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Abstract

Empirically, neural networks are often miscal-
ibrated and dramatically overconfident in their
predictions, which could be problematic in any
automatic decision-making system. In this work,
we focus on the medical field because neural net-
work miscalibration has the potential to lead to
significant treatment errors. We propose a novel
approach to neural network calibration that main-
tains the overall classification accuracy while sig-
nificantly improving model calibration. Our ap-
proach can be easily integrated into any classifi-
cation task as an auxiliary loss term. We show
that our approach reduces calibration error signif-
icantly across various architectures and datasets.

1. Introduction
Recently, many high-performance deep learning models for
various medical imaging analysis tasks have been devel-
oped (Esteva et al., 2017; Yang et al., 2018; Mihail et al.,
2019). Researchers are actively working on convolutional
neural network (CNN) architecture development that is pur-
suing higher accuracy (Ronneberger et al., 2015; Ribli et al.,
2018; Zhang et al., 2019). However, uncertainty quantifi-
cation is often ignored when evaluating these models. Un-
certainty quantification of neural networks is as important
as achieving higher accuracy, if not more, especially in au-
tomatic decision-making settings in the medical field. An
automated method that achieves higher accuracy, but cap-
tures uncertainty inaccurately (i.e., providing an inaccurate
confidence or probability of a specific prediction) could be
dangerous (Jiang et al., 2011).

Unfortunately, modern deep learning neural networks are
poorly calibrated (Pereyra et al., 2017; Widmann et al.,
2019), which tend to be overconfident in their predic-
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tions (Guo et al., 2017; Kumar et al., 2018). Though the real
cause of miscalibration is unclear, one reasonable explana-
tion is overfitting the cross-entropy loss for classification
models. With larger capacities, classification models can
overfit the cross-entropy loss easily without overfitting the
0/1 loss (e.g., accuracy) (Zhang et al., 2016).

Temperature scaling (Hinton et al., 2015; Guo et al., 2017)
is a widely-used, state-of-the-art approach for deep learning
calibration. It fixes the miscalibration issue with dividing
the predicted probability by a single parameter T (T > 0).
The method is easy to use and performs well, in general.
However, it treats model calibration as a post-processing
task and does not affect the model’s learning ability.

We propose to add the difference between the predicted
confidence and accuracy (DCA) as an auxiliary loss term
to cross-entropy loss for classification model calibration.
Unlike temperature scaling, the DCA regularization term
integrates model calibration into the training stage. As an
auxiliary loss, the DCA term may help a deep learning
model to learn a better feature representation, which im-
proves the ability of a model to recover the true probability
better (Figure 1).

We evaluate the proposed method across four large, pub-
licly available, medical datasets and four widely used CNN
architectures. The results show that our approach reduces
calibration error significantly by an average of 65.72% com-
pared to uncalibrated methods (from 0.1006 ECE to 0.0345
ECE), while maintaining the overall accuracy across all
the experiments—83.08% and 83.58% for the uncalibrated
method and our method, respectively. The proposed method
is also approximately 20% better on calibration than tem-
perature scaling, the state-of-the-art calibration approach,
on average.

2. Background
The problem we address in this paper is the miscalibration
issue of supervised classification tasks using modern deep
learning networks.
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Figure 1. Left: The figure shows the ability to recover the true probability distribution of a random dataset. The diagonal line is the true
distribution. The red line is the prediction of the uncalibrated model. The predicted probability distribution is far away from the ground
truth with many overconfident predictions. Temperature scaling (blue) reduces the prediction confidence of the uncalibrated model, but the
calibrated result is still quite far to the ground truth. Our method (green) can better recover the true probability. Right: The t-SNE plots of
the representations learned by the uncalibrated model and temperature scaling (left) and the proposed method (right). The samples of
many classes in the plot of the uncalibrated model and temperature scaling are spreading evenly over the feature space (left). However, the
same class samples are densely close in the plot of ours; the TE and BG classes are nicely separated from the rest of the classes (right).

2.1. Problem Definition

Mathematically, the problem can be defined in the following
way. The input X ∈ x and label Y ∈ y = {1, ..., k} are
random variables that follow a joint distribution π(X,Y ) =
π(Y |X)π(X). Let h be a modern neural network with
h(X) = (Ŷ , P̂ ), where Ŷ is the predicted class label and P̂
is the associated confidence. We would like the confidence
estimate P̂ to be calibrated, which intuitively means that
P̂ represents a true probability. For instance, given 100
predictions with the average confidence of 0.95, we expect
that 95 predictions should be correct. In reality, the average
confidence of a modern neural network is often higher than
its accuracy (Guo et al., 2017; Pereyra et al., 2017; Kumar
et al., 2018). The perfect calibration can be defined as:

P
(
Ŷ = Y |P̂ = p

)
= p,∀p ∈ [0, 1]. (1)

Difference in expectation between confidence and accuracy
(i.e., the calibration error) can be defined as:

Ep̂

[∣∣∣(Ŷ = Y |P̂ = p
)
− p
∣∣∣] . (2)

We want to reduce the calibration error as much as possible.

2.2. Expected Calibration Error

Expected Calibration Error (ECE) is the main criteria
that is used to measure neural network calibration error.
ECE (Naeini et al., 2015) approximates Equation (2) by
partitioning predictions into M bins and taking a weighted
average of the accuracy/confidence difference for each bin.
All the samples need to be grouped into M interval bins
according to the prediction. Let Bm be the set of indices of
samples whose prediction confidence falls into the interval

Im = (m−1M , m
M ], m ∈M . The accuracy of Bm is

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi), (3)

where ŷi and yi are the predicted and ground truth label for
sample i. The average prediction confidence of bin Bm can
be defined as

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i, (4)

where p̂i is the confidence of sample i. ECE can be defined
with acc(Bm) and conf(Bm)

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| , (5)

where n is the number of samples.

2.3. Temperature Scaling

Temperature scaling is a two-phase or post-processing
method for neural network calibration. The first step is
to train a deep learning model. Once the model is trained,
a single temperature parameter, T (T > 0), is added to
the model. The temperature parameter is trained on the
validation set using cross-entropy loss while all the other
parameters are frozen (Guo et al., 2017). The temperature
parameter will be used for calibration at the testing time.
The calibrated confidence, q̂i, using temperature scaling is

q̂i = max
k

θSM (
zi
T
)(k), (6)

where k is the class label (k = 1, ...,K), θSM (zi) is the
predicted probability. As T → ∞, the probability q̂i
approaches 1/K, which represents maximum uncertainty.
With T → 0, the probability collapses to a point mass.
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2.4. MMCE

MMCE is a trainable calibration method that uses kernel
embeddings (Kumar et al., 2018). The method proposes an
auxiliary loss term (MMCE) to the cross-entropy loss. The
MMCE auxiliary loss term is computed in a reproducing ker-
nel Hilbert space (RKHS) (Gretton, 2013). The completely
loss function can be written as:

Loss = CrossEntropy + λ(MMCE2
m(D))

1
2 , (7)

whereD denotes a dataset, MMCE is the auxiliary loss term
in RKHS, and λ is the weight of the auxiliary loss term.
During the training process, MMCE term needs to be re-
weighted due to the imbalance prediction (e.g., the number
of correct predictions is usually larger than the number of
incorrect predictions). The re-weighted MMCE term can be
written as:

MMCE2
w =

∑
ci=cj=0

pi, pj , k(pi, pj)

(m− n)2

+
∑

ci=cj=1

(1− pi)(1− pj)k(pi, pj)
n2

− 2
∑

ci=1,cj=0

(1− pi)pjk(pi, pj)
(m− n)n

,

(8)

where c is the predicted label, m is the number of corrected
predictions, n is the batch size, and k is a universal kernel.

3. Proposed Method
We propose to add the difference between confidence and ac-
curacy (DCA) as an auxiliary loss term to the cross-entropy
loss function for classification tasks. DCA is based on
expected calibration error, which is a standard metric for
quantifying model calibration error. The proposed DCA
term is easy to implement and suitable for any classification
tasks.

The DCA term provides a more principled fix to the miscal-
ibration issue by penalizing the overfitting of cross-entropy
loss. The DCA term penalizes deep learning models when
the cross-entropy loss can be reduced, but the 0/1 loss does
not change (i.e., when the model is overfitting the cross-
entropy loss). In general, the classification loss function can
be written as the following:

Loss = CE + βDCA, (9)

where CE indicates cross-entropy, β is a weight scalar. The
DCA term can be computed for each mini-batch using the
following equation:

DCA =

∣∣∣∣∣ 1N
N∑
i=1

ci −
1

N

N∑
i=1

p(ŷi)

∣∣∣∣∣ , (10)

Figure 2. The calibration error (ECE) of each individual model.
The model names are formed as the “Dataset-Architecture”. (-A:
AlexNet, -R: ResNet, -D: DenseNet, -S: SqueezeNet.)

where ŷi is the predicted label; p(ŷi) is the predicted prob-
ability; ci = 1, if ŷi = yi, yi is the true label; otherwise,
ci = 0. The final loss function of a classification task can
be written as:

Loss = CE + β

∣∣∣∣∣ 1N
N∑
i=1

ci −
1

N

N∑
i=1

p(ŷi)

∣∣∣∣∣ . (11)

DCA is differentiable in the prediction confidence term but
not strictly in the prediction accuracy term due to the argmax
step for computing the predicted label. During the training
phase, backpropagated gradients can be done through the
confidence terms but not through the accuracy.

4. Results
We compared the proposed method with temperature scal-
ing and uncalibrated models (trained with cross-entropy
loss without the application of any calibration methods) on
four medical imaging datasets across four popular CNN
networks. The MMCE method is not compared because
the pure MMCE method performs worse than temperature
scaling (Kumar et al., 2018).

The evaluation results show that the proposed method sig-
nificantly improves model calibration while maintaining the
overall classification accuracy. The proposed model reduces
calibration error by an average of 65.72% compared to un-
calibrated methods (from 0.1006 ECE to 0.0345 ECE) and
performs approximately 20% better than the temperature
scaling method on all the tested cases. Figure 2 shows the
ECE of each individual model.

4.1. Experiment Setup

4.1.1. DATASETS AND CNN MODELS

Four large, publicly available, medical imaging datasets
(RSNA (RSNA, 2019), DDSM (Heath et al., 2000), Mende-
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Table 1. Datasets used in this study.
Name Modality # of Images # of Classes
RSNA Head CT 674257 2
DDSM Mammography 10480 2

Mendeley Chest X-ray 5856 2
Kather Histological 5000 8

ley (Kermany & Goldbaum, 2018), and Kather (Kather et al.,
2016)) were used in this study for both binary and multi-
class classification tasks. See Table 1 for more details.

Four transfer learning CNN models were evaluated. More
specifically, AlexNet (Krizhevsky et al., 2012), ResNet-
50 (He et al., 2016), DenseNet-121 (Huang et al., 2017),
and SqueezeNet 1-1 (Iandola et al., 2016) were used. All
the models were pre-trained on ImageNet. The parameters
of the convolutional (Conv) layers in the original networks
were frozen and used as the feature extractors. A Conv layer
with 1× 1 kernels were added after each feature extractor.
Only the parameters of the new Conv layer and the fully
connected layers are optimized during the training.

4.2. Binary Classification Calibration Results

Table 2 shows the expected calibration error (ECE) and the
accuracy of the uncalibrated models (Unca.), the tempera-
ture scaling (Temp.), and the proposed method (DCA). Each
model was trained for at least two times. The values in the
tables are the averaged result of all the trials.

The table shows that our method is constantly better than the
uncalibrated method on model calibration, which reduces
the ECE by 70.05% (from 0.1242 to 0.0372). The tempera-
ture scaling method has the second smallest average ECE,
0.0454, which is 22% worse than the proposed method. On
average, the uncalibrated method and temperature scaling
method have 80.16% accuracy, while the proposed method
is 80.74%. The proposed method increases the accuracy of
9 out of 12 tests.

4.3. Multi-Class Classification Calibration Results

Table 3 shows the expected calibration error (ECE) and the
accuracy of the uncalibrated models (Unca.), the tempera-
ture scaling (Temp.), and the predicted method (DCA) on
multi-class classification tasks. On average, the uncalibrated
model has 0.03 ECE. The proposed method reduces the
number by 12.33% to 0.0263 ECE. However, temperature
scaling increases the error by over 15% to 0.0347 ECE.

The Kather dataset is a relatively simple and large dataset
for its task. The dataset is considered as the MNIST of
histology images. It is speculated have a sufficient amount
of training data to train a model end-to-end, with a smaller
overfitting effect (i.e., miscalibration). In such a case, since

Table 2. Expected Calibration Error and Accuracy for Binary Clas-
sification Tasks

Dataset Model
ECE Accuracy1

(smaller is better) (larger is better)
Unca. Temp. DCA Unca. DCA

RSNA

AlexNet 0.0113 0.0239 0.0120 0.8376 0.8488
ResNet 0.0276 0.0231 0.0122 0.8569 0.8762

DenseNet 0.0102 0.0814 0.0077 0.8502 0.8543
SqueezeNet 0.0253 0.0317 0.0097 0.8671 0.8841

DDSM

AlexNet 0.2164 0.0658 0.0591 0.6766 0.6291
ResNet 0.1844 0.0307 0.0798 0.7195 0.6987

DenseNet 0.1798 0.0337 0.0754 0.7076 0.7106
SqueezeNet 0.2173 0.0458 0.0805 0.6853 0.6771

Mendeley

AlexNet 0.1693 0.0396 0.0273 0.8585 0.8785
ResNet 0.1475 0.0475 0.0291 0.8520 0.8767

DenseNet 0.1136 0.0746 0.0285 0.8331 0.8796
SqueezeNet 0.1871 0.0468 0.0252 0.8742 0.8750

Average 0.1242 0.0454 0.0372 0.8016 0.8074

1The temperature scaling method has the same accuracy as the
uncalibrated models.

Table 3. Expected Calibration Error and Accuracy for Multi-Class
Classification

Dataset Model
ECE Accuracy1

(smaller is better) (larger is better)
Unca. Temp. DCA Unca. DCA

Kather

AlexNet 0.0279 0.0344 0.0243 0.9062 0.9052
ResNet 0.0248 0.0318 0.0304 0.9355 0.9229

DenseNet 0.0302 0.0286 0.0237 0.9385 0.9410
SqueezeNet 0.0372 0.0439 0.0269 0.8932 0.9038

Average 0.0300 0.0347 0.0263 0.9184 0.9182

1The temperature scaling method has the same accuracy as the
uncalibrated models.

the temperature parameter (T ) of temperature scaling is
learned on only the validation set, it may actually hurt the
calibration. However, the proposed method jointly opti-
mizes the accuracy and modal calibration simultaneously, it
can still reduce the calibration error.

5. Conclusion
We proposed a novel approach to neural network calibra-
tion that maintains the overall classification accuracy while
significantly reducing model calibration error. We evalu-
ated our approach across various architectures and datasets.
The results show that our approach reduces calibration error
significantly and comes closer to recovering the true proba-
bility than other approaches. The proposed method can be
easily integrated into any classification tasks as an auxiliary
loss term, thus not requiring an explicit training round for
calibration. We believe this simple, fast, and straightforward
method can serve as a strong baseline for future researchers.
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