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Abstract
Adversarial learning is shown to be an effective
approach for improving semantic segmentation
quality by enforcing higher-level pixel correla-
tions. However, state-of-the-art semantic segmen-
tation models cannot be easily plugged into an
adversarial setting because they are not designed
to accommodate convergence and stability issues
in adversarial networks. To address this, we in-
troduce a novel lookahead adversarial learning
approach (LoAd) with an embedded label map ag-
gregation module. We show that the proposed so-
lution can alleviate divergence issues in an adver-
sarial semantic segmentation setting and results
in considerable performance improvements (up to
5% in some classes) on two standard datasets.

1. Introduction
Semantic segmentation is one of the most fundamental
problems in computer vision. It is a pivotal step towards
content-based image analysis and scene understanding as
it empowers machines to distinguish between different re-
gions of an image based on its semantic context. Semantic
segmentation has received an upsurge of attention recently
owing to its wide variety of applications in medical imaging
(Ronneberger et al., 2015; Rezaei et al., 2017), autonomous
driving (Menze & Geiger, 2015; Cordts et al., 2016), satel-
lite image processing (Volpi & Ferrari, 2015; Henry et al.,
2018), and robotics (Geiger et al., 2013; Shvets et al., 2018),
to name a few. Recent advances in deep learning and convo-
lutional neural networks (CNNs) revolutionized this fields
resulting in state-of-the-art image segmentation algorithms
such as FCN (Long et al., 2015), U-Net (Ronneberger et al.,
2015), PSPNet (Zhao et al., 2017), EncNet (Zhang et al.,
2018a), Exfuse (Zhang et al., 2018b), DeepLabv3+ (Chen
et al., 2018), PS and Panoptic-DeepLab (Kirillov et al., 2019;
Cheng et al., 2019), and HRNet (Wang et al., 2020).

Majority of these deep learning based methods formulate
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semantic segmentation as a classification problem where
cross entropy (CE) with pixel independence assumption is
employed as the optimization loss function. However, in
practice, adjacent pixels of an image are highly correlated.
These methods implicitly assume that correlation among
pixels would be learned as receptive field of CNNs increases
going deeper with convolutions. Recent studies challenge
this assumption and propose different approaches to cap-
ture pixel inter-dependencies. For instance, CRFs can be
used to model pixel relationships and enforce label consis-
tency between pixels (Liu et al., 2017; Chen et al., 2017;
Shen et al., 2017; Liu et al., 2017). However, CRFs are
known to be extremely time-consuming at inference and
sensitive to variations in visual appearance. An alternative
approach is extracting pixel affinity information from im-
ages and fusing them back to predicted label maps (Ke et al.,
2018); this comes at the cost of extra model branches and
larger memory requirements. Other studies have proposed
using different loss functions that encode the mutual in-
formation or structural similarity among nearby pixels in
a regional fashion (Zhao et al., 2019a;b) and have shown
improvements. However, these losses can be derived in a
sub-optimal manner by considering a small patch of pixels.

Another avenue that has been explored to enforce structure
in segmentation is employing adversarial learning (Luc et al.,
2016; Souly et al., 2017; Xue et al., 2018; Hung et al., 2018).
In this setup, a segmentor-discriminator pair compete to
outperform each other in creating realistic label maps and
distinguishing them from ground truth ones. We think a
conditional adversarial approach similar to (Luc et al., 2016;
Souly et al., 2017) has the capacity to capture these pixel
inter-dependencies and correlations in a more general (and
not only local) fashion when compared to methods proposed
in (Zhao et al., 2019a;b). On the other hand, plugging state-
of-the-art semantic segmentation models in an adversarial
setting is prone to the well-known divergence and mode
collapse issues (Arjovsky et al., 2017; Goodfellow et al.,
2014b). Specific architecture designs for generator and
discriminator networks can help to stabilize the setup, but
at the cost of limiting the application domain of adversarial
networks. Bridging the gap between employing the state-of-
the-art semantic segmentation models in adversarial settings
and helping to stabilize them is the core idea of the proposed
lookahead adversarial learning (LoAd) approach.
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2. Conditional Adversarial Training
Let Dt = {(X,Y)1, ..., (X,Y)M} be the training dataset
containing M samples with Xt = {X|(X,Y) ∈ Dt} and
Yt = {Y|(X,Y) ∈ Dt} respectively denoting the set of
images and their corresponding label maps. Here, X is of
sizeH×W×3 for RGB images with a total ofH×W = N
pixels. The corresponding label map Y is of size H ×W
with elements in K = {1, · · · ,K} where K is the number
of classes in segmentation task. An adaptation of condi-
tional generative adversarial networks (CGANs) (Goodfel-
low et al., 2014a; Mirza & Osindero, 2014; Isola et al.,
2017) for semantic segmentation would aim at creating the
most probable map Y per input image X. So, we solve a
two-player min-max game to estimate P (Y|X)

min
G

max
D
L(G,D) = EY∼PDt (Y)

[
log (D(Y|X))

]
+

EY∼Pg(Y)

[
log (1−D(Y|X))

]
, (1)

where G denotes a generator (segmentor) parameterized
with θg, D stands for a discriminator parameterized with
θd, and the loss function L(G,D) should be minimized
w.r.t. θg and maximized w.r.t. θd. Typically, both G and D
are CNN’s. Several interesting studies such as (Luc et al.,
2016; Souly et al., 2017; Hung et al., 2018) suggest applying
a hybrid loss combining the conditional adversarial loss in
(1) with a cross-entropy (CE) pixel-wise term as follows

Lh =

M∑
m=1

CE(Ym, Ŷm) + λ

M∑
m=1

log
(
D(Ym|Xm)

)
+

λ

M∑
m=1

log
(
1−D(Ŷm|Xm)

)
, (2)

where (1) is simplified for a binary classification setting in
which the discriminator is to decide whether a sample label
map is ground truth (Y ∼ PDt

) or generated (Y ∼ Pg)
by the segmentor. The pixel-wise loss is computed using
a multi-class CE between the 1-hot encoded versions of
the original label map Y and the inferred one Ŷ using
−
∑N

i=1

∑K
c=1 yi,c log(ŷi,c), with yi denoting the ith ele-

ment of Y. Obviously, only the second and the third terms
in (2) are relevant when training the discriminator. When
training the generator, (Luc et al., 2016) proposes to keep
the first and the third terms. Next, a standard gradient decent
ascent (GDA) (Lin et al., 2019) is applied to the two-player
min-max game.

We decided to take a different approach for two reasons.
First, following the propositions in (Nouiehed et al., 2019;
Ostrovskii et al., 2020), and in contrast to (Luc et al., 2016),
we avoid an alternating GDA in optimizing the generator
and discriminator networks. Instead, in every “cycle” of the
proposed adversarial approach (Algorithm 1), we keep train-
ing the discriminator with a dynamically updated label map
dataset to reach sufficient accuracy before switching back

Algorithm 1: LoAd for Semantic Segmentation
Initialize :ψ = 0, gs = g0, B = gs(Xt)
Input: max cycle: Ψ, max patience: Γ, βl, βu
µs, µ∗, µ← evaluate mIoU
Train Discriminator(Dt ∪ B)
while ψ < Ψ do

start a divergence patience counter: γ ← 0
while µs − βl < µ and γ < Γ do

update model: g ← Train Advers.
µ← evaluate mIoU
µ∗ ← best µ > µs + βu
update best model: g∗ ← g
γ ← γ + 1

end
ge ← keep the last model of the cycle
if best model better than start then

set best model as start model: gs ← g∗

reset cycle counter ψ ← 0
B ← MapAggregation(g∗, ge,X )

else
B ← MapAggregation(0, ge,X )
start a new cycle ψ ← ψ + 1

end
Train Discriminator(Dt ∪ B)

end

to training the generator. Second, based on our experience
when incorporating state-of-the-art semantic segmentation
models (like DeepLabv3+) in an adversarial setting, pres-
ence of the pixel-wise CE loss exacerbates the divergence
issues. Therefore, we approach the problem in two stages
as follows. Stage 1: if not pre-trained on Dt, we first train
the segmentation network using only CE pixel-wise loss up
to a reasonable performance (no hard constraints). Stage 2:
we then deactivate the pixel-wise CE loss (set it to 0) and
run LoAd to boost the performance. At this stage, when
training the discriminator both second and third terms of (2)
will be active, and when training the segmentation network
only the third term will be used.

3. Lookahead Adversarial Learning (LoAd)
Robustness and divergence issues of adversarial networks
are not secret to anyone (Arjovsky et al., 2017; Goodfellow
et al., 2014b; Liu & Hsieh, 2019; Roth et al., 2017; Sali-
mans et al., 2016) and we had to tackle that in our semantic
segmentation setup. We take inspiration from “lookahead
optimizer” (Zhang et al., 2019) and allow the adversarial
network to go ahead and actually diverge (to some extent)
helping us to gain new insights and construct new datasets
of label maps from these divergent (or degraded) models.
Inspired by the idea of DAGGER (Ross et al., 2011), we
aggregate these new datasets in a buffer and use them for
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Figure 1. a) hypothetical convergence graph, b) corresponding label map aggregation buffer.

retraining the discriminator at the end of every “cycle” of
LoAd. Next, we go back to where the divergence started
(similar to “1 step back” in lookahead optimizer) to improve
our next predictions and avoid further divergence. Note that
these new datasets are not designed or generated adversarial
examples but sequentially degraded label maps.

Algorithm 1 provides a pseudo code level description of
LoAd. Let us assume a starting model gs = g0 (e.g., the
end model after Stage 1 training as explained in Section 2).
First, we evaluate the model on a subset of validation data
(a hold-out set) to understand our current mean-intersection-
over-union (mIoU, µ in Algorithm 1). This serves as both
starting and current best mIoU (µs and µ∗, respectively). We
can already train our discriminator for the first time using
Dt ∪ g0(Xt), a set composed of full training data (images
and maps) plus a set of generated (fake) maps. With this,
we have initialized our label map aggregation buffer with
B = B[0] = g0(Xt). We then continue training adversarial
until one of the following two criteria is met: a) patience
iteration counter γ reaches its maximum Γ, alerting us that
it is enough looking ahead, b) we diverge (in mIoU sense)
reaching a pre-defined lower-bound (µs − βl) w.r.t. to the
starting mIoU µs. If any of the two criteria are met, the
cycle is finished, and we pick the last model of the cycle
denoted by ge. Throughout each cycle, we also seek for
an updated model offering a mIoU better than the staring
one, and if such a new best peak model g∗ (above an upper-
bound µs + βu) is found, the cycle would be returning two
models, the best model of the cycle g∗ and its ending model
ge. Per cycle one or both of these models {g∗, ge} would
be passed to our map aggregation algorithm to generate
new “fake” label maps which will be aggregated in B. This
dynamically updated dataset in B concatenated with Dt will
then be used to retrain the discriminator before the next
cycle starts. At the end of each cycle, we go back and restart
training adversarial from the newly found peak g∗ or the old
starting point gs. Lastly, if we do more than Ψ cycles from
a starting model gs and a new peak is not found to replace it,
the algorithm fully stops and returns the overall best model.

To make this crystal clear, we use a hypothetical conver-

gence graph in Fig. 1 a) and corresponding dynamically
updated map aggregation buffer depicted in Fig. 1 b) to
walk you through what LoAd does in action. As can be
seen in Fig. 1, starting from g0, the first adversarial cycle
immediately descends towards divergence ending with ge0,0.
We denote the jth cycle spawned from the ith peak with
gi,j . Note that ge0,0 does not descend by βl, and thus, we are
assuming that the cycle is ended due to reaching patience
limit of Γ propagations (or iterations) as described in Algo-
rithm 1. This cycle also did not introduce a new peak better
than g0. Thus, only ge0,0(X ) will be added as a new set to the
buffer B. This is where we go back and restart adversarial
training from g0, but this time with a retrained discriminator.
As can be seen in the figure, this helps to ascend towards
g1 after which we diverge again in the second cycle. So,
the second cycle returns a new peak g∗ = g1 as well as the
ending model ge = ge0,1 for map aggregation. Since a new
peak is found (better than g0), we flush the buffer filling
it with B = [g1(X ) | ge0,1(X )] as shown in Fig. 1 b). Any
cycle that only returns an ending model (an no new peak)
would lead to creating a new label map set added to the end
of the buffer unless the buffer is full; i.e., it already contains
Bmax label map sets. In that case, we first delete the label
map set corresponding to the oldest end model and then the
new label map set is added to the end of B. An example
of this scenario in our hypothetical setup is where the set
corresponding to ge1,1 is deleted in favor of the newcomer
set corresponding to ge2,1.

Figure 2. Adversarial network architecture.
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Table 1. Performance comparison on PASCAL VOC 2012 validation set.
Method backg. aero. bicycle bird boat bottle bus car cat chair cow

DeepLabv3+ 95.55 90.33 44.23 89.56 72.15 81.11 96.76 91.37 94.33 51.87 96.08
DLv3+ &LoAd 95.65 92.92 43.86 90.31 77.73 82.02 96.29 90.18 94.20 51.73 95.55

contd. d.table dog horse m.bike person p.plant sheep sofa train tv mIoU

DeepLabv3+ 60.14 92.63 93.33 89.23 90.18 67.19 93.75 61.26 94.81 80.27 82.20
DLv3+ &LoAd 64.28 92.14 93.30 88.63 90.19 67.65 93.65 64.93 94.18 80.31 82.84

Figure 3. Selected qualitative results on PASCAL VOC 2012 validation set.

4. Experimental Setup
Network architecture. The experimental network archi-
tecture is shown on Fig. 2. As can be seen, we opted for
DeepLabv3+ with a modified Xception-65 backbone (Chen
et al., 2018), bearing in mind that DeepLabv3+ might not
be the easiest model to simply plug into an adversarial set-
tings. We chose Mobilenet-224 (Howard et al., 2017) as
our discriminator. The figure shows that the discriminator
training policy is conditional on the input image split into
different classes (using ground truth and generated label
maps) and stacked into the input channels of the discrimina-
tor. Our trainings are run separately on Nvidia P100 Tesla
nodes each with 16 GB of memory. Notably, we are particu-
larly interested in models that run fast at inference time for
near real-time field applications. That is why we picked a
DeepLabv3+ base model that offers speed (no multi-scaling,
no CRFs) and performance at the same time.

Adversarial training. To train the discriminator, we used a
batch size of 16, and set α = 1 with a dropout rate of 0.01
(Howard et al., 2017). We used Adagrad with learning rate
lrd = 0.01. For adversarial training, we used a batch size of
5 due to the memory limitation of the GPU nodes available.
The adversarial learning rate in this setting was set to lra =
2.5e − 7, and we trained using a momentum of 0.95. We
used Gumbel softmax (Jang et al., 2016) with temperature
τ = 20 which in effect boosts the lra. Adversarial training
is conducted based on LoAd (in Algorithm 1) with βu =
0.1% in mIoU and βl = 5% in mIoU. Patience counter
maximum is set to Γ = 50, and maximum allowed cycles is
set to Ψ = 50. Maximum buffer size is set to Bmax = 3.

PASCAL VOC 2012 dataset. PASCAL VOC 2012 dataset
(Everingham et al., 2015) contains 20 foreground object

classes and 1 background class. It contains 1, 464 train,
1, 449 validation, and 1, 456 test pixel-level annotated im-
ages. For the experiments on this dataset, we started from
DeepLabv3+ checkpoint pre-trained on PASCAL VOC 2012
achieving mIoU = 82.2% (see, Table 5 in (Chen et al.,
2018)) followed by applying LoAd without any further fine-
tuning. Since the images have a shape of at most 512× 512
pixels, we used a crop size of 513 × 513 for Deeplabv3+
input layer following (Chen et al., 2018). For early stopping
evaluation when training the discriminator as well as for
evaluating the mIoU during adversarial training we used
30% (500 images) of the validation set (as hold-out set).

5. Evaluation Results
Table 1 summarizes the performance comparison between
the baseline (DeepLabv3+, also abbreviated as DLv3+)
and the proposed boosted model after applying LoAd
(DeepLabv3+ & LoAd) on the full validation set. The re-
sults are interesting in the sense that even though the over-
all mIoU has increased by 0.6%, in some of the high-
lighted classes such as “aeroplane”, “sofa”, “diningtable”,
and “boat” the improvement in IoU ranges from +2% to
+5% which is quite significant. Obviously, we degrade is
some other classes mostly by a fraction of a percent, ex-
cept for the “car” class where we degrade by more than
1%. Some qualitative results are illustrated in Fig 3. On
the top row, the whole “dining table” is missed by the
baseline and LoAd fully recovers that. The second row
shows interesting signs of resolving class swap/confusion
between “sofa” and “chair”. Interested readers are re-
ferred to extensive quantitative and qualitative results in
https://arxiv.org/abs/2006.11227.

https://arxiv.org/abs/2006.11227
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