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Abstract

Choosing the right approximation distribution
family for variational inference (VI) requires
case-by-case design to strike a good balance be-
tween representation power and computational
cost. Particle-based variational inference (PVI)
methods, such as Stein Variational Gradient De-
scent (SVGD), are proposed as more flexible alter-
natives to VI due to their non-parametric nature.
However, the demand for more flexible inference
algorithms never stops. In this paper, we present
Multiple Moment Matching Inference (MMMI),
a PVI algorithm based on the idea of moment
matching. We argue that MMMI allows for more
flexible priors and likelihood functions than other
PVI algorithms, which further improves its repre-
sentation power and extends potential application
domains. We demonstrate MMMI’s competitive
predictive performance for Bayesian neural net-
works on several real-world datasets.

1. Introduction
With recent advances in approximate inference algorithms
(Hoffman et al., 2013; Chen et al., 2014), Bayesian methods
have proven successful in larger datasets and more complex
models (Michelmore et al., 2020). The central problem in
Bayesian inference is to approximate the intractable poste-
rior. Variational inference turns this inference problem into
deterministic optimization by finding the closest distribu-
tion to the posterior in a given approximation set. However,
choosing the right approximation distribution family re-
quires case-by-case design to strike a good balance between
representation power and computational cost.

Particle-based variational inference (PVI) methods, such as
Stein Variational Gradient Descent (SVGD) (Liu & Wang,
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2016), are proposed as more flexible alternatives to varia-
tional inference, which do not require users to specify an
approximation set. SVGD transforms a set of particles to
match the posterior distribution in the steepest direction
that minimizes the Kullback–Leibler divergence. The non-
parametric nature of SVGD allows the posterior to take a
more flexible form. Furthermore, eliminating the need of
specifying approximation sets eases the application of the
method to various domains without ML experts. Thanks to
these improvements in flexibility, SVGD has been shown
successful in multiple complex tasks (Zhu & Zabaras, 2018).

A natural question to ask is: is it possible to further improve
this flexibility? We propose Multiple Moment Matching
Inference (MMMI), a PVI algorithm based on the idea of
moment matching. We argue that MMMI allows for more
flexible priors and likelihoods than other PVI algorithms,
which further widens the approximate set for posteriors and
also extends its use to black-box models:

• Flexible priors: MMMI does not require the prior
to be specified in a parametric form. Other methods,
such as SVGD, need a parametric prior distribution
to compute the unnormalized posterior. Our prior in
Bayesian neural networks can be generated directly
from well-studied initialization algorithms (Glorot &
Bengio, 2010), which extends the potential distribution
family of priors and posteriors.

• Flexible likelihoods: Different from most approxi-
mate inference algorithms like SVGD, our method
MMMI does not need gradients of the likelihood func-
tion. This can speed up inference where gradient
computation is slow and expensive. Furthermore, this
means MMMI can be applied to the setting where gra-
dients are undefined (such as discrete objectives) or
unknown (such as black-box models).

The paper is organized as follows. Section 2 presents our
main algorithm, MMMI. Section 3 reviews the related work
in approximate inference and moment matching. Section
4 presents the experimental results of Bayesian neural net-
works with MMMI on real-world datasets. The paper ends
with discussions for future work.
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2. Method
We consider sequential Bayesian inference, where obser-
vations are streaming. Training in batches is common in
modern deep learning, and Bayesian methods lend them-
selves naturally to online inference (Broderick et al., 2013).

Our goal is to infer the unknown parameter Θ. For illustra-
tion purposes, we assume that Θ is one-dimensional. The al-
gorithm can be easily extended to multi-dimensions. Given
a set of particles (samples) {θi}ni=1 for the prior distribution
P (Θ), we want to transform them to match the posterior
distribution P (Θ|X) without computing its analytical form.
A key observation is that the posterior moments can be
estimated by reweighting the samples of the prior distribu-
tion, as shown in Subsection 2.1. Then the particles will be
transformed in a direction that minimizes the discrepancy
between the prior and posterior moments with respect to a
given function set, as shown in Subsection 2.2. Afterwards,
the transformed particles will represent the prior for the next
observation.

2.1. Estimation of Posterior Moments

Given particles {θi}ni=1 for the prior distribution P (Θ), we
can estimate a prior moment for the function 1 fj as a sample
average:

EΘ∼P (Θ)[fj(Θ)] ≈
n∑
i=1

fj(θi) (1)

Directly applying Equation 1 to estimate posterior moments
requires sampling from the posterior distributions, which
is a difficult task on its own. However, with some simple
derivations, we show that posterior moments of fj can be
estimated using only prior samples {θi}ni=1.

EΘ∼P (Θ|X)[fj(Θ)] =

∫
Θ

fj(Θ)P (Θ|X)dΘ

=

∫
Θ

fj(Θ)
P (X|Θ)P (Θ)

P (X)
dθ

=

∫
Θ
fj(Θ)P (X|Θ)P (Θ)dΘ∫
Θ
P (X|Θ)P (Θ)dΘ

=
EΘ[fj(Θ)P (X|Θ)]

EΘ[P (X|Θ)]

≈
∑n
i=1 fj(θi)P (X|θi)∑n

i=1 P (X|θi)

(2)

As shown in Figure 1, our estimation scheme for posterior
moments can be interpreted as a weighted average of prior

1In this paper, we use a generalized notion of moments. fj
is not restricted to be power functions. We only require fj to be
differentiable.

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
prior sample

4 2 0 2 4

likelihood
prior sample

Figure 1. Left figure: When estimating prior moments, we use
the unweighted average of prior samples. Right figure: When
estimating posterior moments, we use the weighted average of
prior samples, where weights are proportional to the likelihood.
Note that the 1d-samples are drawn along their density curve for
better visualization.

samples, with weights being linearly proportional to the
likelihoods. The particles with high likelihood on the ob-
servation will contribute more to the estimation of posterior
moments.

2.2. Multi-objective Optimization

We use µ̂fj to denote the estimation of posterior moments
µfj from Equation 2, i.e., µ̂fj ≈ EΘ∼P (Θ|X)[fj(Θ)]

As a reminder, our goal is to transform the prior particles
{θi}ni=1 to the posterior particles {θ̃i}ni=1 through moment
matching. In other words, we want the moments of trans-
formed particles 1

n

∑n
i=1 fj(θ̃i) to match the corresponding

target value µ̂fj . Our objective can be formulated as finding
{θ̃i}ni=1 to minimize the discrepancy with µ̂fj :

min
θ̃:=(θ̂1···θ̂n)

Sj(θ̃) :=

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

fj(θ̃i)− µ̂fj

∣∣∣∣∣
∣∣∣∣∣
2

2

(3)

The gradient of the objective in Equation 3 is:

∇Sj(θ̃) =
2

n

(
1

n

n∑
i=1

fj(θ̃i)− µ̂fj

)
∇fj(θ̃) (4)

Note that Equation 4 does not require computing the gradi-
ents of the likelihood. Computing∇fj(θ̃) is usually much
easier than the gradient of the likelihood. The likelihood
function is usually parameterized by complex models, such
as neural networks, while f is chosen by the user and usually
in a simple form.

In most situations, we want to match more than one mo-
ment for different fj’s. Actually, only matching the first
moment could lead to particle collapsing. The Hausdorff
moment theorem states that the moments of all orders (from
0 to ∞) uniquely determine a distribution defined on a
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Figure 2. Visualization of the minimum-norm element ∆ in the
convex hull U of∇S1 and∇S2. By inspection, the angles between
∆ and all elements in U are smaller than 90◦.

bounded region (Hausdorff, 1921). Therefore, intuitively,
the more moments are matched, the better is the approxi-
mation. Matching multiple moments is a multi-objective
optimization problem, where each objective Sj corresponds
to minimizing discrepancy for one moment of function fj .

Multiple Gradient Descent Algorithm (MGDA) is an itera-
tive gradient-based multi-objective optimization algorithm
that updates the parameter in a direction that decreases all
objectives simultaneously (Mukai, 1980) (Fliege & Svaiter,
2000)(Désidéri, 2012).

In each iteration, MGDA aims to find a vector ∆ such that:

(∆,∇Sj(θ̃)) ≥ 0, j = 1...m (5)

In other words, we want to find a direction ∆ whose angle
with each gradient ∇Sj(θ̃) is smaller than 90◦. This way,
following the direction of −∆, the value of all objective
functions {Sj(θ̃)}mj=1 will decrease simultaneously.

The problem of finding the direction ∆ is equivalent to
finding the min-norm element of the convex hull formed
by the gradients∇Sj(θ̃) (Mukai, 1980) (Fliege & Svaiter,
2000)(Désidéri, 2012), which has been studied extensively
in computational geometry (Makimoto et al., 1994). Figure
2 shows some intuitions of this idea in 2d space. (Sener
& Koltun, 2018) proposed an optimization method based
on the Frank-Wolfe algorithm to solve the min-norm prob-
lem efficiently in high-dimension settings. Following the
direction of ∆, MGDA will eventually converge to Pareto-
stationarity under some mild conditions.

The pseudocode for MMMI is in Algorithm 1. For each ob-
servation, we first estimate posterior moments using Equa-
tion 2. Then we compute the gradient for each moment
according to Equation 4. In the end, we apply MGDA to
find a direction that minimizes the discrepancy for each
moment, which is then be applied to update the particles.

3. Related Work
3.1. Particle-based variational inference method

Our algorithm, MMMI belongs to the family of PVI algo-
rithms, which perform deterministic updates on a set of
particles to transform them towards the posterior distribu-
tion. The motivation of particle transformation comes from

Algorithm 1 MMMI
Input: Particles θ := (θ1, · · · θi · · · , θn). Function set
{fj}mj=1. Data {Xk}dk=1. Learning rate λ.
for each data point Xk do

for each particle θi do
Obtain the likelihood Li for θi

end for
for each function fj do
µ̂fj ←

∑n
i Lifj(θi)∑n
i fj(θi)

∇Sj ← 2
n

(
1
n

∑n
i fj(θi)− µ̂fj

)
∇fj(θ)

end for
∆←MGDA(∇S1, · · · ,∇Sm)
θ ← θ − λ∆

end for

bridging the gap between variational inference and MCMC.
Like variational inference, those algorithms perform iter-
ative deterministic updates to decrease the distance with
the target distribution, while having the advantage of being
non-parametric and generic like MCMC.

The representative of PVI algorithms is SVGD (Liu &
Wang, 2016), which performs functional gradient descent
in kernel Hilbert space to minimize KL divergence. The
update equation of SVGD for one particle θj is: θ̂j ←
θ̂j − ε[

∑n
i=1 k(θ, θi)∇θ log q(θi|D) +∇θk(θi, θ)], where

k(θ, θi) is the chosen kernel function. The first term of
the update equation can be interpreted as driving the par-
ticles into high-likelihood areas, while the second term is
pushing the particles away from each other to encourage
multi-modality.

There is then lots of follow-up work proposed to improve
SVGD from different perspectives. Stein Variational New-
ton method (SVN) (Detommaso et al., 2018) turns SVGD
into a Newton-like iteration in function space by incorporat-
ing second-order information. To solve the problem of mode
collapse in SVGD, Wang et al. proposed to use particles
to represent functions directly instead of samples (Wang
et al., 2018), while message passing SVGD aims to reduce
the high-dimensional space into a set of local ones over the
Markov blanket with lower dimensions (Zhuo et al., 2018).

Compared with MMMI, all of the above algorithms require
parametric priors and gradients of the likelihoods.

3.2. Moment Matching

Moments can be seen as a quantitative summary for the
shape of a probability distribution. The method of moments
is one of the simplest approaches for parameter estimation.
It enforces the constraint that population moments (function
of unknown parameters) are equal to sample moments (nu-
meric values), turning the problem of parameter estimation
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N d BP SVGD MMMI
Banana 5300 2 0.847± 0.021 0.867± 0.015 0.874 ± 0.012
Diabetis 768 8 0.779± 0.044 0.785± 0.040 0.801 ± 0.042
German 1000 20 0.771± 0.046 0.778± 0.051 0.793 ± 0.043
Image 2086 18 0.898± 0.010 0.902 ± 0.013 0.899± 0.017

Ringnorm 7400 20 0.980± 0.003 0.982± 0.002 0.985 ± 0.003
Splice 2991 60 0.916± 0.025 0.926 ± 0.020 0.916± 0.026

Two norm 7400 20 0.975± 0.009 0.983± 0.006 0.987 ± 0.005
Waveform 5000 21 0.924± 0.009 0.929± 0.014 0.941 ± 0.017

Australia Weather 142193 24 0.846± 0.004 0.856 ± 0.007 0.847± 0.010
IMDB 50000 100 0.836± 0.005 0.839± 0.006 0.841 ± 0.006

Covertype 581012 54 0.812± 0.003 0.814± 0.007 0.828 ± 0.023

Table 1. Comparison of frequentist BP, SVGD, MMMI on the 8 classification datasets for neural networks. We report the average and
standard deviation of test accuracy over 10 random seeds.

into solving a system of equations

Using differences between moments to measure distance is
not new in machine learning. Maximum mean discrepancy
has been used as a simple and effective metric in all areas of
machine learning, such as generative models (Li et al., 2015)
(Sutherland et al., 2017), reinforcement learning (Nguyen
et al., 2021) and language embeddings (Yang et al., 2018).

While most studies about moment matching have been fre-
quentist, the idea can lend itself naturally to approximate
Bayesian inference. Bayesian moment matching (BMM)
projects the mixture posterior to a distribution in the same
family as the prior by matching a set of sufficient moments.
BMM has been successfully applied in topic modelling (Hsu
& Poupart, 2016), sum-product networks (Rashwan et al.,
2016) and boolean satisfiablity (Duan et al., 2020). However,
different from our algorithm, BMM requires the posterior
moments to have a closed-form.

3.3. SVGD as Moment Matching

(Liu & Wang, 2018) shows that SVGD matches the mo-
ments of the posterior distribution implicitly. More formally,
the fixed-point conditions of the SVGD updates guarantee
that the particles {θi}ni=1 are transformed to match the ex-
pectations of all the functions in a stein matching set F ∗.
However, unlike our algorithm MMMI, users cannot choose
which moment they want to match in SVGD. Choosing a
specific moment f in SVGD is equivalent to solving a diffi-
cult differential equation with no guarantee of closed-form
solutions. Success of SVGD confirms the effectiveness of
moment matching in general-purpose approximate infer-
ence problems. Our algorithm MMMI further offers a more
explicit, more flexible and simpler approach to do moment
matching in Bayesian learning.

4. Experiments
We compare our algorithm MMMI with backpropagation
(BP) and SVGD on neural networks. We use 8 datasets

from the paper of SVGD (Liu & Wang, 2016) plus 3 Kaggle
datasets: Australia Weather (Young, 2020), IMDB (Maas
et al., 2011), and covertype (Blackard, 1998).

We use a neural network of one hidden layer with 50 units
and RELU as the activation function. For Backpropagation,
we use the PyTorch (Paszke et al., 2019) implementation
with Adam optimizer. For MMMI and SVGD, we use 200
particles for Banana, Diabetis, German plus Image, and
500 for the other datasets. The implementation and the
parameters for SVGD are chosen to be the same as the
original paper (Liu & Wang, 2016). For MMMI, the prior
particles are generated from the default initialization (Glorot
& Bengio, 2010) with a small Gaussian perturbation. We
match the first and second marginal moments. We find that
running MGDA for only 1 iteration is sufficient to obtain
good results. We also use Adam (Kingma & Ba, 2014) to
update the step size of the gradients.

The inputs of all datasets are standardized to mean 0 and
variance 1. All datasets are randomly split according to
the ratio 90 : 10. The missing values are imputed by the
mean of the same column. All 3 algorithms perform 10
epochs for the 8 smaller datasets and 1 epoch for the Kaggle
datasets. For Australia Weather, we split the date feature
into 3 features: year, month and day. For IMDB, we trans-
form customers’ reviews to 100−dimension vectors using
Sent2vec (Pagliardini et al., 2018). We find that our algo-
rithm MMMI achieves the best results for most datasets.

5. Conclusion and Future Work
In this paper, we propose MMMI, a simple and flexible
particled-based Bayesian inference problem using the idea
of moment matching. In the future, we hope to perform a
theoretical analysis of MMMI, such as deriving convergence
properties and asymptotic behaviors. Also, we plan to apply
MMMI on larger models and more interesting applications.
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