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Abstract

Mahalanobis distance (MD) is a simple and pop-
ular post-processing method for detecting out-
of-distribution (OOD) inputs in neural networks.
We analyze its failure modes for near-OOD de-
tection and propose a simple fix called relative
Mahalanobis distance (RMD) which improves
performance and is more robust to hyperparam-
eter choice. On a wide selection of challenging
vision, language, and biology OOD benchmarks
(CIFAR-100 vs CIFAR-10, CLINC OOD intent
detection, Genomics OOD), we show that RMD
meaningfully improves upon MD performance
(by up to 15% AUROC on genomics OOD).

1 Introduction
Out-of-distribution (OOD) detection is critical for deploy-
ing machine learning models in safety critical applica-
tions [1]. A lot of progress has been made in improving
OOD detection by training complicated generative models
[2; 15; 20; 14], modifying objective functions [22], and
exposing to OOD samples while training [8]. Although
such methods have promising results, they might require
training and deploying a separate model in addition to the
classifier, or rely on OOD data for training and/or hyper-
parameter selection, which are not available in some ap-
plications. A Mahalanobis distance (MD) based OOD de-
tection method [12] is a simpler approach which is easy to
use. This method does not involve re-training the model
and works out-of-the-box for any trained model. MD is a
popular approach due to its simplicity.

Although MD based methods are highly effective in iden-
tifying far OOD samples (samples which are semantically
and stylistically very different from the in-distribution sam-
ples, e.g., CIFAR-10 vs. SVHN), we identify that it of-
ten fails for near OOD samples (samples which are se-
mantically similar to the in-distribution samples [21], e.g.,
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CIFAR-100 vs. CIFAR-10) that are more challenging to
detect. In this paper, we focus primarily on the near OOD
detection task and investigate why the MD method fails
in these cases. We propose relative Mahalanobis distance
(RMD), a simple fix to the MD, and demonstrate its ef-
fectiveness in multiple near-OOD tasks. Our solution is as
simple to use as MD, and it does not involve any compli-
cated re-training or training OOD data.

2 Methods
In this section, we briefly review the Mahalanobis distance
method and introduce our proposed modifications to make
it effective for near-OOD detection tasks.

Mahalanobis distance based OOD detection The Ma-
halanobis distance (MD) [12] method uses intermediate
feature maps of a trained deep neural network. The most
common choice for the feature map is the output of the
penultimate layer just before the classification layer. Let
us indicate this feature map as zi = f(xi) for an in-
put xi. For an in-distribution dataset with K unique
classes, MD method fits K class conditional Gaussian
distributions N (µk,Σ), k = 1, 2, . . . ,K to each of the
K in-distribution classes based on the feature maps zi.
We estimate the mean vectors and covariance matrix as:
µk = 1

Nk

∑
i:yi=k zi, for k = 1, . . . ,K, and Σ =

1
N

∑K
k=1

∑
i:yi=k (zi − µk) (zi − µk)T . Note that class-

conditional means µk are independent for each classes,
while the covariance matrix Σ is shared by all classes to
avoid under-fitting errors.

For a test input x′, the method computes the Mahalanobis
distances from the feature map of a test input z′ = f(x′) to
each of the fitted K in-distribution Gaussian distributions
N (µk,Σ), k ∈ {1, . . . ,K} given by MDk(z′). The min-
imum of the distances over all classes indicates the uncer-
tainty score U(x′) and its negative indicates the confidence
score C(x′) = −U(x′). These are computed as

MDk(z′) = (z′ − µk)
T

Σ−1 (z′ − µk) , (1)
C(x′) =−min

k
{MDk(z′)}. (2)

This confidence score is used as a signal to classify a test
input x′ as an in-distribution or OOD sample.
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Our proposed Relative Mahalanobis distance As we
will demonstrate in Sec. 3 and Appendix. D, OOD detec-
tion performance using MD degrades for near-OOD sce-
narios. We draw our inspiration from the prior work by
Ren et al. [20] showing that the raw density from deep gen-
erative models may fail at OOD detection and proposing
to fix this using a likelihood ratio between two generative
models (one modeling the sophisticated foreground distri-
bution and the other modeling the background distribution)
as confidence score. Similarly, we propose Relative Maha-
lanobis distance (RMD) defined as

RMDk(z′) = MDk(z′)−MD0(z′).

Here, MD0(z′) indicates the Mahalanobis distance of sam-
ple z′ to a distribution fitted to the entire training data
not considering the class labels: N (µ0,Σ0), where µ0 =
1
N

∑N
i=1 zi and Σ0 = 1

N

∑N
i=1 (zi − µ0) (zi−µ0)T . This

is a good proxy for the background distribution. The confi-
dence score using RMD is given by

CRMD(x′) = −min
k
{RMDk(z′)}. (3)

See Appendix A for the pseudocode.

RMD is equivalent to computing a likelihood ratio
maxk (log pk(z′)− log p0(z′)), where pk is a Gaussian fit
using class-specific data and p0 is a Gaussian fit using data
from all classes. Note that this can easily be extended to
the case where pk and p0 are represented by more powerful
generative models such as flows [16; 17].

Previous literature [9] discussed a similar topic however
their work mainly focused on far-OOD, and their pro-
posed method called Partial Mahalanobis distance (PMD)
required a hyper-parameter (number of eigen-bases to con-
sider), while our method performs better for near-OOD and
is hyper-parameter free. See Appendix C for the compari-
son of PMD and RMD.

3 Failure Modes of Mahalanobis distance
To better understand the failure mode of Mahalanobis dis-
tance and to visualize its difference from the Relative Ma-
halanobis, we perform an eigen-analysis to understand how
these methods weight each dimension [9]. Specifically, we
rewrite the Mahalanobis distance using eigenvectors vd of
the covariance matrix Σ as MD(z′) = (z′−µ)TΣ−1(z′−
µ) =

∑D
d=1 l

2
d/λd, where D is the dimension of the fea-

ture map, λd is the dth eigenvalue, and ld = vTd (z′ −µ) is
the projected coordinate of (z′ − µ) to the dth eigen-basis
vd such that l2d/λd can be regarded as the 1D Mahalanobis
distance from the projected coordinate to the 1D Gaussian
distribution N (0, λd). The D eigen-bases are independent
of each other.

In the CIFAR-100 vs CIFAR-10 experiment, we found that
OOD inputs have significantly greater mean distance (i.e.

-2
0
2
4
6
8

10
12

M
ah

a 
di

st
pe

r d
im

IND
OOD

0 100 200 300 400 500 600
Dimension

2
0
2
4
6
8

10
12

Re
la

tiv
e 

M
ah

a
pe

r d
im

(a)

500 1000 1500 2000
0

250

500

750

1000

1250

1500

1750

2000
Mahalanobis dist, AUROC=74.98%

IND
OOD

0 200 400 600 800
0

200

400

600

800

1000

1200

1400

1600

Relative Mahalanobis, AUROC=81.08%

(b)
Figure 1: (a) Mahalanobis distance (top) and Relative
Mahalanobis Distance (bottom) to CIFAR-100 (IND) and
CIFAR-10 (OOD) along the dth eigen-basis. The solid
lines represent the means over the IND and OOD test
data respectively. The shading indicates the [10%, 90%]
quantiles. The 120 top dimensions (before the red thresh-
old) have distinct Mahalanobis distance between IND and
OOD, while the later dimensions have similar Mahalanobis
distances between IND and OOD, confounding the final
score. (b) Histograms of the Mahalanobis distance and Rel-
ative Mahalanobis distance for IND and OOD.

the average distance over the test samples) in the top 120
dimensions with the largest eigenvalues, while in the re-
maining dimensions the OOD inputs have similar mean dis-
tance with the IND inputs (see Figure 1a, top). Since the
final Mahalanobis distance is the sum of the distance per di-
mension (this can be visualized as the area under the curve
in Figure 1a), we see that the later dimensions contribute a
significant portion to the final score, overwhelming the top
dimensions and making it harder to distinguish OOD from
IND (AUROC=74.98%).

Next we fit a class-independent 1D Gaussian as the back-
ground model in each dimension and compute RMD per
dimension. As shown in Figure 1a (bottom), using RMD,
the contributions of the later dimensions are significantly
reduced to nearly zero, while the top dimensions still pro-
vide a good distinction between IND and OOD. As a result,
the AUROC using RMD is improved to 81.08%.

We conjecture that the first 120 dimensions are discrimina-
tive features that contain different semantic meanings for
different IND classes and OOD, while the remaining di-
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mensions are the common features shared by the IND and
OOD. To support our conjecture, we simulated a simple
dataset following a high-dimensional Gaussian with a di-
agonal covariance matrix and different means for differ-
ent classes. In particular, we set IND and OOD to have
distinct means in the first dimension (discriminative fea-
ture) and the same mean in the remaining dimensions (non-
discriminative features). Since MD is the sum over all
the dimensions, the sum along those non-discriminative di-
mensions can overwhelm that of the discriminative dimen-
sion. As a result, the AUROC is only 83.13%. Using RMD,
we remove the effect of the non-discriminative dimen-
sions as for those dimensions the estimated N (µk,Σ) ≈
N (µ0,Σ0), detecting OOD perfectly with 100% AUROC
using the RMD.

4 Experiments and Results
As indicated in the previous section, in this work we pri-
marily focus on near-OOD detection tasks. We choose the
following established near-OOD setups: (i) CIFAR-100 vs.
CIFAR-10, (ii) CIFAR-10 vs. CIFAR-100, (iii) Genomics
OOD benchmark [20] and (iv) CLINC Intent OOD bench-
mark [11; 13]. As baselines, we compare our proposed
RMD to traditional MD and maximum of softmax proba-
bility (MSP) [6], both working directly with out-of-the-box
trained models. Note that most OOD detection methods
require re-training of the models and complicated hyper-
parameter tuning, which we do not consider for compari-
son. We also ablate over different choices of model archi-
tectures with and without large scale pre-trained networks.
The results are presented in the following sections.

4.1 Models without pre-training

In this section, we train our models from scratch using
the in-distribution data. For CIFAR-10/100 tasks we use
a Wide ResNet 28-10 architecture as the backbone. For
genomics OOD benchmark we use a 1D CNN architec-
ture consistent with [20]. For all benchmarks, at the end
of training, we extract the feature maps for test IND and
OOD inputs, and evaluate the OOD performance for our
proposed RMD and comapre it with MD and MSP. As seen
in Table 1, contrasting MD and RMD, we observe a consis-
tent improvement in AUROC for all benchmarks with gains
ranging from 1.2 points to 15.8 points. Comparing RMD
to MSP, we observe a significant gain of 2.5 points for the
Genomics OOD benchmark and partial gains for CIFAR-
10/100 benchmarks. This substantiates our claim that our
proposed RMD boosts near-OOD detection performance.

Using flows for p0 and pk To demonstrate that our pro-
posed idea can be extended to more powerful density mod-
els, we fit the feature maps using a one-layer masked
auto-regressive flow [16] for the CIFAR-100 vs CIFAR-
10 benchmark. The AUROCs for using maxk log pflow

k (z′)

Benchmark MD RMD MSP
CIFAR-100 vs CIFAR-10 74.91% 81.01% 80.14%
CIFAR-10 vs CIFAR-100 88.49% 89.71% 89.27%
Genomics OOD 53.10% 1 68.98% 66.53%

Table 1: Comparison of OOD-AUROC on the near-OOD
benchmarks.

and maxk(log pflow
k (z′) − log pflow

0 (z′)) are 76.10%, and
78.34% respectively, showing that our proposal works for
non-Gaussian density models as well.

4.2 Models with pre-training

Massive models pre-trained on large scale datasets are be-
coming a standard practice in modern image recognition
and language classification tasks. It has been shown that the
high-quality features learnt during this pre-training stage
can be very useful in boosting the performance of the
downstream task [7; 18; 5]. In this section, we investigate
if such high-quality representations also aid in better OOD
detection and how our proposed RMD performs in such a
setting, using different pre-trained models as architectural
backbone for OOD detection. Specifically, we consider Vi-
sion Transformer (ViT) [4], Big Transfer (BiT) [10], and
CLIP [19] for CIFAR-10/100 benchmarks, and the unsu-
pervised BERT style pre-training model [3] for genomics2

and CLINC benchmarks.

We investigate two settings: (i) directly using pre-trained
models for OOD detection and (ii) fine-tuning the pre-
trained model on the in-distribution dataset for OOD de-
tection.

Pre-trained models without fine-tuning We present our
results in Table 2, comparing MD and RMD for all bench-
marks using different pre-trained models. Note that here
we cannot evaluate MSP as the network was never trained
to produce the predictive probabilities. As shown, we first
observe that, even without task-specific fine-tuning, the
AUROC scores are either very close or better to Table 1,
indicating that pre-trained models work well for OOD de-
tection out of the box. Secondly, we observe that RMD
outperforms MD for all benchmarks with different pre-
trained models with margins varying between 3.17 points
to 16.5 points. For the CIFAR-100 vs CIFAR-10 bench-
mark BiT models provide the best performance followed
by CLIP and Vision Transformer. BiT with RMD achieves

1We observed that the AUROC for MD changes a lot during train-
ing of the 1D CNN genomics model. We report the performance
based on the model checkpoint at the end of the training without
any hyperparameter tuning using validation set. See Section 4.3
for details.

2The BERT model used for the genomics benchmark is pre-
trained on the genomics data with the standard masked language
modeling method.
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significantly higher AUROC (84.60%) in comparison to
the Wide ResNet baseline model (81.01%). For CIFAR-
10 vs CIFAR-100, using pre-trained CLIP, RMD achieves
91.19% AUROC, higher than any of the other methods con-
sidered. Finally, it is worth noting that the gains provided
by RMD are very prominent for genomics and CLINC in-
tent benchmark when using BERT pre-trained features.

Benchmark MD RMD
ViT-B 16 Pre-trained

CIFAR-100 vs CIFAR-10 67.19% 79.91%
CIFAR-10 vs CIFAR-100 84.88% 89.73%

BiT R50x1 Pre-trained
CIFAR-100 vs CIFAR-10 81.37% 84.60%
CIFAR-10 vs CIFAR-100 86.70% 89.87%

CLIP Pre-trained
CIFAR-100 vs CIFAR-10 71.40% 81.83%
CIFAR-10 vs CIFAR-100 83.57% 91.19%

BERT Pretrained
Genomics OOD 48.46% 60.36%
CLINC Intent OOD 75.48% 91.98%

Table 2: Comparison of OOD-AUROC for the 4 near OOD
benchmarks based on feature maps from pre-trained mod-
els. No fine-tuning involved.
Pre-trained models with fine-tuning We now explic-
itly fine-tune the pre-trained model on the in-distribution
dataset optimizing for classification accuracy. Using the
fine-tuned models for different benchmark, we report the
performance in Table 3, comparing RMD with MD and
MSP baselines. We see that the performance of the MD
improves significantly after the model fine-tuning (com-
paring Tables 2 and 3), suggesting a deletion of disruptive
non-discriminative features which existed in the pre-trained
models. MD achieves close or competitive AUROC when
compared to RMD for most of the task evaluated, with the
notable exception of genomics OOD (see Section 4.3). In
light of discussion in Section 3, we conjecture that after
task-specific fine-tuning using labeled data, most of the fea-
tures become discriminative between IND and OOD. It is
also possible that the pre-training and finetuning regimes
end up at better local minima, and that the resulting fea-
tures are capable of modelling the foreground and back-
ground implicitly (without our explicit normalization using
RMD). Therefore the effectiveness of RMD in such cases
is limited.

4.3 Relative Mahalanobis is more robust

In the genomics experiments, we noticed that the OOD per-
formance of MD is quite unstable during training of the 1D

3We observed that the AUROC for MD changes a lot during fine-
tuning. We report the performance based on the model check-
point at the end of the training. See Section 4.3 for details.

Benchmark MD RMD MSP
ViT-B 16 Fine-tuned

CIFAR-100 vs CIFAR-10 94.42% 93.09% 92.30%
CIFAR-10 vs CIFAR-100 99.87% 98.82% 99.50%

BiT-M R50x1 Fine-tuned
CIFAR-100 vs CIFAR-10 81.37% 84.60% 81.04%
CIFAR-10 vs CIFAR-100 94.57% 94.94% 85.65%

BERT Fine-tuned
Genomics OOD 55.87%3 72.04% 72.02%
CLINC Intent OOD 97.92% 97.62% 96.99%

Table 3: AUROC for the 4 near OOD benchmarks based on
feature maps from the fine-tuned models.

CNN model and the fine-tuning of the BERT pre-trained
model. The AUROC of MD increases at first during the
early stages of training, followed by a decrease at later
stages. Figure 2 shows the change of AUROCs for MD
and RMD during the training of the 1D CNN model. The
AUROC of MD quickly increases to 66.19% at step 50k,
when the model is not well trained yet, with training and
test accuracies being 88.59% and 82.20% respectively. As
the model trains further and achieves higher training accu-
racy of 99.96% and higher test accuracy of 85.71% at step
500k, the AUROC for MD drops to 53.10%. On the other
hand, the RMD increases as the training and test accura-
cies increase, and gets stabilized as the accuracy stabilizes,
which is a more desirable property to have. Similarly, we
observed this phenomenon in the fine-tuning of the BERT
genomics model. At the early training stage, AUROC for
MD achieves the peak of 77.49%, while the model is not
trained well with the training and test accuracies being only
82.62% and 83.97% respectively.
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Figure 2: Comparison of MD and RMD as a function of
training iterations: MD performs well in the early stage of
training, but drops significantly after that, while RMD sta-
bilizes during training, which is consistent with the pattern
of in-distribution accuracy.
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A Pseudocode for Relative Mahalanobis
distance

The pseudocode for our method is shown in Algorithm 1.

Algorithm 1 Relative Mahalanobis distance

1: Input: In-distribution train set Din
train = {(zi, yi)}

with K classes, in-distribution test set Din
test = {z′},

out-of-distribution test set Dout
test = {z′}, feature ex-

tractor z = f(x).
2: Fit the K class conditional Gaussian N (µk,Σ) using
Din

train, where µk = 1
Nk

∑
i:yi=k zi, for k = 1, . . . ,K,

and Σ = 1
N

∑K
k=1

∑
i:yi=k (zi − µk) (zi − µk)T .

3: Fit the background Gaussian N (µ0,Σ0) using Din
train

ignoring the class labels, where µ0 = 1
N

∑N
i=1 zi and

Σ0 = 1
N

∑N
i=1 (zi − µ0) (zi − µ0)T .

4: Compute MDk(z′) based on N (µk,Σ), for each z′ ∈
Din

test and Dout
test using Eq. 2.

5: Compute MD0(z′) based onN (µ0,Σ0), for each z′ ∈
Din

test and Dout
test.

6: Compute RMD confidence score −mink{MDk(z′)−
MD0(z′)} for each z′ ∈ Din

test and Dout
test.

7: Compute AUROC between Din
test and Dout

test based on
their RMD scores.

B Additional Experimental Details
For CIFAR-10/100 experiments, we first train a Wide
ResNet 28-10 model4 from scratch using the in-distribution
data. Next we use the publicly available pre-trained mod-
els ViT-B 165, BiT R50x16, and CLIP7, and replace the
last layer with a classification head and fine-tune the full
models using in-distribution data. We do not fine-tune
CLIP model since CLIP requires paired (text, image) data
for training. The fine-tuned ViT model has in-distribution
test accuracy of 89.91% for CIFAR-100, and 97.48% for
CIFAR-10. The fine-tuned BiT model has in-distribution
test accuracy of 86.89% for CIFAR-100, and 97.66% for
CIFAR-10.

For the genomics OOD benchmark, the dataset is avail-
able at Tensorflow Datasets8. The dataset contains 10 in-
distribution bacteria classes, and 60 OOD classes and the
input is a fixed length sequence of 250 base pairs composed
by letters A, C, G and T. We first train a 1D CNN of 2000
filters of length 20 from scratch using the in-distribution
data. We train the model for 1 million steps using the learn-
ing rate of 10−4 and Adam optimizer. Next we pre-train a

4https://github.com/google/uncertainty-baselines/blob/master/
baselines/cifar/deterministic.py

5https://github.com/google-research/vision transformer
6https://github.com/google-research/big transfer
7https://github.com/openai/CLIP
8https://www.tensorflow.org/datasets/catalog/genomics ood

BERT style model by randomly masking the input token
and predict the masked token using the output of the trans-
former encoder. The model is trained using the unlabeled
training and validation data. The prediction accuracy for
the masked token is 48.35%. At the fine-tuning stage, the
model is fine-tuned using the in-distribution training data
for 100,000 steps at the learning rate of 10−4, and the clas-
sification accuracy is 89.84%.

For CLINC Intent OOD, we use a standard BERT pre-
trained model9, and fine-tune it using the in-distribution
CLINC data for 3 epochs with the learning rate of 10−4.
The classification accuracy is 96.53%.

C Performance of Partial Mahalanobis
distance

We compare our method with the Partial Mahalanobis dis-
tance (PMD) proposed in [9]. PMD uses a subset of
eigen-bases to compute the distance score, PMDS(z′) =∑

d∈S l
2
d/λd, S ⊂ {1, 2, . . . , D}. Although S can be

any subset of {1, . . . , N}, it was recommended to use
S = {1, ..., d} or S = {d + 1, ..., D} corresponding to
the largest or smallest Eigenvalues respectively. We com-
pare our RMD method with the two versions of PMD using
the benchmark task of CIFAR-100 vs CIFAR-10. Since
there is a hyperparameter d involved in PMD, we search
from d = 1, . . . , D. Figure 3a shows the AUROC when
using the top eigen-bases to compute PMD. The AUROC
increases as d increases and reaches to the peak of 79.72%
at d = 76, and then decreases when including more di-
mensions. Therefore the performance of PMD method
depends on the choice of d, while our method RMD is
hyperparameter-free. Our method also achieves a slightly
higher AUROC of 81.08% than the peak value for PMD.

We also investigate the performance of PMD when us-
ing eigen-bases corresponding to the smallest eigen-values
(Figure 3b). The AUROC decreases as we exclude the
top eigen-bases from the set, suggesting that the top eigen-
bases are more important for the near-OOD detection. This
observation supports our conjecture in Section 3 that the
top eigen-bases are discriminative features and the rest are
common features shared by the IND and OOD.

Another variant of the Mahalanobis distance called
Marginal Mahalanobis distance (MMD) was also proposed
in [9]. It fits a single Gaussian distribution to all the training
data ignoring class, the same as we define the background
model p0 in our RMD. Though it has a good performance
for far-OOD tasks (e.g. CIFAR-10 vs SVHN) [9], it does
not perform well for the near-OOD tasks, with AUROC be-
ing only 52.88% for CIFAR-100 vs CIFAR-10, and 83.81%

9https://github.com/google/uncertainty-baselines/blob/master/
baselines/clinc intent/deterministic.py
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for CIFAR-10 vs CIFAR-100.
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Figure 3: AUROC for Partial Mahalanobis distance (PMD)
proposed in [9]. (a) PMD based on the first [1 : d] eigen-
bases corresponding to the d largest eigenvalues. (b) PMD
based on the last [d : D] eigen-bases corresponding to the
smallest eigenvalues. The horizontal line indicates the AU-
ROC for our method RMD.

D Simulation study for the failure mode of
Mahalanobis distance

We use a simple simulation to demonstrate the failure
mode of Mahalanobis distance. We simulate a binary clas-
sification problem where the two classes follow a high-
dimensional Gaussian distribution with different means.
Specifically, x ∼ N

(
[a, 0, . . . , 0]1×D, σ

2ID×D
)
, where

the covariance matrix is a fixed diagonal matrix with the
scalar σ. The mean vector has only the first dimension non-
zero. To distinguish the two classes, we set a = −1 for the
first class, a = 1 for the second class, and σ = 0.25. The
key idea is that only the first dimension is a discrimina-
tive feature that is class-specific, whereas the remaining di-
mensions are non-discriminative common features that are
shared by all classes. We set the number of dimensions
D = 1024. To simplify the problem, we set the covariance
matrix to be diagonal such that the feature dimensions are
independent.

For each of the classes, we randomly sample n = 10, 000
data points from the given distribution for training data. For
test data, we sample 100 data points from each class as the
test IND data. For test OOD data, we set a = −3 and a =
+3 and sample 100 data points from each of them. Figure
4a shows the histograms of the first dimension x1 of IND

and OOD data. The IND and OOD data points are well
separated by the first dimension feature. Figure 4b shows
the histogram of the remaining dimensions xi, i 6= 1. The
IND and OOD data points are not separable there, since
they follow the Gaussian distribution with the same mean.

For simplicity, we first treat the x as the feature map z.
We fit a class-conditional Gaussian Nk using the training
data, and compute the MD for each of the test inputs. We
find that although OOD inputs in general have a greater
distance than IND inputs, the two are largely overlapping.
See Figure 4c for details.

The reason behind the failure mode is simple. Since the
dimensions are independent, the log-likelihood of an in-
put is the sum of the log-likelihoods of each individual di-
mension, i.e. log pk(x) = log pk(x1) +

∑
i6=1 log pk(xi),

k = 1, . . . ,K. For the discriminative feature x1, the distri-
butions of IND and OOD are different, so approximately
maxk{log pk(xIND

1 )} > maxk{log pk(xOOD
1 )}. How-

ever, the remaining non-discriminative features xi, i 6= 1
are class-independent and both IND and OOD inputs fol-
low the same distribution. Thus the likelihood of IND
inputs based on those features will be indistinguishable
from that of OOD inputs, i.e. maxk{log pk(xIND

i )} ≈
maxk{log pk(xOOD

i )}, i 6= 1. When the number of non-
discriminative features is much greater than the number
of discriminative features, the log-likelihood of the former
will overwhelm the latter.

Next we compute the RMD. We fit a class-independent
Gaussian distribution N0 using the training data regardless
of the class labels, and compute the Relative Mahalanobis
distance based on Nk, k = 1, · · · ,K (class conditional
Gaussian distribution) andN0 (class independent Gaussian
distribution) for each of the test inputs. Using our proposed
method, we are able to perfectly separate IND and OOD
test inputs. See Figure 4d.

The class independent GaussianN0 helps to remove the ef-
fect of the non-discriminative features. Specifically, since
those non-discriminative features are class independent, the
fitted class conditional Gaussian is close to the fitted class
independent Gaussian, i.e. log pk(xi) ≈ log p0(xi), i 6= 1.
Thus the two values are canceled by each other in the RMD
computation, resulting in maxk{log pk(x)}− log p0(x) ≈
maxk{log pk(x1)} − log p0(x1). For the discriminative
feature, the fitted class conditional Gaussian is very dif-
ferent from the fitted class independent Gaussian. For IND
inputs, maxk{log pk(xIND

1 )}−log p0(xIND
1 ) > 0, since the

class conditional Gaussian fits better to the IND data. For
the OOD input, the difference between the two is nearly
0, since none of the two distributions fit OOD. Therefore
RMD provides a better separation between IND and OOD
as we have seen in Figure 4d.
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Figure 4: Simple simulation for the failure mode of Mahalanobis distance. (a) The histogram of the first dimension x1 of
IND and OOD data. The two IND classes (in blue) followN (−1, σ2) andN (1, σ2) respectively, and the two OOD classes
(in red) follow N (−3, σ2) and N (3, σ2) respectively. σ = 0.25. (b) The histogram of xi, i 6= 1. Both IND and OOD
follow the same distributionN (0, σ2). (c) The distributions of MD for IND and OOD inputs. The two distributions largely
overlap. (d) The distributions of RMD for IND and OOD. The two distributions are well separated. OOD have positive
values, while IND concentrate around zero.

To mimic the real scenario where the feature maps are the
extracted features from the neural networks, we train sim-
ple one-layer neural networks for this binary classification
task. We retrieve the feature maps of the training data, fit a
class conditional Gaussian and compute MD for the test in-
puts. We observed the same failure mode for this case; the
distributions of MD between IND and OOD largely over-
lap. Then we fit a class independent Gaussian and compute
RMD. Using RMD, we again recover the perfect separation
between the two. We expect that the intermediate layer
for image, text, and genomics models also contain non-
discriminative features. Therefore our proposed method is
useful for overcoming this effect and improving the perfor-
mance of near-OOD detection.

E Performance on far-OOD detection
Though RMD is designed for improving near-OOD detec-
tion, we also investigate the performance of RMD on a
popular far-OOD benchmark: CIFAR-10/100 vs. SVHN.
Table 4 shows the results using different models, including
the Wide ResNet model trained from scratch, a pre-trained
ViT model, and a fine-tuned ViT model. For ViT pre-
trained models, RMD significantly improves the AUROC
(up to 27.34%); since this model has not been fine-tuned,
the pre-trained model might contain background features,
and we see that RMD outperforms MD in this case. For
the Wide Resnet model trained from scratch, RMD outper-
forms MD and MSP on CIFAR-100 vs SVHN. For CIFAR-
10 vs SVHN, MD achieves the highest AUROC of 98.16%.
RMD has a comparable performance with MD with a slight
lower AUROC of 95.68%. MSP has the lowest AUROC of
94.65%. For ViT fine-tuned models, MD achieves the high-
est AUROCs, and RMD has a slightly lower but still de-
cent performance (93.55% for CIFAR-100 vs SVHN, and
98.70% for CIFAR-10 vs SVHN). Therefore, overall RMD
does not degrade the performance over MD for far-OOD
detection.

One possible reason for the slight worse performance of
RMD in some cases is that, since far-OOD detection is
a relatively easy task due to the different semantics and
styles of OOD samples from in-distribution data, both
discriminative features (like semantic features) and non-
discriminative features (like background features) are use-
ful for the detection task. Thus the role of background cor-
rection using RMD is less important for far-OOD detection
task in contrast near-OOD detection task.

Benchmark MD RMD MSP
Wide-Resnet 28-10

CIFAR-100 vs SVHN 82.08% 83.69% 81.44%
CIFAR-10 vs SVHN 98.16% 95.68% 94.65%

ViT B16 Pre-trained
CIFAR-100 vs SVHN 61.09% 88.43% NA
CIFAR-10 vs SVHN 80.77% 93.60% NA

ViT B16 Fine-tuned
CIFAR-100 vs SVHN 95.82% 93.55% 93.83%
CIFAR-10 vs SVHN 99.84% 98.70% 99.50%

Table 4: Comparison of OOD-AUROC on the far-OOD
benchmarks.
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