of the simplex (Fig 1d).

Given an input x∗, a DPN, fθ produces α for each class,
i.e, α = fθ(x∗). The expected categorical distribution
over class labels, ωc, is given by the mean of the Dirich-

let: p(ωc|x∗;θ) =

∫
p(ωc|µ)p(µ|x∗;θ)dµ =

αc
α0
, where

p(µ|x∗;θ) = Dir(µ|α) and θ is the model parameters.

Uncertainty Measures. For a given input x∗, we can
measure the total predictive uncertainty by computing the
maximum probability (maxP ) from its predictive categori-
cal distribution i.e. maxP = maxc p(y = ωc|x∗,θ).

maxP behaves similarly for any classification models. We
get a higher maxP score for in-domain confident examples.
However, it produces lower scores for both data and distri-
butional uncertainty, making it difficult to distinguish the
OOD examples. Hence, it also indicates the limitation of
the non-Bayesian models (Malinin & Gales, 2018).

In contrast, a DPN efficiently captures the distributional
uncertainty by computing the mutual information (MI) be-
tween class-labels, y and categorical µ as: MI[y,µ|x,θ] =

H[Ep(µ|x,θ)P (y|µ)] − Ep(µ|x,θ)H[P (y|µ)]. It produces lower
scores for in-domain examples (when the density is concentrated
in a single model as in Fig 1a or 1b) and high scores for OOD
examples (Fig. 1c or 1d). We can also use the precision, α0

as a distributional uncertainty measure as a DPN explicitly
models to produce higher α0 values for in-domain examples.

Existing DPN models also applied differential entropy
(D.Ent), that produces a low score for a sharp Dirichlet,
to distinguish the OOD examples. However, our proposed
solution behaves differently to produce a sharp multi-modal
Dirichlet for an OOD example and a sharp uni-modal Dirich-
let for in-domain confident predictions. Hence, we cannot
detect OOD examples based on the sharpness of the output
Dirichlet. (see more details in Appendix B).

Construction. A standard DNN, with the softmax cross-
entropy loss, can be viewed as a DPN, such that αc =
ezc(x

∗); zc(x∗) is the logit output for class, c for input x∗.
Here, the categorical posterior for class label ωc is:

p(ωc|x∗;θ) =
αc
α0

=
ezc(x∗)∑K
c=1 e

zc(x∗)
(1)

However, since the mean of the Dirichlet is insensitive to
any arbitrary scaling of αc, the precision, α0, of the output
Dirichlet degrades under cross-entropy loss.

Existing loss functions. Malinin & Gales (2018) propose
the forward KL (FKL) loss to explicitly minimizes the KL
divergence between the model and the given target Dirichlet.
Malinin & Gales (2019) propose the reverse KL (RKL) loss,
that reverses the terms in the KL divergence, to address the
previous limitations of FKL, and improve the scalability of
a DPN model for classification tasks with a larger number
of classes. The RKL loss is given as follows:

Lrkl(θ; γ,βy,βout) = EPinKL[p(µ|x,θ)||Dir(µ|βy)]

+ γ · EPoutKL[p(µ|x,θ)||Dir(µ|βout)]
(2)

βy and βout are their hand-crafted target concentration
parameters. Pin and Pout are the distribution for the in-
domain and OOD training examples.

3. Proposed Methodology
In this section, we first demonstrate that the RKL loss func-
tion tends to produce flatter Dirichlet distributions for in-
domain misclassified examples, compared to the confidently
predicted examples. We can decompose the RKL loss us-
ing reverse cross entropy, EPr(µ|x,θ)[− lnDir(µ|β)] and
D.Ent,H[p(µ|x,θ)] (Malinin & Gales, 2019).

EP̃T (x,y) KL
[
p(µ|x,θ) ||Dir(µ|β)

]
= EP̃T (x)

[
EP (µ|x,θ)[− lnDir(µ|β)]−H

[
p(µ|x,θ)

]] (3)

where, ψ is the digamma function. β = {β(c)
1 , · · · , β(c)

K }
represents their hand-crafted target concentration parame-
ters. β represents the concentration parameter of the ex-
pected target Dirichlet with respect to the empirical training
distribution, P̃T . We can replace P̃T with the empirical
distribution of in-domain training examples, P̃in or OOD
training examples, P̃out for our analysis.
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Minimizing −H[p(µ|x,θ)] always leads to a flatter distri-
bution. Hence, we rely only on EP (µ|x,θ)[− lnDir(µ|β)]
to produce sharper distributions.

Malinin & Gales (2019) choose the target concentration
value for in-domain examples as: (β + 1) for the correct
class and 1 for the incorrect classes. Thus, we get:

EP̃T (x,y) KL
[
p(µ|x,θ) ||Dir(µ|β)

]
= EP̃T (x)

[∑
c

∑
k

p̃(ωc|x)(β
(c)
k − 1)

[
ψ(α0)− ψ(αk)

]]
= EP̃T (x)

[
β
∑
c

p̃(ωc|x)
[
ψ(α0)− ψ(αc)

]]
(4)

We can see in Eqn. 3, the reverse cross-entropy term max-
imizes ψ(αc) for each class c with the factor, βp̃r(ωc|x),
while minimizes ψ(α0) with the factor, β. Hence, for an
in-domain example with confident predictions, it produces a
sharp Dirichlet with a large concentration value for the cor-
rect class and very small concentration parameters (<< 1)
for the incorrect classes. However, for an input with high
data uncertainty, β is distributed among multiple classes.
It leads to smaller concentration parameters (≥ 1) for all
overlapping classes, producing a much flatter and diverse
Dirichlet distributions.

(a)Dir1:{0.01, 0.01, 101.98}
D.Ent = −199.1, MI = 8e-4

(b)Dir2:{34, 34, 34}
D.Ent = −3.45,MI = 9.7e-3

Figure 2. Dirichlet distributions with the same precision but differ-
ent concentration parameters.

For example, let us consider two Dirichlet, Dir1 and Dir2,
with the same precision, α0 = 102, but different concen-
tration parameters of {0.01, 0.01, 101.98} (Fig. 2a) and
{34, 34, 34} (Fig. 2b). We can see that Dir1 produces
much lower D.Ent andMI scores for than Dir2. It re-
spectively indicates that Dir2 is more flatter and diverse
than Dir1, even with the same precision. The differences of
these scores become more significant in higher dimensions.
As we consider the same example for a classification task
with 100 classes, D.Ent andMI would respectively be-
come −9.9e3 and 0.02 for Dir1 and −370.5 and 0.23 for
Dir2. Further, we empirically show that DPN models also
leads to lower precision values along with flatter and diverse
Dirichlet distributions for misclassified examples (Table 2).

This behavior is not desirable: since the reverse KL-
divergence also trains the DPN to produce flat Dirichlet
distributions for OOD examples, it often leads to producing
indistinguishable distributions for in-domain misclassified
examples and OOD examples, in the boundary cases. Hence,
we can instead produce sharp, multi-modal Dirichlet distri-
butions for distributional uncertainties (Figure 1d) to ensure
that the OOD examples always remain distinguishable from

the in-domain examples.

For OOD training examples, we should choose identical
values for target concentration parameters, (τ + 1) with
τ > −1, for all classes. Using (τ + 1) for β(c)

k in Eq. 3, we
get the RKL loss for OOD examples as:

EPT (x)

[
τKψ(α0)−

∑
c

τ ψ(αc)−H
[
p(µ|x,θ)

]]
(5)

Malinin & Gales (2019) choose τ = 0, leading to minimize
−H[pr(µ|x,θ)]. Hence, the DPN produces flat Dirichlet
distributions for OOD examples. We investigate the other
choices for τ : Choosing τ > 0 leads to minimizing the
precision, α0 (i.e.

∑K
c=1 αc) of the output Dirichlet while

maximizing individual concentration parameters, αc (see
Eq. 5). In contrast, choosing τ ∈ (−1, 0) leads to maximize
the α0 while minimizing αc’s. In other words, either choice
of τ may lead to an output Dirichlet with uncontrolled con-
centration parameter values for an OOD example.

Explicit Precision Regularization. We now present our
proposed loss function for DPN that separately models the
mean and precision of the output Dirichlet, providing greater
control over the desired outputs. We use the soft-max cross-
entropy loss to models the mean of the output Dirichlet,
as shown in Eq. 1), along with a novel explicit precision
regularizer, to model the precision.

We propose to use a bounded approximation of the preci-
sion value, i.e 1

K

∑K
c=1 sigmoid(zc(x)) as our regularizer.

For an in-domain confident example, we design the loss to
produce a sharp uni-modal Dirichlet with the mode in the
corner of the correct class: Lin(θ;λin) :=

EPin(x,y)

[
− log p(y|x,θ)− λin

K

K∑
c=1

sigmoid(zc(x))
]

(6)

For OOD training examples, we design the loss function
to produce smaller precision, with uniform concentration
values, for the output Dirichlet that induces a uniform cate-
gorical posterior over all class labels: Lout(θ;λout) :=

EPout(x,y)

[
Hce(U ; p(y|x,θ))− λout

K

K∑
c=1

sigmoid(zc(x))
]
(7)

where, Hce is the cross-entropy function. U is the uni-
form distribution over the class labels. λin and λout are
hyper-parameters that control the precision of the output
distributions. We train the DPN in a multi-task fashion:

min
θ
L(θ; γ, λin, λout) = Lin(θ, λin) + γLout(θ, λout) (8)

where γ > 0 balances between the loss values for in-domain
examples and OOD examples.

By choosing λin > 0 for in-domain examples, our regular-
izer imposes the network to maximize sigmoid(zc(x)) for
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OOD test sets TIM (Li et al., 2017) STL-10 (Coates et al., 2011) LSUN (Yu et al., 2015)
maxP MI α0 maxP MI α0 maxP MI α0

C10

Baseline 88.9±0.0 - - 75.9±0.0 - - 90.3±0.0 - -
MCDP 88.7±0.1 88.1±0.1 - 76.2±0.0 76.0±0.0 - 90.6±0.0 90.2±0.0 -
OE 98.2±0.1 - - 81.4±1.2 - - 98.4±0.3 - -
DPNrev 97.5±0.5 97.8±0.4 97.8±0.4 81.6±1.7 82.2±1.7 82.2±1.6 98.5±0.4 98.7±0.3 98.7±0.3

DPN+ 98.0±0.2 98.0±0.2 98.0±0.2 81.6±1.4 81.8±1.2 81.8±1.2 98.2±0.3 98.3±0.4 98.3±0.4

DPN− 99.0±0.1 99.0±0.1 97.7±0.9 84.7±0.4 85.3±0.5 84.9±0.5 99.2±0.1 99.3±0.0 98.1±0.1

C100

Baseline 68.8±0.2 - - 69.6±0.0 - - 72.5±0.0 - -
MCDP 69.7±0.3 70.6±0.3 - 70.7±0.1 71.6±0.2 - 74.5±0.1 75.9±0.2 -
OE 89.5±1.0 - - 91.2±0.7 - - 92.2±0.9 - -
DPNrev 81.2±0.2 83.8±0.1 83.8±0.1 87.2±0.1 89.3±0.1 89.3±0.1 86.7±0.0 89.3±0.1 89.3±0.1

DPN+ 85.9±0.3 92.2±0.1 92.2±0.1 89.1±0.2 95.0±0.0 95.0±0.0 90.3±0.3 95.0±0.1 95.0±0.1

DPN− 89.2±0.1 94.5±0.1 94.5±0.1 92.8±0.1 96.8±0.1 96.8±0.1 92.8±0.1 96.5±0.1 96.5±0.1

Table 1. AUROC scores for OOD detection (mean ± s.d of 3 models). Higher scores
are better.

maxP MI α0 Acc.

C10

Baseline 93.3±0.1 - - 94.1
MCDP 93.6±0.2 93.2±0.1 - 94.2
OE 92.0±0.0 - - 94.2
DPNrev 89.6±0.1 88.7±0.2 88.7±0.2 90.6
DPN+ 92.2±0.3 90.3±0.1 90.3±0.1 94.0
DPN− 92.6±0.1 89.9±0.0 89.9±0.0 94.4

C100

Baseline 86.8±0.1 - - 72.3
MCDP 87.2±0.0 83.3±0.3 - 72.7
OE 86.9±0.0 - - 71.6
DPNrev 79.3±0.1 73.5±0.1 73.1±0.1 71.1
DPN+ 86.4±0.1 81.2±0.0 81.3±0.0 72.1
DPN− 86.4±0.1 82.3±0.0 82.3±0.0 72.3

Table 2. AUROC scores for misclassified
image detection (mean ± s.d. of 3 mod-
els). Higher scores are better.

all classes. However, for confidently predicted examples,
the cross-entropy loss ensures to maximize the logit value
of the correct class. In contrast, in the presence of high
data uncertainty, the cross-entropy loss produces multiple
smaller modes for the overlapping classes. Hence, as before,
it leads to producing a flatter distribution for misclassified
examples (see Fig 2). Now, by choosing λin > λout > 0,
we also enforce the network to produce a flatter distribu-
tion with αc = exp zc(x∗) ≥ 1 for an OOD example x∗.
Hence, it leads to an indistinguishable representation for
the OOD example as an in-domain example with high data
uncertainty, as in the case of the RKL loss (Eq. 3).

However, now we can address this problem by choosing
λout < 0. It enforces the DPN to produce uniform negative
values for zc(x∗), leading to αc < 1 ∀c, for an OOD exam-
ple to produce a sharp multi-modal Dirichlet with uniform
weights at each corner of the simplex (Fig 1d).

Note that, the choice of λin = 0, λout = 0 reduces the
proposed loss to the non-Bayesian OE model (Hendrycks
et al., 2019). However, it now fails to produce desirable
Dirichlet distributions to indicate different uncertainty types.

4. Experimental Study
We carry out experiments on CIFAR-10 and CIFAR-100
datasets (Krizhevsky & Hinton, 2009) using VGG-16 (Si-
monyan & Zisserman, 2015). We train the C10 classifiers
using CIFAR-10 training images as in-domain data and
CIFAR-100 training images as the OOD data. For the C100
classifiers, we use CIFAR-100 training images as in-domain
and CIFAR-10 training images as OOD. We study the perfor-
mance our DPN models using λin > 0 and both λout > 0
and λout < 0, denoted as DPN+ and DPN− respectively.
(See Appendix A for more details.)

We evaluate the performances of our models for OOD detec-
tion and in-domain misclassification detection using area
under the receiver operating characteristic curve (AUROC)
metric (Manning & Schütze, 1999; Hendrycks & Gimpel,
2017). We compare the performance of our models with the
standard DNN as Baseline (Hendrycks & Gimpel, 2017),

Bayesian MCDP (Gal & Ghahramani, 2016), non-Bayesian
OE (Hendrycks et al., 2019) and DPNrev (Malinin & Gales,
2019). For MCDP, we measure the maxP and MI. For the
other models,MI and α0 are not defined.

Tables 1 shows the OOD detection performance of C10 and
C100 classifiers. We observe that our DPN− models con-
sistently outperform the other models usingMI measure.
It produces sharp multi-modal Dirichlet distributions, with
uniform weights at each corner of the simplex, for OOD
examples, leading to higherMI scores and maximize the
representation gap from in-domain examples.

In Table 2, we observe that our DPN− models achieve com-
parable performance with the existing models for misclassi-
fication detection. While the Baseline and MCDP models
often achieve higher scores for misclassification detection
task, their poor performance for OOD detection makes it
difficult for real-world applications.

We can see that the DPN models achieve higher scores even
for theMI and α0 measures. In previous studies (Malinin,
2019; Malinin & Gales, 2019), we can also observe similar
results using D.Ent as an uncertainty measure. This sup-
ports our assertion that in the presence of data uncertainty,
DPN models tend to produce flatter and diverse Dirichlet
distributions, compared to the confident predictions. Hence,
we produce sharp multi-modal Dirichlet, with uniform den-
sities at each corner of the simplex, for OOD examples to
keep them distinguishable from the in-domain examples.

5. Conclusion
The existing DPN models often produce indistinguishable
representations for the in-domain examples with high data
uncertainty among multiple classes and OOD examples. We
propose a novel loss function to maximize the representation
gap between in-domain and OOD examples. Our experi-
mental results show that we can consistently improve the
OOD detection performance by solving this issue.
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A. Experimental Details
We use the VGG-16 network (Simonyan & Zisserman,
2015) for C10, C100 and TIM classification tasks. For
C10, we use CIFAR-10 training images (50, 000 images) as
our in-domain training data and CIFAR-100 training images
(50, 000 images) as our OOD training data.

For C-100, we use CIFAR-100 training images (50, 000 im-
ages) as our in-domain training data and CIFAR-10 training
images (50, 000 images) as our OOD training data.

We keep the test examples separately during the training
phase of our models. In Table 3, we present the details of
our experimental settings.

For the OOD detection task, we treat the OOD examples as
the positive class and in-domain examples as the negative
class. For the experiments on misclassification detection,
we consider the misclassified examples as the positive class
and correctly classified examples as the negative class.

Hyper-parameters. Similar to (Malinin & Gales, 2018;
2019; Hendrycks et al., 2019), we do not need to tune any
hyper-parameters during testing. In other words, the OOD
test examples remain unknown to our DPN classifiers, as in
a real-world scenario.

We set γ = 0.5 for our loss function in Eqn. 8, as applied in
(Hendrycks et al., 2019). We train two different DPN models
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Classifier Input #Classes Training Datasets Test Datasets
In-Domain OOD In-Domain OOD

C10 32× 32 10
CIFAR-10 Training Set

(50,000 images)
CIFAR-100 Training Set

(50,000 images)
CIFAR-10 Test Images

(10,000 Images)
TIM, STL-10,

LSUN etc.

C100 32× 32 100
CIFAR-100 Training Set

(50,000 images)
CIFAR-10 Training Set

(50,000 images)
CIFAR-100 Test Set

(10,000 Images)
TIM, STL-10,

LSUN etc.

Table 3. Details of Training and Test Datasets used for C10 and C100 classifiers.

for each classification task, using both positive and negative
values for λout to analyze the effect of both flat Dirichlet
distributions and sharp Dirichlet distributions at each corner
of the simplex respectively for the OOD examples.

The hyper-parameters λin and λout controls the precision
of the output Dirichlet distributions. For our experiments,
we always choose these hyper-parameters as follows: DPN+

is trained with positive λout = 1
#class + 0.5 and λin = 1.5.

DPN− is trained with negative λout = 1
#class − 0.5, and

λin = 0.5.

A.1. Competitive Systems

We compare the performance of our models with standard
DNN as baseline model (Hendrycks & Gimpel, 2017), the
Bayesian framework, monte-carlo dropout (MCDP) (Gal &
Ghahramani, 2016), DPNfwd and DPNrev using the loss
function proposed in (Malinin & Gales, 2018) and (Malinin
& Gales, 2019), non-Bayesian frameworks such as outlier
exposure (OE) (Hendrycks et al., 2019). We use the same
architecture as our DPN models for the other competitive
models.

MCDP models: For MCDP, we use the standard DNN
(Baseline) model with randomly dropping the nodes during
inference time. The predictive categorical distributions are
obtained by averaging the outputs for 10 iterations.

DPNrev models: The DPNrev models are trained only
using the ADAM optimizer (Kingma & Ba, 2014). Note
that, We could not use the SGD optimizer to train these
models due to the complex RKL loss. In contrast, we have
not encountered such a problem for other OOD detection
models.

For example, we use SGD to train the other models for
the C10 classification task. We also observe that DPNrev

achieves lower classification accuracies than the other clas-
sifiers (Table 2). For C100, we choose the ADAM optimizer
for all models. We find that all the OOD detection models
achieve similar classification accuracy in this case (Table 2).

We choose the same set of hyper-parameters to produce the
target hand-crafted concentration parameters for DPNrev

models (see Eq. 2) as suggested by the authors (Malinin &
Gales, 2019; Malinin, 2019): for in-domain training exam-

ples are set to 100 for the correct class and 1 for the incorrect
classes. For OOD training examples, we choose the con-
centration parameters as 1 for all classes. We set γ = 0.5,
similar to our DPN+ and DPN− models and non-Bayesian
OE models (Hendrycks et al., 2019).

A.2. Description of the OOD Test Datasets

We use a wide-range of OOD dataset for our experiments, as
described in the following. For C-10 and C-100 classifiers,
these input test images are resized to 32× 32.

TinyImageNet (TIM) (Li et al., 2017). This is a subset of
Imagenet dataset (Deng et al., 2009). We use the validation
set, that contains 10, 000 test images from 200 different
image classes for our evaluation during test time.

STL-10 contains 8, 000 images of natural images from 10
different classes (Coates et al., 2011).

LSUN (Yu et al., 2015). The Large-scale Scene UNderstand-
ing dataset (LSUN) contains images of 10 different scene
categories. We use its validation set, containing 10, 000
images, as an unknown OOD test set.

B. Uncertainty Measures
In this section, we present the expressions to compute dif-
ferent uncertainty measures of a Dirichlet distribution.

Mutual Information of a Dirichlet distribution: The
mutual information of the labels, y and the categorical, µ
of a DPN is computed as:

MI[y,µ|x∗,θ]

=H[Ep(µ|x,θ)P (y|µ)]− Ep(µ|x,θ)H[P (y|µ)]

=

K∑
c=1

αc
α0

[
ψ(αc + 1)− ψ(α0 + 1)− ln

αc
α0

] (9)

Precision, α0 (Inverse-EPKL): The expected pairwise KL
divergence (EPKL) measures the expected KL-divergence
between pairs of independent categorical distributions sam-
ples from the output Dirichlet distribution. EPKL is simpli-
fied to K−1

α0
for a Dirichlet distribution.

Since the DPN models also produce smaller precision values
for OOD examples, we can directly use the precision, α0, or



Maximizing the Representation Gap between In-domain & OOD examples

the inverse of EPKL as a distributional uncertainty measure.

Note that, both EPKL and precision (or inverse-EPKL) leads
to the same OOD detection performance as they produce
the same relative uncertainty scores (in reverse order) for a
given set of input examples.

Differential Entropy of a Dirichlet distribution: Differ-
ential entropy (D.Ent), that measures the sharpness of a
Dirichlet distribution. It is also used as a distributional uncer-
tainty measure in previous studies (Malinin & Gales, 2018;
2019). However, unlike other DPN models, our DPN− be-
haves differently to produce sharp multi-modal Dirichlet
distributions for OOD examples and sharp uni-modal dis-
tribution for in-domain confident predictions. Hence, we
cannot directly detect OOD examples using D.Ent mea-
sure. Differential Entropy of a Dirichlet distribution can be
calculated as follows:

H[p(µ|x∗,θ)] = −
∫
p(µ|x∗,θ) ln p(µ|x∗,θ)dµ

=

K∑
c=1

ln Γ(αc)− ln Γ(α0)−
K∑
c=1

(αc − 1)(ψ(αc)− ψ(α0))

(10)

Note that, αc is a function of x∗. Γ and ψ denotes the
Gamma and digamma functions respectively.


