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Abstract
Deep ensembles have recently gained popularity
in the deep learning community for their concep-
tual simplicity and efficiency. However, maintain-
ing functional diversity between ensemble mem-
bers that are independently trained with gradient
descent is challenging. This issue does not only
affect the quality of its predictions, but even more
so the uncertainty estimates of the ensemble, and
thus its performance on out-of-distribution data.
We hypothesize that this limitation can be over-
come by discouraging different ensemble mem-
bers from collapsing to the same function. To this
end, we introduce a kernelized repulsive term in
the update rule of the deep ensembles. We show
that this simple modification not only enforces
and maintains diversity among the members but,
even more importantly, the training dynamics
of our proposed repulsive ensembles follow the
Wasserstein gradient flow of the KL divergence
with the true posterior. We study repulsive terms
in weight and function space and empirically com-
pare their performance to standard ensembles and
Bayesian baselines on synthetic and real-world
prediction tasks.

1. Introduction
There have been many recent advances on the theoretical
properties of sampling algorithms for approximate Bayesian
inference. Particularly worth mentioning is the work of
Jordan et al. (1998), who reinterpret Markov Chain Monte
Carlo (MCMC) as a gradient flow of the KL divergence over
the Wasserstein space. Following this direction, Liu & Wang
(2016) recently proposed the Stein Variational Gradient De-
scent (SVGD) method to perform approximate Wasserstein
gradient descent. Conceptually, this method, that belongs
to the family of particle-optimization variational inference
(POVI), introduces a repulsive force through a kernel to
evolve a set of samples towards high-density regions of the
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target distribution without collapsing. However, when deal-
ing with neural networks, the Bayesian approach is not the
only one capable of offering calibrated models that allow for
uncertainty estimation; ensembles of neural networks (so-
called deep ensembles) have indeed achieved great success
recently, both in terms of predictive performance (Laksh-
minarayanan et al., 2017; Wenzel et al., 2020b) as well as
uncertainty estimation (Ovadia et al., 2019), and constitute
the main competitor to the Bayesian counterpart. That being
said, while they might allow for the averaging of predictions
over several hypotheses, they do not offer any guarantees for
the diversity between those hypotheses nor do they benefit
from the advantages of the probabilistic Bayesian frame-
work. In this work, we show how the introduction of a repul-
sive term between the members in the ensemble, inspired by
SVGD, not only naïvely guarantees the diversity among the
members, avoiding their collapse in the parameter space, but
also allows for a reformulation of the method as a gradient
flow of the KL divergence in the Wasserstein space of distri-
butions. It thus allows to reformulate deep ensembles with
repulsion as a truly Bayesian method. Nevertheless, BNN
inference in weight space can lead to degenerate solutions,
due to the overparametrization of these models. That is,
several samples could have very different weights but map
to the same function, thus giving a false sense of diversity
in the ensemble. This property, that we will refer to as non-
identifiability of neural networks (see Appendix B), can lead
to redundancies in the ensemble members. To overcome this
issue, Wang et al. (2019) recently introduced a new method
to extend POVI methods to function space. Here, we also
study an update rule that allows for an approximation of the
gradient flow of the KL divergence in function space instead
of weight space. We make the following contributions:

• We introduce a kernelized repulsion to the gradient
updates of deep ensembles that endows them with
Bayesian properties.

• We show that a specific repulsion approximates Wasser-
stein gradient flows of the KL divergence and can be
used both in weight and function space.

• We compare these proposed methods empirically and
theoretically to standard deep ensembles and SVGD
and highlight their different guarantees.
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2. Repulsive Deep Ensembles

Figure 1. 1d regression(top): all methods in the weight space are
unable to capture the epistemic uncertainty between the two clus-
ters of training data points. Conversely, the Wasserstein ensemble
in function space maintain this uncertainty and leads to a posterior
predictive that very closely resembles the one obtained with the
HMC sampling. 2d classification (bottom): similarly, we can
observe that the weight-space methods are overconfident and do
not capture the uncertainty well. Conversely, our fWGD method is
confident (low entropy) around the data but not out-of-distribution,
leading to a distance-aware uncertainty estimation, a property that
translates into confident predictions only in the proximity of the
training data, allowing for a principled OOD detection.

While approximating the posterior of deep neural networks
(or sampling from it) is a challenging task, performing max-
imum a posteriori (MAP) estimation, which corresponds
to finding the mode of the posterior, is usually simple. En-
sembles of neural networks use the non-convexity of the
MAP optimization problem to create a collection of K
independent—and possibly different— solutions. Consid-
ering n weight configurations of neural networks {wi}ni=1

with wi ∈ Rd, the dynamics of the ensemble under the
gradient of the posterior lead to an update rule at iteration t:

wt+1
i ← wt

i + εtφ(wt
i)

with φ(wt
i) = ∇wt

i
log p(wt

i |D) , (1)

with step size εt. Ensemble methods have a long history
(e.g., Levin et al., 1990; Hansen & Salamon, 1990; Breiman,
1996) and were recently revisited for neural networks (Lak-
shminarayanan et al., 2017) and coined deep ensembles. The
predictions of the different members are combined to create
a predictive distribution by using the solutions to compute
the Bayesian model average (BMA) in equation 9. Recent
works (Ovadia et al., 2019) have shown that deep ensembles
can outperform some of the Bayesian approaches for uncer-
tainty estimation. Even more recently, Wilson & Izmailov
(2020) argued that deep ensembles can be considered as an
approach to Bayesian model averaging. Despite these ideas,
the ability of deep ensembles to efficiently average over
multiple hypotheses and to explore the functional landscape
of the posterior distribution studied in (Fort et al., 2019)
does not make the method necessarily Bayesian.

From a practical standpoint, many methods were recently
proposed to improve this diversity without compromising
the individual accuracy (Wenzel et al., 2020b; Huang et al.,
2017b; Rame & Cord, 2021). However, the absence of a con-
straint that prevents particles from converging to the same
mode limits the possibility of improvement by introducing
more ensemble members. This means that any guarantees
to converge to different modes must exclusively rely on:
1. The randomness of the initialization; 2. The noise in the
estimation of the gradients due to minibatching; 3. The num-
ber of local optima that might be reached during gradient
descent. Moreover, the recent study of Geiger et al. (2020)
showed how the empirical test error of the ensemble con-
verges to the one of a single trained model when the number
of parameters goes to infinity, leading to deterioration of
the performance. In other words, the bigger the model, the
harder it is to maintain diversity in the ensemble and avoid
collapse to the same solution.

Repulsive force in weight space To overcome the afore-
mentioned limitations of standard deep ensembles, we in-
troduce, inspired by SVGD (Liu & Wang, 2016), a deep en-
semble with members that interact with each other through a
repulsive component. Using a kernel function to model this
interaction, the single models repel each other based on their
position in the weight space, so that two members can never
assume the same weights. Interactions based on weight shar-
ing have also been studied (Oswald et al., 2021) but they do
not actively enforce diversity in the ensemble. Considering
a stationary kernel k(·, ·) : Rd × Rd → R acting in the
parameter space of the neural networks, a repulsive term
can be parameterized through its gradient:

φ(wt
i) = ∇wt

i
log p(wt

i |D)−β
(
{wt

j}n1
) n∑
j=1

∇wt
i
k(wt

i ,w
t
j) ,

(2)
with β

(
{wt

j}n1
)
> 0. To get an intuition for the behavior

of this repulsive term and its gradients, we can consider
the RBF kernel k(w,w′) = exp

(
− 1

h ||w − w′||2
)

with
lengthscale h and notice how its gradient∇wt

i
k(wt

i ,w
t
j) =

2
h (wt

j−wt
i)k(wt

i ,w
t
j) drives wi away from its neighboring

members wj , thus creating a repulsive effect.

Repulsive force in function space To overcome the afore-
mentioned overparameterization issue, the update in equa-
tion 2 can be formulated in function space instead of weight
space. Let f : w 7→ f(· ;w) be the map that maps a con-
figuration of weights w ∈ Rd to the corresponding neural
network regression function and denote fi := f(· ;wi) the
function with a certain configuration of weights wi. We
can now consider n particles in function space {fi}ni=1 with
f ∈ F and model their interactions with a general posi-
tive definite kernel k(·, ·). We also consider the implicit
functional likelihood p(y|x,f), determined by the measure
p(y|x,w) in the weight space, as well as the functional
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prior p(f), which can either be defined separately (e.g., us-
ing a GP) or modeled as a push-forward measure of the
weight-space prior p(w). Together, they determine the pos-
terior in function space p(f |D). The functional evolution
of a particle can then be written as f t+1

i ← f ti + εtφ(f ti ),

φ(f ti ) = ∇ft
i

log p(f ti |D)−α
(
{f tj}nj=1

) n∑
j=1

∇ft
i
k(f ti ,f

t
j ) .

(3)
However, computing the update in function space is nei-
ther tractable nor practical, which is why two additional
considerations are needed. The first one regards the infi-
nite dimensionality of function space, which we circumvent
using a canonical projection into a subspace:

Definition 1 (Canonical projection). For any A ⊂ X , we
define πA : RX → RA as the canonical projection onto A
i.e. πA(f) = {f(a)}a∈A.

In other words, the kernel will not be evaluated directly
in function space, but on the projection k

(
πB(f), πB(f ′)

)
,

with B being a subset of the input space given for instance
by a batch of training datapoints. The second consideration
is to project this update back into the parameter space and
evolve a set of particles there, because ultimately we are
interested in representing the functions by parametrized
neural networks. For this purpose, we can use the Jacobian
of the i-th particle as a projector:

φ(wt
i) =

(
∂f ti
∂wt

i

)> [
∇ft

i
log p(f ti |D)

− α
({
πB(f tj )

}n
j=1

) n∑
j=1

∇ft
i
k
(
πB(f ti ), πB(f tj )

) ]
.

(4)

Repulsive deep ensembles are Bayesian Thus far, we rep-
resented the repulsive force as a general function of the
gradients of a kernel. In this section, we show how to deter-
mine the explicit form of the repulsive term, such that the
resulting update rule is equivalent to the discretization of the
gradient flow dynamics of the KL divergence in Wasserstein
space. We begin by introducing the concepts of particle
approximation and gradient flow.

Particle approximation A particle-based approximation
of a target measure depends on a set of weighted samples
{(xi, wi)}ni=1, for which an empirical measure can be de-
fined as:

ρ(x) =

n∑
i=1

wi δ(x− xi) , (5)

where δ(·) is the Dirac delta function and the weights wi
satisfy wi ∈ [0, 1] and

∑n
i=1 wi = 1. To approximate

a target distribution π(x) using the empirical measure, the

particles and their weights need to be selected in a principled
manner that minimizes some measure of distance between
π(x) and ρ(x) (e.g., a set of N samples with weights wi =
1/N obtained using an MCMC method).

Gradient flow in parameter space Given a smooth func-
tion J : Rd → R in Euclidean space, we can minimize it
by creating a path that follows its negative gradient starting
from some initial conditions x0. The curve x(t) with start-
ing point x0 described by that path is called gradient flow.
The dynamics and evolution in time of a considered point in
the space under this minimization problem can be described
as the following ODE: dxdt = −∇J(x).

We can now extend this concept to the space of proba-
bility distributions (Wasserstein gradient flow) (Ambrosio
et al., 2008). Let us consider the space of probability mea-
sures P2(M), that is the set of probability measures with
finite second moments defined on the manifold M. Tak-
ing Π(µ, ν) as the set of joint probability measures with
marginals µ, ν, we can define the Wasserstein metric on
P2(M) as: W 2

2 (µ, ν) = infπ∈Π(µ,ν)

∫
|x − y|2 dπ(x, y).

Considering the optimization problem of a functional J :
P2(M)→ R, such as the KL divergence between the parti-
cle approximation in equation 5 and the posterior π(x),

inf
ρ∈P2(M)

DKL(ρ, π) =

∫
M

(log ρ(x)− log π(x))ρ(x) dx ,

the evolution in time of the measure ρ under the equivalent
of the gradient, the Wasserstein gradient flow, is described
by the Liouville equation:

∂ρ(x)

∂t
= ∇ ·

(
ρ(x)∇ δ

δρ
DKL(ρ, π)

)
= ∇ ·

(
ρ(x)∇

(
log ρ(x)− log π(x)

))
,

(6)

where ∇ δ
δρDKL(ρ, π) =: ∇W2DKL(ρ, π) is the Wasser-

stein gradient and the operator δ
δρ : P2(M) → R repre-

sents the functional derivative or first variation (see Ap-
pendix D for more details). In the particular case of the
KL functional, we can recover the Fokker-Planck equa-
tion, ∂ρ(x)

∂t = ∇ ·
(
ρ(x)∇(log ρ(x) − log π(x))

)
= −∇ ·(

ρ(x)∇ log π(x)
)

+∇2ρ(x), that admits as unique station-
ary distribution π(x). The deterministic particle dynamics
ODE (Ambrosio & Crippa, 2014) related to equation 6,
namely mean-field Wasserstein dynamics, is then given by:
dx
dt = −∇

(
log ρ(x)− log π(x)

)
. Considering a discretiza-

tion of the previous equation for a particle system {x}ni=1

and small stepsize εt, we can rewrite it as:

xt+1
i = xti + εt

(
∇ log π(xti)−∇ log ρ(xti)

)
. (7)

Unfortunately, we do not have access to the analytical form
of the gradient ∇ log ρ, so an approximation is needed. At
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FashionMNIST CIFAR10

AUROC(H) AUROC(MD) Accuracy MDo/MDt ECE NLL AUROC(H) AUROC(MD) Accuracy MDo/MDt ECE NLL

Deep ens. 0.958±0.001 0.975±0.001 91.122±0.013 6.394±0.001 0.012±0.001 0.116±0.001 0.843±0.004 0.736±0.005 85.552±0.076 1.667±0.008 0.049±0.001 0.277±0.001
SVGD 0.960±0.001 0.973±0.001 91.134±0.024 6.315±0.019 0.014±0.001 0.116±0.001 0.825±0.001 0.710±0.002 85.142±0.017 1.567±0.004 0.052±0.001 0.287±0.001
f-SVGD 0.956±0.001 0.975±0.001 89.884±0.015 5.652±0.009 0.013±0.001 0.150±0.001 0.783±0.001 0.712±0.001 84.510±0.031 1.624±0.003 0.049±0.001 0.292±0.001
kde-WGD 0.960±0.001 0.970±0.001 91.238±0.019 6.587±0.019 0.014±0.001 0.116±0.001 0.838±0.001 0.735±0.004 85.904±0.030 1.661±0.008 0.053±0.001 0.276±0.001
sge-WGD 0.960±0.001 0.970±0.001 91.312±0.016 6.562±0.007 0.012±0.001 0.116±0.001 0.837±0.003 0.725±0.004 85.792±0.035 1.634±0.004 0.051±0.001 0.275±0.001
ssge-WGD 0.968±0.001 0.979±0.001 91.198±0.024 6.522±0.009 0.012±0.001 0.130±0.001 0.832±0.003 0.731±0.005 85.638±0.038 1.655±0.001 0.049±0.001 0.276±0.001
kde-fWGD 0.971±0.001 0.980±0.001 91.260±0.011 6.887±0.015 0.015±0.001 0.115±0.001 0.791±0.002 0.758±0.002 84.888±0.030 1.749±0.005 0.044±0.001 0.282±0.001
sge-fWGD 0.969±0.001 0.978±0.001 91.192±0.013 7.076±0.004 0.015±0.001 0.115±0.001 0.795±0.001 0.754±0.002 84.766±0.060 1.729±0.002 0.047±0.001 0.288±0.001
ssge-fWGD 0.971±0.001 0.980±0.001 91.240±0.022 6.951±0.005 0.016±0.001 0.115±0.001 0.792±0.002 0.752±0.002 84.762±0.034 1.723±0.005 0.046±0.001 0.286±0.001

Table 1. BNN image classification. AUROC(H) is the AUROC computed using the entropy, whereas AUROC(MD) is computed using
the model disagreement. MDo/MDt is the ratio of model disagreement on OOD and test points. The best accuracy is achieved by our
WGD methods, while our fWGD methods yield the best OOD detection and functional diversity. All our proposed methods improve over
standard deep ensembles in terms of accuracy and diversity, highlighting the effect of our repulsion.

this point, it is crucial to observe the similarity between the
discretization of the Wasserstein gradient flow in equation 7
and the repulsive update in equation 2 to notice how, if the
kernelized repulsion is an approximation of the gradient of
the empirical particle measure, the update rule minimizes
the KL divergence between the particle measure and the
target posterior. Approximating the density of the particles
using a kernel density estimation (KDE, details in App. E)
ρ̃t(x) =

∑n
i=1 k(x, xit), the gradient of its log density is

given by (Singh, 1977): ∇ log ρ(xti) ≈
∑n

j=1∇xt
i
k(xt

i,x
t
j)∑n

j=1 k(xt
i,x

t
j)

.

Using this approximation in equation 7 we obtain:

xt+1
i = xti + εt

(
∇ log π(xti)−

∑n
j=1∇xt

i
k(xti, x

t
j)∑n

j=1 k(xti, x
t
j)

)
,

(8)
where, if we substitute the posterior for π, we obtain an
expression for the repulsive force in equation 2. This gives
a consistent formulation to specify β in equation 2 so that
β
(
{wt

j}nj=1

)
:=
∑n
j=1 k(wt

i ,w
t
j) and shows that this reg-

ularizer does not only encourage diversity of the ensemble
members and thus avoids collapse, but surprisingly—in the
asymptotic limit of n→∞, where the KDE approximation
is exact—also converges to the true Bayesian posterior! A
similar argument can be derived for the function space case
(see Appendix G). We will call the weight-space method kde-
WGD and the function-space one kde-fWGD. Nevertheless,
approximating the gradient of the empirical measure with
the KDE can lead to suboptimal performance, as already
studied by Li & Turner (2017). Hence, different kernel-
based approximations have been developed. For instance,
the Stein Gradient Estimator (SGE) (Li & Turner, 2017) and
Spectral Stein Estimator (SSGE) (Shi et al., 2018) can be
used to formulate different repulsive forces that maintain
the same properties of the KDE, see App. H for details.

3. Experiments
In this section, we compare our repulsive ensemble with
deep ensembles and SVGD on sampling (see App. I), regres-
sion, and classification tasks, and real-world image classifi-
cation. To assess the diversity in function space, we measure

the model disagreement (MD) (see App. C).

Synthetic tasks. We first asses the different methods in
fitting a BNN posterior on a one-dimensional regression
task. The results are reported in Figure 1 (top), consisting
of the mean prediction and ±1, 2, 3 standard deviations of
the predictive distribution. Next, we visualize the quality of
uncertainty estimation of the methods on a two-dimensional
classification setting. The entropy of the predictive posteri-
ors are reported in Figure 1 (bottom).

Image classification. We first train a feed-forward neural
network with three hidden layers composed of 100 ReLU
units on the FashionMNIST dataset (Xiao et al., 2017)
and use the MNIST dataset (LeCun, 1998) as an out-of-
distribution (OOD) task. The results are reported in Ta-
ble 1 (left). Secondly, we use a ResNet32 architecture (He
et al., 2016) on CIFAR-10 (Krizhevsky et al., 2009) with
the SVHN dataset (Netzer et al., 2011) as OOD data. The
results are in Table 1 (right). We can see that our WGD
methods achieve the best accuracy, while our fWGD meth-
ods achieve the best diversity and OOD detection. The only
exception is the CIFAR10 experiment, in which the deep
ensembles achieve the best OOD detection using the entropy
(but not using the model disagreement).

4. Conclusion
We have presented a simple and principled way to improve
upon standard deep ensemble methods. To this end, we
have shown that the introduction of a kernelized repulsion
between members of the ensemble not only improves the
accuracy of the predictions but—even more importantly—
can be seen as Wasserstein gradient descent on the KL di-
vergence, thus transforming the MAP inference of deep
ensembles into proper Bayesian inference. Moreover, we
have shown that incorporating functional repulsion between
ensemble members can improve the quality of the estimated
uncertainties on simple synthetic examples and OOD detec-
tion on real-world data and can approach the true Bayesian
posterior more closely.
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A. Bayesian Neural Networks
In supervised deep learning, we typically consider a likelihood function p(y|f(x;w)) (e.g., Gaussian for regression
or Categorical for classification) parameterized by a neural network f(x;w) and training data D = {(xi,yi)}ni=1. In
Bayesian neural networks (BNNs), we are interested in the posterior distribution of all likely networks given by p(w|D) ∝∏n
i=1 p(yi|f(xi;w)) p(w), where p(w) is the prior distribution over weights. Crucially, when making a prediction on a test

point x∗, in the Bayesian approach we do not only use a single parameter ŵ to predict y∗ = f(x∗; ŵ), but we marginalize
over the whole posterior, thus taking all possible explanations of the data into account:

p(y∗|x∗,D) =

∫
p(y∗|f(x∗;w)) p(w|D) dw (9)

B. Non-identifiable neural networks
Deep neural networks are parametric models able to learn complex non-linear functions from few training instances and
thus can be deployed to solve many tasks. Their overparameterized architecture, characterized by a number of parameters
much larger than that of training data points, enables them to retain entire datasets even with random labels (Zhang et al.,
2016). Even more, this overparameterized regime makes neural network approximations of a given function not unique in
the sense that multiple configurations of weights might lead to the same function. Indeed, the output of a feed forward neural
network given some fixed input remains unchanged under a set of transformations. For instance, certain weight permutations
and sign flips in MLPs leave the output unchanged (Chen et al., 1993). The invariance of predictions and therefore of
parameterized functions under a given weight transformation translates to invariance of the likelihood function. This effect is
commonly denoted as non-identifiability of neural networks (Roeder et al., 2020). More in detail, let g : (x,w) 7→ f(x;w)
be the map that maps a data point x ∈ X and a weight vector w ∈ Rd to the corresponding neural network output
and denote fi := f(x;wi) the output with a certain configuration of weights wi. Then for any non identifiable pair
{wi,wj} ∈ W ⊆ Rd and fi,fj ∈ F their respective functions:

fi = fj =⇒ p(wi|D) = p(wj |D) 6=⇒ wi = wj .

Strictly speaking, the map g : X ×W → F is not injective (many to one). Denoting by T the class of transformations under
which a neural network is non-identifiable in the weights space, it is always possible to identify a cone K ⊂ Rd such that for
any parameter configuration w there exist a point η ∈ K and a transformation τ ∈ T for which it holds that τ(η) = w. This
means that every parameter configuration has an equivalent on the subset given by the cone (Hecht-Nielsen, 1990). Modern
neural networks containing convolutional and max-pooling layers have even more symmetries than MLPs (Badrinarayanan
et al., 2015). Given that in practice we cannot constraint the support of the posterior distribution to be the cone of identifiable
parameter configurations and given that the likelihood model is also invariant under those transformations that do not change
the function, the posterior landscape includes multiple equally likely modes that despite their different positions represent
the same function. It is important to notice that this is always true for the likelihood but not for the posterior. Indeed, for the
modes to be equally likely, the prior should also be invariant under those transformations, condition that is in general not
true. Nevertheless, the fact that there are multiple modes of the posterior parametrizing for the same function remains true
but they might be arbitrarily re-scaled by the prior1. As we will see in the following, this redundancy of the posterior is
problematic when we want to obtain samples from it. Moreover it is interesting to notice how this issue disappears when the
Bayesian inference is considered in the space of functions instead of weights. In this case, indeed, every optimal function
has a unique mode in the landscape of the posterior and redundancy is not present:

fi 6= fj =⇒ p(fi|D) 6= p(fj |D) .

In spite of that, performing inference over distributions of functions is prohibitive in practice due to the infinite dimensionality
of the space in consideration. Only in very limited cases like the one of Gaussian Proccess, Bayesian inference is exact.
Interestingly Neural network model in the limit of infinite width are Gaussian processes with a particular choice of the
kernel determined by the architecture (Lee et al., 2017; Williams, 1998; Neal, 2012). In this limit Bayesian inference over
functions can be performed analytically.

1Note that for the fully factorized Gaussian prior commonly adopted, the invariance under permutations is true
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C. Quantify functional diversity
As illustrated in Section 2 , in the Bayesian context, predictions are made by doing a Monte-Carlo estimation of the BMA.
Functional diversity and so the diversity in the hypotheses taken in consideration when performing the estimation, determines
the epistemic uncertainty and the confidence over the predictions. Importantly, the epistemic uncertainty allows for the
quantification of the likelihood of a test point to belong to the same distribution from which the training data points were
sampled (Ovadia et al., 2019). Following this, the uncertainty can be used for the problem of Out-of-distribution (OOD)
detection (Chen et al., 2020) that is often linked to the ability of a model to ”know what it doesn’t know”. A common way
used in the literature to quantify the uncertainty is the Entropy2 H of the predictive distribution:

H
{
p(y′|x′,D)

}
= −

∑
y

p(y′|x′,D) log p(y′|x′,D) . (10)

Nevertheless, it has been argued in recent works (Malinin et al., 2019) that this is not a good measure of uncertainty because
it does not allow for a disentanglement of epistemic and aletoric uncertainty. Intuitively, we would like the predictive
distribution of an OOD point to be uniform over the different classes. However, using the entropy and so the average
prediction in the BMA, we are not able to distinguish between the case in which all the hypotheses disagree very confidently
due to the epistemic uncertainty or are equally not confident due to the aleatoric uncertainty. To overcome this limitation, we
can use a direct measure of the model disagreement computed as:

MD2(y′;x′,D) =

∫
w

[
p(y′|x′,w)− p(y′|x′,D)

]2
p(w|D)dw . (11)

It is easy to see how the quantity in equation 11, measuring the deviation from the average prediction is zero when all models
agree on the prediction. The latter can be the case of a training point where all hypotheses are confident or a noisy point
where all models ”don’t know” the class and are equally uncertain. On the other side the model disagreement will be greater
the zero the more the model disagree on a prediction representing like this the epistemic uncertainty. To obtain a scalar
quantity out of equation 11 we can consider the expectation over the output space of y:

MD2(x′) = Ey
[ ∫

w

[
p(y′|x′,w)− p(y′|x′,D)

]2
p(w|D)dw

]
. (12)

D. Functional derivative of the KL divergence
In this section, we show the derivation of the functional derivative for the KL divergence functional. We start with some
preliminary definitions.

Given a manifoldM embedded in Rd, let F [ρ] be a functional, i.e. a mapping from a normed linear space of function
(Banach space) F = {ρ(x) : x ∈ M} to the field of real numbers F : F → R. The functional derivative δF [ρ]/δρ(x)
represents the variation of value of the functional if the function ρ(x) is changed.

Definition 2 (Functional derivative). Given a manifoldM and a functional F : F → R with respect to ρ is defined as:∫
δF

δρ(x)
φ(x)dx = lim

ε→0

F [ρ(x) + εφ(x)]− F (ρ(x))

ε
=

d

dε
F [ρ(x) + εφ(x)]

∣∣∣∣
ε=0

(13)

for every smooth φ.

Definition 3 (KL divergence). Given ρ and π two probability densities onM, the KL-divergence is defined as:

DKL(ρ, π) =

∫
M

(
log ρ(x)− log π(x)

)
ρ(x) dx . (14)

Proposition 1. The functional derivative of the KL divergence in equation 14 is:

δDKL

δρ(x)
= log

ρ(x)

π(x)
+ 1 (15)

2The continuous case is analogous using the differential entropy
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Proof. using the definition of functional derivative in equation 13 :∫
δDKL

δρ(x)
φ(x)dx =

d

dε
DKL(ρ+ εφ, π)

∣∣∣∣
ε=0

=

∫
d

dε

[
(ρ(x) + εφ(x)) log

(ρ(x) + εφ(x))

π(x)

]
ε=0

dx

=

∫ [
φ(x) log

(ρ(x) + εφ(x))

π(x)
+
d(ρ(x) + εφ(x))

dε

]
ε=0

dx

=

∫ [
log

ρ(x)

π(x)
+ 1

]
φ(x)dx

(16)

E. Kernel density estimation
Kernel Density Estimation (KDE) is a nonparametric density estimation technique (Parzen, 1962). When an RBF kernel
is used, it can be thought as a smoothed version of the empirical data distribution. Given some training datapoints
D = {x1, ...,xn} with xi ∼ p(x) and x ∈ RD their empirical distribution q0(x) is a mixture of n Dirac deltas centered at
each training data:

q0(x) =
1

N

N∑
i=1

δ(x− xi) . (17)

We can now smooth the latter by replacing each delta with an RBF kernel:

kε(x,xi) =
1

h
exp

(
− ||x− xi||2

h

)
(18)

where h > 0. The kernel density estimator is then defined as:

qh(x) =
1

N

N∑
i=1

kh(x,xi) (19)

In the limit of h → 0 and N → ∞ the kernel density estimator is unbiased: it is equal to the true density. Indeed
kh→0(x,xi)→ δ(x− xi) and so qh→0(x)→ q0(x) and:

lim
N→∞

q0(x) = lim
N→∞

1

N

N∑
i=1

(δ(x− xi))

= Ep(x′) [δ(x− x′)]

=

∫
RD

δ(x− x′)p(x′) dx′ = p(x)

(20)

F. Comparison to Stein variational gradient descent
Note that our update is reminiscent of SVGD (Liu & Wang, 2016), which in parameter space can be written as:

φ(wt
i) =

n∑
j=1

k(wt
i ,w

t
j)∇wt

i
log p(wt

i |D) +

n∑
j=1

∇wt
j
k(wt

j ,w
t
i) . (21)

It is important to notice that here, the gradients are averaged across all the particles using the kernel matrix. Moving the
inference from parameter to function space (Wang et al., 2019), leads to the update rule

φ(wt
i) =

(
∂f ti
∂wt

i

)>(
1

n

n∑
j=1

k(f ti ,f
t
j )∇ft

j
log p(f tj |D) +∇ft

j
k(f ti ,f

t
j )

)
. (22)
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This way of averaging gradients using a kernel can be dangerous in high-dimensional settings, where kernel methods often
suffer from the curse of dimensionality. Moreover, in equation 21, the posterior gradients of the particles are averaged using
their similarity in weight space, which can be misleading in multi-modal posteriors. Worse yet, in equation 22, the gradients
are averaged in function space and are then projected back using exclusively the i-th Jacobian, which can be harmful given
that it is not guaranteed that distances between functions evaluated on a subset of their input space resemble their true
distance. Our proposed method, on the other hand, does not employ any averaging of the posterior gradients and thus comes
closest to the true particle gradients in deep ensembles.

G. Gradient flow in function space
To theoretically justify the update rule introduced in function space in equation 4, we can rewrite the Liouville equation for
the gradient flow in equation 6 in function space as

∂ρ(f)

∂t
= ∇ ·

(
ρ(f)∇ δ

δρ
DKL(ρ, π)

)
= ∇ ·

(
ρ(f)∇

(
log ρ(f)− log π(f)

))
.

(23)

Following this update, the mean field functional dynamics are

df

dt
= −∇

(
log ρ(f)− log π(f)

)
. (24)

Using the same KDE approximation as above, we can obtain a discretized evolution in function space and with it an explicit
form for the repulsive force in equation 3 as

f it+1 = f it + εt

(
∇f log π(f it )−

∑n
j=1∇ft

i
k(f ti ,f

t
j )∑n

j=1 k(f ti ,f
t
j )

)
. (25)

This gives a consistent formulation to specify α in equation 4 and equation 4 so that α
(
{f tj}nj=1

)
:=
∑n
j=1 k(f ti ,f

t
j ). The

update rules using the SGE and SSGE approximations follow as for the parametric case.

H. SGE and SSGE repulsive forces
Recently, Li & Turner (2017) introduced the Stein gradient estimator (SGE) that offers better performance, while maintaining
the same computational cost when compared to the KDE gradient estimator. Even more recently, Shi et al. (2018) introduced
a spectral method for gradient estimation (SSGE), that also allows for a simple estimation on out-of-sample points. These
two estimators can be used in equation 7, leading to the following update rules. The one using the Stein estimator, that we
will call SGE-WGD, is:

xt+1
i = xti + εt

(
∇ log π(xti) +

n∑
j=1

(K + ηI)−1
ij

n∑
k=1

∇xt
k
k(xtk, x

t
j)

)
, (26)

where K is the kernel Gram matrix, η a small constant and I the identity matrix. We can notice the important difference
between KDE and SGE that the former one is only considering the interaction of the i-th particle being updated with all the
others, while the latter is simultaneously considering also the interactions between the remaining particles. The spectral
method, that we will call SSGE-WGD, leads to the following update rule:

xit+1 = xit + εt

(
∇ log π(xit) +

J∑
j=1

1

λ2
j

n∑
m=1

n∑
k=1

ujk∇xm
k(xtm, x

t
k) ·

n∑
l=1

ujlk(xti, x
t
l)

)
(27)

where λj is the j-th eigenvalue of the kernel matrix and ujk is the k-th component of the j-th eigenvector.

I. Sampling from synthetic distributions
As a sanity check, we first assessed the ability of our different approximations for Wasserstein gradient descent (using KDE,
SGE, and SSGE) to sample from a two-dimensional univariate Gaussian distribution (Figure I.1). We see that our SGE-WGD
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Figure I.1. Single Gaussian. We show samples from SVGD, KDE-WGD, SGE-WGD, and SSGE-WGD (from left to right). The
SGE-WGD and SVGD fit the target almost perfectly.

and the SVGD fit the target almost perfectly. We also tested the different methods in a more complex two-dimensional
Funnel distribution (Neal, 1995) p(x, y) = N (y|µ = 0, σ = 3)N (x|0, exp(y/2)), the results are reported in Figure I.2..
There, SGE-WGD and SVGD also perform best. In this section, we report the additional results for the different methods
when sampling from the Funnel distribution

10 5 0 5 10
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SVGD

10 5 0 5 10

Target
kde-WGD

10 5 0 5 10

Target
SSGE-WGD

10 5 0 5 10

Target
SGE-WGD

Figure I.2. Neal’s funnel. The SGE-WGD and SVGD again fit the distribution best.

J. Implementation details
In this section, we report details on our implementation in the experiments we performed. All the experiments were
performed on an internal cluster with NVIDIA GTX 1080 Ti and took roughly 150 GPU hours.

J.1. Sampling from synthetic distributions

Single Gaussian:we created a two-dimensional Gaussian distribution with mean µ = (−0.6871, 0.8010) and covariance

Σ =

(
1.130 0.826
0.826 3.389

)
. We used a normal initialization with zero mean and standard deviation σ2 = 3. We sampled 100

initial particles and optimized them for 5000 iterations using Adam with a fixed learning rate of 0.1. The kernel bandwidth
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was estimated using the median heuristic for all methods. For the SSGE we used all the eigenvalues. The random seed was
fixed to 42.
Funnel: the target distribution followed the density p(x, y) = N (y|µ = 0, σ = 3)N (x|0, exp(y/2)). We used a normal
initialization with zero mean and standard deviation σ2 = 3. We sampled 500 initial particles and optimized them for 2000
iterations using Adam with a fixed learning rate of 0.1. The kernel bandwidth was fixed to 0.5 for all methods. For the SSGE
we used all the eigenvalues. The random seed was fixed to 42.

J.2. 1D regression

We generated the training data by sampling 45 points from xi ∼ Uniform(1.5, 2.5) and 45 from xi ∼ Uniform(4.5, 6.0).
The output yi for a given xi is then modeled following yi = xi sin(xi) + εi with εi ∼ N (0, 0.25). We use a standard
Gaussian likelihood and standard normal prior N (0, I). The model is a feed-forward neural network with 2 hidden layers
and 50 hidden units with ReLU activation function. We use 50 particles initialized with random samples from the prior and
optimize them using Adam (Kingma & Ba, 2014) with 15000 gradient steps, a learning rate of 0.01 and batchsize 64. The
kernel bandwidth is estimated using the median heuristic. We tested the models on 100 uniformly distributed points in the
interval [0, 7]. The random seed was fixed to 42.

J.3. 2D classification

We generate 200 training data points sampled from a mixture of 5 Gaussians with means equidistant on a ring of radius 5
and unitary covariance. The model is a feed-forward neural network with 2 hidden layers and 50 hidden units with ReLU
activation function. We use a softmax likelihood and standard normal prior N (0, I). We use 100 particles initialized with
random samples from the prior and optimize them using Adam (Kingma & Ba, 2014) with 10,000 gradient steps, a learning
rate of 0.001 and batchsize 64. The kernel bandwidth is estimated using the median heuristic. The random seed was fixed to
42.

J.4. Classification on FashionMNIST

On this dataset, we use a feed-forward neural network with 3 hidden layers and 100 hidden units with ReLU activation
function. We use a softmax likelihood and standard normal prior N (0, I). We use 50 particles initialized with random
samples from the prior and optimize them using Adam (Kingma & Ba, 2014) for 50000 steps, a learning rate was 0.001 for
sge-WGD,kde-WG,ssge-WGD and 0.0025 for kde-fWGD,ssge-fWGD,sge-fWGD, Deep ensemble, fSVGD, SVGD, and
batchsize was 256. The kernel bandwidth is estimated using the median heuristic for all different methods. The learning
rates were searched over the following values (1e− 4, 5e− 4, 1e− 3, 5e− 3, 25e− 4) we tested for 50000 and 30000 total
number of iterations, 50 and 100 particles and batchsize 256 and 128. All results in Table 1 are averaged over the following
random seeds (38, 39, 40, 41, 42).

J.5. Classification on CIFAR-10

On this dataset, we used a residual network (ResNet32) with ReLU activation function. We use a softmax likelihood and
standard normal prior N (0, 0.1I). We use 20 particles initialized using He initialization (He et al., 2015) and optimize
them using Adam (Kingma & Ba, 2014) for 50000 steps, a learning rate was 0.00025 for sge-fWGD,kde-fWGD,ssge-
fWGD,fSVGD and 0.0005 for kde-WGD,ssge-WGD,sge-fWGD, Deep ensemble and SVGD, and batchsize was 128. The
kernel bandwidth is estimated using the median heuristic for all different methods. The learning rates were searched over the
following values (1e− 4, 5e− 4, 1e− 3, 5e− 3, 25e− 4, 5e− 5) we tested for 50000 and 30000 total number of iterations,
20 and 10 particles. All results in Table 1 are averaged over the following random seeds (38, 39, 40, 41, 42).

K. Related Work and Future directions
The theoretical and empirical properties of SVGD have been well studied (Korba et al., 2020; Liu et al., 2019; D’Angelo
& Fortuin, 2021) and it can also be seen as a Wasserstein gradient flow of the KL divergence in the Stein geometry
(Duncan et al., 2019; Liu, 2017). Interestingly, a gradient flow interpretation is also possible for (stochastic gradient)
MCMC-type algorithms (Liu et al., 2019), which can be unified under a general particle inference framework (Chen et al.,
2018). Moreover, our Wasserstein gradient descent using the SGE approximation can also be derived using an alternative
formulation as a gradient flow with smoothed test functions (Liu et al., 2019). A projected version of WGD has been studied



Repulsive Deep Ensembles are Bayesian

in (Wang et al., 2021), which could also be readily applied in our framework. Besides particle methods, Bayesian neural
networks MacKay (1992); Neal (1995) have gained popularity recently (Wenzel et al., 2020a; Fortuin et al., 2021b; Fortuin,
2021; Izmailov et al., 2021), using modern MCMC (Neal, 1995; Wenzel et al., 2020a; Fortuin et al., 2021b; Garriga-Alonso
& Fortuin, 2021; Fortuin et al., 2021a) and variational inference techniques (Blundell et al., 2015; Swiatkowski et al., 2020;
Dusenberry et al., 2020; Immer et al., 2021a). Ensemble methods, on the other hand, have also been extensively studied
(Lakshminarayanan et al., 2017; Fort et al., 2019; Wilson & Izmailov, 2020; Garipov et al., 2018) and many variants have
been proposed (Wenzel et al., 2020b; He et al., 2020; Huang et al., 2017a; Zhang et al., 2019; Wen et al., 2020). Moreover,
providing Bayesian interpretations for deep ensembles has been previously attempted through the lenses of stationary
SGD distributions (Mandt et al., 2017; Chaudhari & Soatto, 2018), ensembles of linear models (Matthews et al., 2017),
additional random functions (Ciosek et al., 2019; He et al., 2020), approximate inference (Wilson & Izmailov, 2020), and
marginal likelihood lower bounds (Lyle et al., 2020). Furthermore, variational inference in function space has recently
gained attention (Sun et al., 2019) and the limitations of the KL divergence have been studied in (Burt et al., 2020).

In future work, it will be interesting to study the impact of the Jacobian in the fWGD update and its implications on the
Liouville equation in more detail, also compared to other neural network Jacobian methods, such as neural tangent kernels
(Jacot et al., 2018) and generalized Gauss-Newton approximations (Immer et al., 2021b).Moreover, it would be interesting
to derive explicit convergence bounds for our proposed method and compare them to the existing bounds for SVGD (Korba
et al., 2020).


