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Abstract
Neural networks trained with empirical risk mini-
mization (ERM) may learn spurious correlations,
resulting in poor performance on data groups with-
out these correlations. To tackle this issue when
group labels are unknown at training time, we
propose Correct-N-Contrast (CNC), a two-stage
contrastive learning method to learn representa-
tions only dependent on ground-truth labels. By
first using the outputs of a trained ERM model
to sample contrastive batches where anchors and
positives have the same class label, but different
ERM model outputs, we infer pairs of same-class
samples with different spurious attributes. Then
with contrastive learning, we train a new model
to learn similar representations for these samples.
Theoretically, we support CNC by showing that
worst-group loss is upper bounded by the average
loss and a term that depends on the representation
metrics CNC explicitly minimizes. We validate
CNC on popular image and language datasets,
where CNC obtains state-of-the-art worst-group
accuracy (on average 22.6% absolute lift over
ERM). CNC also outperforms the “oracle” GDRO
approach that requires group labels by 1.5%.

1. Introduction
For many tasks, deep neural networks are negatively affected
by spurious correlations—dependencies between observed
features and ground-truth labels that hold for some, but not
all, subsets or “groups” of the data. For example, imagine
classifying images of cows or camels, where 90% of cow
images depict grassy backgrounds. A model may learn to
predict the “cow” class based on the spurious background at-
tribute, and incorrectly classify cow images with non-grass
backgrounds as camels (Ribeiro et al., 2016; Beery et al.,
2018; Kaufman et al., 2012). This illustrates the issue where
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Figure 1. (a) In CNC, we use contrastive learning to learn similar
representations for datapoints with the same ground-truth but dif-
ferent ERM predictions, while keeping apart those with different
labels and the same ERM predictions. (b) Models then ignore
the spurious attributes and achieve greater robustness to spurious
correlations, visualized with GradCAM (Selvaraju et al., 2017).

training with empirical risk minimization (ERM) can re-
sult in low test error on certain groups, yet high error on
others (Blodgett et al., 2016; Buolamwini & Gebru, 2018;
Hashimoto et al., 2018; Duchi et al., 2019). Prior work has
shown that this problem is increasingly aggravated as corre-
lations between ground-truth and spurious attribute become
stronger (Sagawa et al., 2020) and “easier” to learn (Arpit
et al., 2017; Hermann & Lampinen, 2020). Unfortunately,
such correlations exist in many safety-critical settings, moti-
vating our goal to improve performance on all groups.

How can we obtain models robust to spurious correlations?
If group labels are known, one option is to directly mini-
mize the worst-group loss, e.g. with Group DRO (GDRO)
(Sagawa et al., 2019). However, such labels may be ex-
pensive to obtain. This presents the additional challenge
to improve worst-group accuracy when group labels are
unknown. To tackle this, a recent approach is to infer the
groups first from a trained ERM model, before training an-
other model with an inferred-group-reweighted loss (Sohoni
et al., 2020; Nam et al., 2020; Liu et al., 2021). While they
achieve best worst-group accuracy among methods not re-
quiring training data group labels, they do not perform as
well as methods with group labels on popular benchmarks.

We thus aim to improve the worst-group accuracy of meth-
ods not requiring group labels. Our core motivating ob-
servation is that a neural network’s worst-group accuracy
correlates with how well its data representations–i.e. the
outputs from its last hidden layer–exhibit dependence only
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on the labels, and not spurious attributes. We quantify this
property through both estimated mutual information and
our own notion of representation alignment (Wang & Isola,
2020), which measures how close representations of sam-
ples with the same class but different spurious attribute
labels are in Euclidean distance. From this motivation, we
theoretically establish that alignment indeed plays a key role
in bounding a model’s worst-group vs. average error gap.
However, current approaches do not explicitly optimize for
alignment, suggesting one direction to improve worst-group
performance by learning better-aligned representations.

We therefore propose Correct-N-Contrast (CNC), a two-
stage robust training framework using contrastive learning
to directly maximize alignment and learn representations
with only ground-truth dependence. First we train an initial
ERM model to predict ground-truth labels from the data.
We then train a second model to learn representations that
“pull together” points with the same label but different ERM
model outputs (anchors and positives), and “push apart”
points with different labels but the same ERM outputs (an-
chors and negatives). Intuitively, this encourages the model
to ignore ERM-learned spurious correlations, and maximize
class-consistent information instead.

Empirically, we find that CNC closes the gap on popular
benchmarks in worst-group accuracy between robust train-
ing methods that do and do not assume group labels, achiev-
ing 2.5% absolute improvement over GDRO on Waterbirds
(Wah et al., 2011) and CelebA (Liu et al., 2015), while
falling short of GDRO on CivilComments (Borkan et al.,
2019) by 0.7%. Furthermore, among methods that do not
assume group labels, for worst-group accuracy CNC obtains
22.6% absolute lift over the ERM baseline (from 59.7% to
82.3%), and 3.5% over the prior state-of-the-art. These
gains also help validate our theory, where CNC achieves
more than twice as high alignment than ERM, and consis-
tently pairs highest alignment and worst-group accuracy.

2. Background
Problem setup. We consider spurious correlations in the
context of classification (Sagawa et al., 2020). For training
dataset X = (x1, . . . , xn), Y = (y1, . . . , yn), each data-
point has observed features xi ∈ X , label yi ∈ Y , and
unobserved spurious attribute ai ∈ A. The set of groups
G is defined as the set of all combinations of (label, spuri-
ous attribute) pairs, i.e. G = Y × A. We denote k = |G|,
C = |Y|. Each example (xi, yi, ai) is sampled from the
joint distribution P , a mixture of the k per-group distribu-
tions Pg. We assume that at least one sample from each
group is observed in the training data.

To model spurious correlations, we let pcorr be the fraction of
datapoints that belong to groups with a strong correlation be-
tween a and y (e.g. cow-grass images). Typically, spurious

correlations are problematic when pcorr is very large. Given
a model fθ : X 7→ RC and a convex loss ` : X × Y 7→ R,
we wish to minimize the worst-group loss:

Lwg(fθ) := max
g∈G

E(x,y,a)∼Pg
[`(fθ(x), y)] (1)

In contrast, standard ERM minimizes the average training
loss as a surrogate for the expected population loss Lavg:

Lavg(fθ) := E(x,y,a)∼P [`(fθ(x), y)] (2)

The core problem is that spurious correlations may cause
minimizers of Eq. (2) to obtain low average loss over P but
high error on minority groups, as high pcorr may encourage
learning undesired dependencies on a.

Representation metrics. To quantify this spurious correla-
tions behavior, we use two metrics to capture the learned
representation dependence on ground-truth vs. spurious
attributes. First, we compute an alignment loss Lalign:

Lalign(fenc) := E
x,x′:y=y′,a 6=a′

[
‖fenc(x)− fenc(x

′)‖22
]

(3)

Here x and x′ are the features of any two samples with the
same label y but different spurious attributes a and a′; lower
Lalign denotes higher alignment. We also quantify repre-
sentation dependence by estimating the mutual information
(MI) of a model’s learned representations with the ground-
truth, i.e. Î(Y ;Z) and the spurious attributes Î(A;Z). We
defer computational details to Appendix D.

Contrastive learning. Our work is also inspired by con-
trastive learning, a simple yet powerful framework for repre-
sentation learning (Chen et al., 2020; Oord et al., 2018; Tian
et al., 2019; Song & Ermon, 2020; Sermanet et al., 2018;
Hassani & Khasahmadi, 2020; Robinson et al., 2021; Khosla
et al., 2020; Gunel et al., 2021). Here, an encoder learns data
representations by maximizing the representation similarity
of anchor and positive datapoints designed to be similar
to each other, e.g. as distinct “views” of the same source /
input (Chen et al., 2020), while minimizing that of anchors
and negatives depicting a different source. We model the
encoder fenc : X 7→ Rd as the “feature representation lay-
ers”of a neural network fθ. The final (classification) layer
of fθ [denoted fcls : Rd 7→ RC] maps these feature repre-
sentations from the encoder to a one-hot label prediction. In
our work, we train fenc with the supervised contrastive loss
Lsup

con proposed in Khosla et al. (2020). In this setup, for each
anchor x, M positives {x+i }Mi=1 and N negatives {x−i }Ni=1

are sampled. We let y, {y+i }Mi=1, {y
−
i }Ni=1 be the labels and

z, {z+i }Mi=1, {z
−
i }Ni=1 be the normalized outputs of fenc(x)

for the anchor, positives, and negatives respectively. With
input x mapped to z, we aim to minimize Lsup

con(x; fenc) =

E
z+,z−

[
− log

exp(z>z+/τ)∑M
m=1 exp(z>z+m/τ) +

∑N
n=1 exp(z>z+n /τ)

]
(4)

where τ > 0 is a scalar temperature hyperparameter.
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3. Improving representations & combating
spurious correlations with CNC

We now detail CNC in Sec. 3.1 and summarize our theo-
retical analysis to further motivate the method in Sec. 3.2.
Appendix A includes the full theorems and analysis.

3.1. Method

Stage 1: ERM training. First, we train an initial model
fθ̂ on the training dataset {(xi, yi)}ni=1 with standard ERM,
and save its predictions {ŷi}ni=1 on the training datapoints
(where ŷi := fθ̂(xi)). This sets up our next stage, where we
use these outputs to train a more robust model.

Stage 2: Correct-N-Contrast. Next, we use these initial
ERM predictions to train a robust model with contrastive
learning. This distinguishes CNC from prior work (Sohoni
et al., 2020; Nam et al., 2020; Liu et al., 2021), and as shown
in Sec. 3.2 uniquely lets us optimize for representation align-
ment directly. While inspired by simple contrastive learning
frameworks (Chen et al., 2020; Khosla et al., 2020), CNC
also introduces its own unique “contrastive batch” sampling
procedure and optimization objective to improve robustness.

Contrastive batch sampling. As described in Sec. 2, con-
trastive learning requires anchors, positives, and negatives
{x}, {x+}, {x−}. Here we aim to sample points such that
by maximizing the similarity between anchors and positives
(and keeping anchors and negatives apart), a model “ignores”
spurious similarities while learning class-consistent depen-
dencies. With our prediction set {ŷi}ni=1, we then treat pairs
of datapoints with the same yi and different ŷi as positives,
and pairs of datapoints with different yi and the same ŷi
as negatives. For each batch we sample random anchor
xi ∈ X (with label yi and ERM prediction ŷi), along with:

M positives {x+m}Mm=1 ∼ {x+m ∈ X : ŷ+m 6= ŷi, y
+
m = yi}

N negatives {x−n }Nn=1 ∼ {x−n ∈ X : ŷ−n = ŷi, y
−
n 6= yi}

To achieve greater separation between negatives and both
anchors and positives, we can double the pairwise com-
parisons in a training batch by switching the anchor and
positive roles, as in the full NT-Xent loss (Chen et al., 2020)
with an additional sampling step detailed in Appendix ??.

To prevent the initial ERM model fθ̂ from “memorizing”
the training data and not outputting any different yi and ŷi’s,
we train fθ̂ either with high `2 regularization or for a small
number of epochs. More details are in Appendix D.

Optimization objective and updating procedure. For each
batch, while our core objective is to learned aligned rep-
resentations via contrastive learning, we also wish to train
the full model to classify datapoints correctly. As we have
access to the training labels, we jointly update both its en-
coder layers fenc with a standard contrastive loss, and the

full model fθ with a cross-entropy loss. Using a “one-sided”
batch xi, {x+m}Mm=1, {x−n }Nn=1 as an example, we first for-
ward propagate the features through fenc and normalize them
to obtain representation vectors zi, {z+m}Mm=1, {z−n }Nn=1. To
learn closely aligned zi and z+ for all {z+m}Mm=1, we up-
date fenc with the Lsup

out (x; fenc) loss (4) (Khosla et al., 2020).
Finally, we also pass the unnormalized outputs of the en-
coder fenc to the classifier layers, and compute a batch-wise
cross-entropy loss L̂cross(fθ) using the labels corresponding
to each batch sample and the full model’s outputs. Letting
L̂sup

con(fenc) denote the batch-wise supervised contrastive loss
and λ be a balancing hyperparameter, we then update the
entire network jointly with both loss components:

L̂(fθ) = λL̂sup
con(fenc) + (1− λ)L̂cross(fθ) (5)

3.2. Analysis

We outline our theoretical analysis, providing full theorems
and proofs in Appendix A. Our theory suggests that if a
model’s feature representations of samples with the same
class labels but from different groups are aligned, then the
model’s worst-group error Lwg(fθ) will be close to its aver-
age error Lavg(fθ). Training models robust to group dif-
ferences then reduces to aligning the representations of
different groups (e.g. by minimizing our contrastive loss)
while keeping the average classification loss small. In Theo-
rem A.1, we show that if Lalign(fenc) is small, then Lwg(fθ)
is close to Lavg(fθ). In Theorem A.2, we show that provided
the full loss (5) can be minimized efficiently, the average
error of its minimizer will be small plus a generalization
error term that scales down with the number of training
samples. Next in Sec. 4, we help validate this theory by
finding that CNC minimizes Lalign substantially compared
to other methods while improving worst-group accuracy.

4. Experiments
We empirically aim to address if: (1) CNC improves worst-
group performance over prior state-of-the-art methods on
datasets with spurious correlations, and (2) if CNC actu-
ally encourages learning hidden layer representations with
greater ground-truth-only dependence. We briefly describe
the benchmark datasets used to answer these questions be-
low; more details on datasets, models, and experimental
hyperparameters can be found in Appendix D.

Colored MNIST: We classify MNIST digits from 5 classes
Y = {(0, 1), (2, 3), (4, 5), (6, 7), (8, 9)}, and treat color
as the spurious attribute. For training data, we color 0.995
of each class’s datapoints with color a, and color the rest
randomly. Validation and test images are colored randomly.

Waterbirds (Sagawa et al., 2019): We classify Y =
{waterbird, landbird} with background A = {water, land}.
95% of images have the same bird and background type.

CelebA (Liu et al., 2015): We classify celebrities’ hair color
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Table 1. Worst-group and average accuracies. For worst-group accuracy, CNC obtains best results by a significant margin on image
datasets, and near-SOTA on CivilComments. GEORGE results from (Sohoni et al., 2020). Other non-CNC results from (Liu et al., 2021).

Method CMNIST Waterbirds CelebA CivilComments
Accuracy (%) Worst-group Avg. Worst-group Avg. Worst-group Avg. Worst-group Avg.

ERM 0.0 20.1 72.6 85.9 47.2 95.6 59.4 92.6
Joint DRO 0.0 20.1 69.5 88.5 74.4 82.4 56.6 92.5
LfF 0.0 21.2 75.2 91.6 70.6 86.0 58.8 92.5
GEORGE 0.2 22.2 83.8 90.5 54.9 94.5 - -
JTT 74.5 90.2 86.0 90.3 81.1 88.0 69.3 91.1
CNC (Ours) 77.4 90.9 89.0 90.4 88.8 89.9 69.2 82.1

Group DRO 0.0 21.4 85.7 89.5 87.2 93.0 69.9 88.9

Figure 2. Comparing alignment loss and mutual information from models trained with ERM, JTT, and CNC on the Waterbirds and CelebA
datasets. CNC again most effectively removes dependence on the spurious attribute.

Y = {blond, not blond} with A = {male, female}. Only
6% of blond celebrities in the dataset are male.

CivilComments (Borkan et al., 2019): Given an online
comment, we classify Y = {toxic, not toxic}. A denotes
whether the comment mentions one of eight demographic
identities, as described in (Koh et al., 2021).

4.1. Main results

To study (1), we evaluate CNC on image classification and
NLP datasets with spurious correlations. As baselines, we
use standard ERM and an oracle GDRO approach that as-
sumes access to the group labels. We also compare against
recent methods that tackle spurious correlations without
requiring group labels: joint DRO (Levy et al., 2020),
GEORGE (Levy et al., 2020), Learning from Failure (LfF)
(Levy et al., 2020), and Just Train Twice (JTT) (Liu et al.,
2021). Results are reported in Table 1; CNC achieves high-
est worst-group accuracy among all methods on CMNIST,
Waterbirds and CelebA, while also obtaining competitive
(near-SOTA) worst-group accuracy on CivilComments.

While LFF, GEORGE, and JTT similarly rely on using
trained ERM models to estimate group labels or spurious at-
tribute values, CNC uniquely uses these ERM predictions to
learn similar representations via contrastive learning. This
may provide additional signal to ignore spurious attributes
beyond the upsampling or group reweighting procedures in
prior approaches. This comparative benefit may also hold
even when subgroups are perfectly known—CNC outper-

forms the “oracle” GDRO method by 1.5% on average.

4.2. Effect of CNC on representation metrics

To study (2) and shed light on CNC’s worst-group accuracy
gains, we investigate if models trained with CNC actually
learn representations with higher alignment. Compared to
ERM and JTT (the next-best performing method that does
not require subgroup labels), CNC achieves a significantly
lower alignment loss and representations with lower mutual
information to spurious attributes (while having comparable
mutual information with the label), as depicted in Fig. 2.

We find that CNC representations exhibit the lowest align-
ment loss consistently for these datasets; this also corre-
sponds to CNC models achieving the highest worst-group
accuracy. Furthermore, while all methods result in repre-
sentations that exhibit high mutual information with the
ground-truth, suggesting that all models learn ground-truth
dependencies, only CNC results in representations that dras-
tically reduce mutual information with spurious attributes.

5. Conclusion
We present CNC, a two-stage approach to improve model ro-
bustness to spurious correlations using contrastive learning.
We show that CNC learns representations that better depend
only on ground-truth labels, and achieves SOTA or near-
SOTA worst-group performance on several benchmarks.
We also theoretically support CNC by relating worst-group
generalization performance to its optimization objective.
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A. Theorems and proofs
First, we show that if Lalign(fenc) is small, then Lwg(fθ) is close to Lavg(fθ). We consider loss functions `(·) that are
1-Lipschitz such as the hinge loss and logistic loss (which we use in practice). The analysis is based on standard concentration
bounds.

Theorem A.1. In the setting described above, suppose that the model parameters θ satisfy the condition that for any two
different groups g1 ∈ G and g2 ∈ G that have the same groundtruth label, the alignment loss is less than ε (cf. equation (3)):
Lalign(fenc) ≤ ε. Suppose the linear classification layer W has bounded operator norm: ‖W‖2 ≤ B. Let ng denote the
size of the group g ∈ G in the training data, and k denote |G| as before. Then, with probability at least 1− δ,

Lwg(fθ) ≤ Lavg(fθ) +B · ε+ max
g∈G

√
8 log(k/δ)

ng
. (6)

Proof of Theorem A.1. Recall that our main assumption is that the feature representations between every pair of subgroups
that have the same ground truth labels are approximately aligned (cf. Eq. (3)). Let g1 = (y, a1) and g2 = (y, a2) be any
two different subgroups where y ∈ Y denotes a ground truth label and a1 6= a2 denote spurious attributes. Let G1 and G2

denote the two subgroups in the training data that belong to subgroup g1 and g2, respectively. Let ng1 and ng2 denote the
size of these two subgroups, respectively. Let L(·) denote the population loss. Recall that fenc represents the encoder layers
of a full model fθ. Because the classifier fcls is often just a linear layer, for brevity in this section we denote it as W . Our
alignment assumption implies that

1

ng1

1

ng2

∑
x∈G1

∑
x′∈G2

‖fenc(x)− fenc(x
′)‖22 ≤ ε. (7)

Next, we bound the difference between the population loss of g1 and the population loss of g2:

∆(g1, g2) =

∣∣∣∣∣ E
(x,y,a1)∼Pg1

[L(Wfenc(x), y]− E
(x,y,a2)∼Pg2

[L(Wfenc(x), y)]

∣∣∣∣∣.
It is not hard to verify that

Lwg(fθ) ≤ Lavg(fθ) + max
g1,g2∈G:g1 6=g2

∆(g1, g2).

Hence, we focus on the function ∆(g1, g2) for the rest of the proof. By standard concentration bounds, the following result
holds with probability at least 1− δ for all

(
k
2

)
pairs of subgroups g1 ∈ G and g2 ∈ G,∣∣∣∣∣∣ E

(x,y,a1)∼Pg1

[L(Wfenc(x), y)]− 1

ng1

∑
(x,y,a1)∈G1

L(Wfenc(x), y)

∣∣∣∣∣∣ .
√

2 log (k/δ)

ng1
. (8)

Thus, with probability at least 1− δ, the following holds:

∆(g1, g2) ≤

∣∣∣∣∣∣ 1

ng1

∑
(x,y,a1)∈G1

L(Wfenc(x), y)− 1

ng2

∑
(x,y,a2)∈G2

L(Wfenc(x), y)

∣∣∣∣∣∣ (9)

+

(√
2 log(k/δ)

ng1
+

√
2 log(k/δ)

ng2

)
.

Next, we focus on the RHS of equation (9). First, equation (9) is also equal to the following:∣∣∣∣∣∣ 1

ng1

1

ng2

∑
(x,y,a1)∈G1

∑
(x′,y,a2)∈G2

L(Wfenc(x), y))− 1

ng1

1

ng2

∑
(x,y,a1)∈G1

∑
(x′,y,a2)∈G2

L(Wfenc(x
′), y))

∣∣∣∣∣∣.
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Since L(·) is 1-Lipschitz, the above is at most:∣∣∣∣∣∣ 1

ng1ng2

∑
(x,y,a1)∈G1

∑
(x,y,a2)∈G2

‖Wfenc(x)−Wfenc(x
′)‖2

∣∣∣∣∣∣
≤ B

ng1ng2

∑
(x,y,a1)∈G1

∑
(x′,y,a2)∈G2

‖fenc(x)− fenc(x
′)‖2

≤Bε,

where the last step is because of equation (7). Thus, we have shown that

∆(g1, g2) ≤ Bε+

(√
2 log(k/δ)

ng1
+

√
2 log(k/δ)

ng2

)
.

Since the above result holds any two different subgroups in G, we conclude that

Lwg(fθ) ≤ Lavg(fθ) +B · ε+ max
g∈G

√
8 log(k/δ)

ng
.

Second, we show that provided the full loss of equation (5) can be minimized efficiently, the average error of its minimizer
will be small plus a generalization error term that scales down with the number of training samples. Let f̂ be the minimizer
of the full (training) loss L̂ within a function class F . LetR(F) denote the (unnormalized) Rademacher complexity of F
(cf. (Telgarsky, 2020; Liang, 2016)).

Theorem A.2. Let f̂ be the minimizer of the empirical full loss L̂ within a function class F . Let pmin denote the minimum
over any class of Y that a sample from P belongs to the group. Then, with probability at least 1− δ over the randomness of
the training samples, the following holds:

Lavg(f̂) ≤ C · L(f̂) + E, (10)

where C =
(

1− |Y| · (1− pmin)N
)−1

, E = O

(
R(F)
n +

√
log δ−1

n

)
, and L is the population version of equation (5).

Note that C decreases to one and E decrease to zero as the number of negative samples and training samples both increase.

Proof of Theorem A.2. We first recall the following notations. Let fθ̂ be the minimizer of the empirical loss L̂(f) in a
function class F . Let n be the size of the training dataset. Y is the set of all possible class labels. The first step is to
bound the generalization error between the empirical loss L̂(fθ̂) and the population loss L(fθ̂). Using standard uniform
convergence techniques, we show that for any f ∈ F ,

∣∣∣L̂(f)− L(f)
∣∣∣ . R(F)

n
+

√
log 1

δ

n
. (11)

In particular, equation (11) implies that the generalization error between L̂(f̂) and L(f) is small. The idea for showing
equation (11) is based on the Lipschitz composition property of Rademacher complexity. Let `(·) denote the contrastive
loss. Let Lcon denote the population loss that corresponds to the contrastive estimation loss in L. It is not hard to verify that
`(·) is bounded from above by C1 = log(1 + exp(τ)N). By uniform convergence, we have that with probability at least
1− δ, the following holds (e.g. Theorem 9 in Liang (2016))

∣∣∣L̂con(f)− Lcon(f)
∣∣∣ ≤ 2R(` ◦ F)

n
+ C1

√
2 log 2

δ

n
, for any f ∈ F .
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Next, we deal with the composition of `(·) over F above. Since log(z + x) is 1-Lipschitz for any z > 0, one can expand
out R(` ◦ F) over every negative sample. Then, since exp(·) is Nexp(τ)-Lipschitz for any positive x+ and negative
samples {x−i,j}Nj=1, we have thatR(` ◦ F) ≤ Nexp(τ)RM (F). One can similarly apply Rademacher complexity over the
cross-entropy loss portion of L, since the operator norm of the linear classification layer is bounded from above by a fixed
constant. We therefore conclude that equation (11) holds.

The next step is to show an upper bound on the average loss of fθ̂ using the contrastive loss. The idea for showing this step
is based on the technique of Saunshi et al. (Saunshi et al., 2019). For simplicity, we present the analysis for the case when
M = 1 to show the following result:

Lavg(fθ̂) ≤ CLcon(fθ̂). (12)

Here fθ̂ is the minimizer of the empirical contrastive loss, i.e. an encoder function. Lavg(fθ̂) is the average population
loss computed with the fine-tuned full model. Provided with this result, we then have that L(fθ̂) ≥ Lavg(fθ̂), since the
cross-entropy loss of f̂ is equal to the average loss of fθ̂. Therefore, we conclude that

Lavg(fθ̂) ≤ CL(fθ̂) +O

(
R(F)

n
+

√
log(1/δ)

n

)
.

Thus, for the rest of the proof, we focus on showing equation (12). Consider one set of contrastive sample S =
(x, x+, {xj}Nj=1). We can write the contrastive loss as

Lcon(fθ̂) = E
S

log

1 +

N∑
j=1

exp
(
fθ̂(x)>

(
fθ̂(x

−
j )− fθ̂(x

+)
)) .

Let C(x) denote the true label of any datapoint x. Since log(·) is a non-decreasing function, we can thus eliminate any
negative sample that may have the same label as the anchor:

Lcon(fθ̂) ≥ E
S

log

1 +
∑

C(x−j )6=C(x)

exp
(
fθ̂(x)>

(
fθ̂(x

−
j )− fθ̂(x

+)
))

 .
An equivalent way to calculate the above expectation over S is by first conditioning on the labels of every x−j as Yj , and
then sample x−j conditional on having label Yj . Let Y = [Y1, Y2, . . . , YN ] denote the label vector. Since the logistic loss
is convex, we can use Jensen’s inequality to push the expectation over x−j (conditional on having label Yj) inside the
expectation:

Lcon(fθ̂) ≥ E
x,Y

log

1 +
∑

Yi 6=C(x)

exp
(
fθ̂(x)>

(
E
[
fθ̂(x

−
j )
]
− E

[
fθ̂(x

+)
] )) .

Let µi = E
[
fθ̂(x)

]
for x sampled from class i ∈ Y . When Y contains the entire class Y , the above is at least

E
x

log

1 +
∑

c 6=C(x)

exp
(
fθ̂(x)>

(
µC(x) − µc

)) ≥ Lavg(fθ̂).

The probability that Y contains the entire class is at least:

1−
|Y|∑
i=1

(1− pi)N ≥ 1− |Y| · (1− pmin)N .

The above is equal to C−1. Thus, we conclude that equation (12) is true.
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B. Contrastive algorithm design details
In this section, we provide further details on the training setup and contrastive batch sampling, pseudocode, and additional
properties related to CNC’s implementation.

B.1. Training setup

In Fig. 3, we illustrate the two training stages of Correct-N-Contrast described in Sec. 3.1. In Stage 1, we first train an ERM
model with a cross-entropy loss. For consistency with Stage 2, we depict the output as a composition of the encoder and
linear classifier layers. Then in Stage 2, we train a new model with the same architecture using contrastive batches sampled
with the Stage 1 ERM model and a supervised contrastive loss (4) (which we compute after the depicted representations are
first normalized) to update the encoder layers. Note that unlike prior work in contrastive learning (Chen et al., 2020; Khosla
et al., 2020), as we have the ground-truth labels of the anchors, positives, and negatives, we also continue forward-passing
the unnormalized representations (encoder layer outputs) and compute a cross-entropy loss to update the classifier layers
while jointly training the encoder layers as well.

2048-D
2-D

“Waterbird”

2048-D

2-D

Cross-entropy

Stage 1: ERM training

“Waterbird”
Cross-entropy

Stage 2: Correct-N-Contrast

“Waterbird” “Landbird”

Contrastive Contrastive

Input Positive Anchor Negative

Loss Function Forward Pass Backward Pass

Figure 3. The two stages of Correct-N-Contrast. In Stage 1, we train a model with standard ERM and a cross-entropy loss. Then in Stage
2, we train a new model with the same architecture, but specifically learn spurious-attribute-invariant representations with a contrastive
loss (4) and batches of anchors, positives, and negatives sampled with the ERM model’s predictions. We also update the full model jointly
with a cross-entropy loss on the classifier layer output and the input ground-truth labels. Dimensions for ResNet-50 and Waterbirds.

We also note that unlike prior work, we wish to learn invariances between anchors and positives that maximally reduce the
presence of features not needed for classification. We thus do not pass the representations through an additional projection
network (Chen et al., 2020). Instead, we use Eq. 4 to compute the supervised contrastive loss directly on the encoder outputs
z = fenc(x). In Appendix E.3.2, we study ablations with both design choices.

B.2. Two-sided contrastive batch implementation

We provide more details on our default contrastive batch sampling approach described in Sec. 3.1. To recall, we can
incorporate additional anchor-positive and anchor-negative comparisons as in prior contrastive learning work (Chen et al.,
2020) by switching the role of the anchor and first positive sampled in a contrastive batch. However, with “one-sided” batch
{xi}, {x+m}Mm=1, {x−n }Nn=1, naively doing so results in the batch {x+1 }, {xi}, {x−n }Nn=1. This introduces “easy” negative
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comparisons where x+1 and x−n differ in both spurious attribute and ground-truth, which may encourage learning spurious
correlations. To avoid this, given original anchor xi and a randomly sampled positive x+1 , we augment our batch by sampling
M − 1 positives from {xj ∈ X : ŷj 6= ŷi, yj = yi} and N negatives from {xn′ ∈ X : ŷ−n′ = ŷ+1 , y

−
n′ 6= y+1 }. In other

words, we sample additional positives and negatives using the same guidelines as before, but adjust for the “new” anchor.
We call this “two-sided” in contrast to the “one-sided” comparisons with just the original anchor, positives, and negatives.

Implementing this sampling procedure in practice is simple. First, recall our initial setup with trained ERM model fθ̂, its
predictions {ŷi}ni=1 on training data {(xi, yi)}ni=1 (where ŷi = fθ̂(xi)), and number of positives and negatives to sample M
and N . We then sample batches with Algorithm 1.

Algorithm 1 Sampling two-sided contrastive batches
Require: Number of positives M and number of negatives N to sample for each batch.

1: Initialize set of contrastive batches B = {}
2: for each xi ∈ {xi ∈ X : ŷi = yi} do
3: Sample M − 1 additional “anchors” to obtain {xi}Mi=1 from {xi ∈ X : ŷi = yi}
4: Sample M positives {x+m}Mm=1 from {x−m ∈ X : ŷ−m = ŷi, y

−
m 6= yi}

5: Sample N negatives {x−n }Nn=1 from {x−n ∈ X : ŷ−n = ŷi, y
−
n 6= yi}

6: Sample N negatives {x′−n }Nn=1 from {x′−n ∈ X : ŷ′−n = ŷ+1 , y
′−
n 6= y+1 }

7: Update contrastive batch set: B ← B ∪
(
{xi}Mi=1, {x+m}Mm=1, {x−n }Nn=1, {x′−n }Nn=1

)
8: end for

Because the initial anchors are then datapoints that the ERM model gets correct, under our heuristic we infer {xi}Mi=1 as
samples from the majority group. Similarly the M positives {x+m}Mm=1 and N negatives {x−n }Nn=1 that it gets incorrect are
inferred to belong to minority groups.

For one batch, we then compute the full contrastive loss with

L̂sup
con(fenc) = L̂sup

con

(
x1, {x+m}Mm=1, {x−n }Nn=1; fenc

)
+ L̂sup

con

(
x+1 , {xi}Mi=1, {x′−n }Nn=1; fenc

)
(13)

where e.g. L̂sup
con
(
x1, {x+m}Mm=1, {x−n }Nn=1; fenc

)
is given by:

− 1

M

M∑
m=1

log
exp(z>1 z

+
m/τ)∑M

m=1 exp(z>1 z
+
m/τ) +

∑N
n=1 exp(z>1 z

+
n /τ)

(14)

and again let z be the normalized output fenc(x) for corresponding x. We compute the cross-entropy component of the full
loss for each x in the two-sided batch with its corresponding label y.

B.3. Summary of CNC design choices and properties

We summarize CNC’s design choices, additional properties, and differences from standard supervised contrastive learning
below. In Appendix E.3, we empirically validate each component.

No projection network. As we wish to learn data representations that maximize the alignment between anchor and positive
datapoints, we do not compute the contrastive loss with the outputs of an additional nonlinear projection network. This
is inspired by the logic justifying a projection head in prior contrastive learning, e.g. SimCLR (Chen et al., 2020), where
the head is included because the contrastive loss trains representations to be “invariant to data transformation” and may
encourage removing information “such as the color or orientation of objects”. In our case, we view inferred datapoints
with the same class but different spurious attributes as “transformations” of each other, and we hypothesize that maximally
removing these differences can help us improve worst-group performance.

Two-sided contrastive sampling. To incorporate additional comparisons between datapoints that only differ in spurious
attribute during training, we employ “two-sided” contrastive batch sampling. This lets us equally incorporate instances
where the second contrastive model in CNC treats datapoints that the initial ERM model got incorrect and correct as anchors.
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(a) Contrastive Batch (b) Two-sided Update

Figure 4. Illustration of two-sided contrastive batch sampling with Colored MNIST as an example. From a single batch (a), we can train a
contrastive model with two anchor-positive-negative pairings (b). Aside from increasing the total number of “hard negatives” considered
for each anchor-positive pair, this intuitively “pushes” together anchors and positives from two different directions for greater class
separation.

Additional intrinsic hard positive/negative mining. Because the new model corrects for potentially learned spurious
correlations by only comparing and contrasting datapoints that differ in ground-truth or spurious attribute, but not both (as
dictated by the initial ERM model’s outputs), the contrastive batches naturally carry “hard” positives and negatives. Thus,
our approach provides a natural form of hard negative mining (in addition to the intrinsic hard positive / negative mining
at the gradient level with InfoNCE-style contrastive losses (Chen et al., 2020; Khosla et al., 2020)) while avoiding class
collisions, two nontrivial challenges in standard self-supervised contrastive learning (Robinson et al., 2021; Wu et al., 2021;
Chuang et al., 2020).

C. Further related work discussion
We provide additional discussion of related work and connections to our work below.

C.1. Improving robustness to spurious correlations

Our core objective is to improve model robustness to group or subpopulation distribution shifts that arise from the presence
of spurious correlations, specifically for classification tasks. Because these learnable correlations hold for some but not
all samples in a dataset, standard training with ERM may result in highly variable performance: a model that learns to
classify datapoints based on these spurious correlations does well for some subsets or “groups” of the data but not others.
To improve model robustness and avoid learning spurious correlations, prior work introduces the goal to maximize the
worst-group accuracy (Sagawa et al., 2019). Related works broadly fall under two categories:

Improving robustness with group information. If information such as spurious attribute labels is provided, one can divide
the data into explicit groups as defined in Sec. 2, and then train to directly minimize the worst group-level error among these
groups. This is done in group DRO (GDRO) (Sagawa et al., 2019), where the authors propose an online training algorithm
that focuses training updates over datapoints from higher-loss groups. Goel et al. (2020) also adopt this approach with their
method CycleGAN Augmented Model Patching (CAMEL). However, similar to our motivation, they argue that a stronger
modeling goal should be placed on preventing a model from learning group-specific features. Their approach involves first
training a CycleCAN (Zhu et al., 2017) to learn the data transformations from datapoints in one group to another that share
the same ground-truth label. They then apply these transformations as data augmentations to different samples, intuitively
generating new versions of the original samples that take on group-specific features. Finally they train a new model with
a consistency regularization objective to learn invariant features between transformed samples and their sources. Unlike
their consistency loss, we accomplish a similar objective to learn group-invariant features with contrastive learning. Our
first training stage is also less expensive. Instead of training a CycleGAN and then using it to augment datapoints, we
train a relatively simple standard ERM classification model, sometimes with only a few number of epochs, and use its
predictions to identify pairs of datapoints to serve a similar purpose. Finally, unlike both CAMEL and GDRO, we do not
require spurious attribute or group labels for each training datapoints. We can then apply CNC in less restrictive settings
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where such information is not known.

Related to GDRO are methods that aim to optimize a ”Pareto-fair” objective, more general than simply the worst-case group
performance. Notable examples are the works of Balashankar et al. (2019) and Martinez et al. (2020). However, these
approaches similarly do not directly optimize for good representation alignment (unlike our work).

Improving robustness without training group information. More similar to our approach are methods that do not assume
group information at training time, and only require validation set spurious attribute labels for fine-tuning. As validation
sets are typically much smaller in size than training sets, an advantage of CNC and comparable methods is that we can
improve the accessibility of robust training methods to a wider set of problems. One popular line of work is distributionally
robust optimization (DRO), which trains models to minimize the worst loss within a ball centered around the observed
distribution (Ben-Tal et al., 2013; Wiesemann et al., 2014; Duchi & Namkoong, 2019; Levy et al., 2020; Curi et al., 2020;
Oren et al., 2019). This includes the joint DRO (Levy et al., 2020) method we evaluate against. However, prior work
has shown that these approaches may be too pessimistic, optimizing not just for worst-group accuracy but worst possible
accuracy within the distribution balls (Sagawa et al., 2019), or too undirected, optimizing for too many subpopulations,
e.g. by first upweighting minority points but then upweighting majority points in later stages of training (Liu et al., 2021).
Pezeshki et al. (2020) instead suggest that gradient starvation (GS), where neural networks only learn to capture statistically
dominant features in the data (Combes et al., 2018), is the main culprit behind learning spurious correlations, and introduce a
“spectral decoupling” regularizer to alleviate GS. However this does not prevent models from learning spurious correlations.

Most similar to our approach are methods that first train an initial ERM model with ground-truth labels as a way to identify
datapoints belonging to minority groups, and subsequently train an additional model with greater emphasis on the estimated
minority groups. Sohoni et al. (2020) demonstrate that even when only trained on the ground-truth labels, neural networks
learn feature representations that can be clustered into groups of data exhibiting different spurious attributes, and thus
estimate the subgroup labels before running GDRO. Meanwhile, Nam et al. (2020) train a pair of models, where one
model minimizes a generalized cross-entropy loss (Zhang & Sabuncu, 2018), such that the datapoints this model classifies
incorrectly largely correspond to those in the minority group. They then train the other model on the same data but upweight
the minority-group-estimated points. While they interweave training of the biased and robust model, Liu et al. (2021) instead
train one model first with a shortened training time but no modified cross-entropy objective, and show that then upsampling
the incorrect datapoints and training another model with ERM is sufficient for higher worst-group accuracy.

We extend this line of work by demonstrating that the ERM model’s predictions can be leveraged to not only estimate groups
and train a new model with supervised learning but with different weightings. Instead, we can specifically identify pairs of
points that a contrastive model can then learn invariant features between. Our core contribution comes from rethinking the
objective with a contrastive loss that more directly reduces the model’s ability to learning spurious correlations.

C.2. Contrastive learning

Our method also uses contrastive learning, a simple yet powerful framework for both self-supervised (Chen et al., 2020;
Oord et al., 2018; Tian et al., 2019; Song & Ermon, 2020; Sermanet et al., 2018; Hassani & Khasahmadi, 2020; Robinson
et al., 2021) and supervised (Khosla et al., 2020; Gunel et al., 2021) representation learning. The core idea is to learn data
representations that maximize the similarity between a given input “anchor” and distinct views depicting the input again
in some way (“positives”). Frequently this also involves contrasting positives with “negative” inputs sampled from the
data, but without any assumed relation to the anchor (Bachman et al., 2019). Core components then include some way to
source multiple views, e.g. with data transformations (Chen et al., 2020), and training objectives similar to noise contrastive
estimation (Gutmann & Hyvärinen, 2010; Mnih & Kavukcuoglu, 2013).

Two particularly relevant criteria that benefit contrastive learning are gathering appropriate positives and negatives. For
sampling positives, Chen et al. (2020) show that certain data augmentations (e.g. crops and cutouts) may be more beneficial
than others (e.g. gaussian noise and sobel filtering) when generating anchors and positives for unsupervised contrastive
learning. Tian et al. (2020) further study what makes good views for contrastive learning. They propose an “InfoMin
principle”, where anchors and positives should share the least information necessary for the contrastive model to do well on
the downstream task. For sampling negatives, Robinson et al. (2021) show that contrastive learning also benefits from using
“hard” negatives, which are both actually a different class from the anchor (which they approximate in the unsupervised
setting) and embed closest to the anchor under the contrastive model’s current data representation. Both of these approaches
capture the principle that if positives are always too similar to the anchor and negatives are always too different, then
contrastive learning may be inefficient at learning generalizable representations of the underlying classes.
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In our work, we incorporate this principle by sampling datapoints with the same ground-truth but different ERM predic-
tions–presumably because of spurious attribute differences–as anchor and positive views, while sampling negatives from
datapoints with different ground-truth but the same ERM prediction as the anchor. The anchors and positives are different
enough that a trained ERM model predicted them differently, while the anchors and negatives are similar enough that the
trained ERM model predicted them the same. Contrasting the above then allows us to exploit both “hard” positive and
negative criteria for our downstream classification task. In Appendix E.3.1, we show that removing this ERM-guided
sampling and only sampling positives and negatives based on class labels leads to substantially lower worst-group accuracy.

C.3. Learning invariant representations

Finally, our work is also similar in motivation to Invariant Risk Minimization (IRM) (Arjovsky et al., 2019) and other related
works in domain-invariant learning (Krueger et al., 2020; Parascandolo et al., 2020; Ahuja et al., 2020; Creager et al., 2020).
These methods aim to train models that learn a single invariant representation that is consistently optimal (e.g. with respect
to classifying data) across different domains or environments. These environments can be thought of as data groups, and
while traditionally methods such as IRM require that environment labels are known, recent approaches such as Environment
Inference for Invariant Learning (EIIL) (Creager et al., 2020) similarly aim to infer environments with an initial ERM
model. However, their main goal for learning these invariances is to extrapolate to out-of-domain distribution shifts not
seen during training, as opposed to improving worst-group performance with group-shifts exacerbated by rare groups in our
setting. Thus they may not perform as well as the previously introduced methods for improving worst-group accuracy. In
Appendix E.4, we report the worst-group accuracy obtained with EIIL on Waterbirds (Creager et al., 2020). The results
support this conjecture, especially when only a small number of examples exists in an underperforming minority subgroup.

D. Additional experimental details
For all methods, we report the test set worst-group and average accuracies from models selected through hyperparameter
tuning for the best validation set worst-group accuracy.

D.1. Dataset details

Colored MNIST. We evaluate with a version of the Colored MNIST dataset proposed in Arjovsky et al. (2019). The goal
is to classify MNIST digits belonging to one of 5 classes Y = {(0, 1), (2, 3), (4, 5), (6, 7), (8, 9)}, and treat color as the
spurious attribute. In the training data, we color pcorr of each class’s datapoints with an associated color a, and color the
rest randomly. If pcorr is high, trained ERM models fail to classify digits that are not the associated color. We pick a from
uniformly interspersed intervals of the hsv colormap, e.g. 0 and 1 digits may be spurious correlated with the color red
(#ff0000), while 8 and 9 digits may be spuriously correlated with purple (#ff0018). The full set of colors in class order
are A = {#ff0000,#85ff00,#00fff3,#6e00ff,#ff0018} (see Fig. ??). For validation and test data, we color
each datapoint randomly with a color a ∈ A. We use the default test set from MNIST, and allocate 80%-20% of the default
MNIST training set to the training and validation sets. For main results, we set pcorr = 0.995.

Waterbirds. We evaluate with the Waterbirds dataset, which was introduced as a standard spurious correlations benchmark
in Sagawa et al. (2019). In this dataset, masked out images of birds from the CUB dataset (Wah et al., 2011) are pasted on
backgrounds from the Places dataset (Zhou et al., 2017). Bird images are labeled either as waterbirds or landbirds, while the
background either depicts water or land. From CUB, waterbirds consist of seabirds (ablatross, auklet, cormorant, frigatebird,
fulmar, gull, jaeger, kittiwake, pelican, puffin, tern) and waterfowl (gadwell, grebe, mallard, merganser, guillemot, Pacific
loon). All other birds are labeled as landbirds. From Places, water backgrounds consist of ocean and natural lake classes,
while land backgrounds consist of bamboo forest and broadleaf forest classes.

The goal is to classify the foreground bird as Y = {waterbird, landbird}, where there is spurious background attribute
A = {water background, land background}. We use the default training, validation, and test splits (Sagawa et al., 2019),
where in the training data 95% of waterbirds appear with water backgrounds and 95% of landbirds appear with land
backgrounds. Trained ERM models then have trouble classifying waterbirds with land backgrounds and landbirds with water
backgrounds. For validation and test sets, water and land backgrounds are evenly split among landbirds and waterbirds.

CelebA. We evaluate with the CelebA spurious correlations benchmark introduced in Sagawa et al. (2019). The goal is
to classify celebrities’ hair color Y = {blond, not blond}, which is spuriously correlated with the celebrity’s identified
gender A = {male, female}. We use the same training, validation, test splits as in Sagawa et al. (2019). Only 6% of blond
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celebrities are male; trained ERM models perform poorly on this group.

CivilComments. We evaluate with the CivilComments-WILDS dataset from Koh et al. (2021), derived from the Jigsaw
dataset from Borkan et al. (2019). Each datapoint is a real online comment curated from the Civil Comments platform,
a commenting plugin for independent news sites. For classes, each comment is labeled as either toxic or not toxic. For
spurious attributes, each comment is also labeled with the demographic identities {male, female, LGBTQ, Christian, Muslim,
other religions, Black, White} mentioned; multiple identities may be mentioned per comment.

The goal is to classify the comment Y = {toxic, not toxic}. As in Koh et al. (2021), we evaluate with A = {male, female,
LGBTQ, Christian, Muslim, other religions, Black, White}. There are then 16 total groups corresponding to (toxic, identity)
and (not toxic, identity) for each identity. Groups may overlap; a datapoint falls in a group if it mentions the identity. We use
the default data splits (Koh et al., 2021). In Table 2, we list the percentage of toxic comments for each identity based on the
groups. Trained ERM models in particular perform less well on the rarer toxic groups.

Table 2. Percent of toxic comments for each identity in the CivilComments-WILDS training set.

Identity male female LGBTQ Christian Muslim other religions Black White

% toxic 14.9 13.7 26.9 9.1 22.4 15.3 31.4 28.0

D.2. Methods details

D.2.1. REPORTED METRICS

Main results. For the Colored MNIST, Waterbirds, and CelebA datasets, we run CNC with three different seeds, and report
the average worst-group accuracy over these three trials in Table 1. As we use the same baselines and comparable methods
as Liu et al. (2021), we referenced their main results for the reported numbers, which did not have standard deviations or
error bars reported. For CivilComments-WILDS, due to time and compute constraints we only reported one run.

Estimated mutual information. We give further details for calculating the representation metric introduced in Sec. ??. As
a reminder, we report both alignment and estimated mutual information metrics to quantify how dependent a model’s learned
representations are on the ground-truth versus the spurious attributes, and compute both metrics on the representations
Z = {fenc(x)} over all test set datapoints x. Then to supplement the alignment loss calculation in Sec. ??, we also estimate
I(Y ;Z) and I(A;Z), the mutual information between the model’s data representations and the ground-truth labels and
spurious attribute labels respectively.

To first estimate mutual information with Y , we first approximate p(y | z) by fitting a multinomial logistic regression model
over all representations Z to classify y. With the empirical ground-truth label distribution p(y), we compute:

Î(Y ;Z) =
1

|Z|
∑
z∈Z

∑
y∈Y

p(y | z) log
p(y | z)
p(y)

(15)

We do the same but substitute the spurious attributes a for y to compute Î(A;Z).

D.2.2. STAGE 1 ERM TRAINING DETAILS

We describe the model selection criterion, architecture, and training hyperparameters for the initial ERM model in our
method. To select this model, recall that we first train an ERM model to predict ground-truth labels, as the model may
also learn dependencies on the spurious attributes. Because we then use the model’s predictions on the training data to
infer samples with different spurious attribute values but the same ground-truth label, we prefer an initial ERM model that
better learns this spurious dependency, and importantly also does not overfit to the training data. Inspired by the results
in prior work (Sohoni et al., 2020; Liu et al., 2021), we then explored using either a standard ERM model, one with high
`-2 regularization, or one only trained on a few number of epochs. To select among these, because the validation data has
both ground-truth and spurious attribute labels, we choose the model with the largest gap between worst-group and average
accuracy on the validation set. We found high regularization and training with few epochs generally sufficient for their task
of estimating different groups. Doing so was also preferable to another alternative of holding out additional training sets for
ERM training versus prediction, as we could use more training datapoints for both ERM and contrastive model training. For
each dataset, we detail the ERM architecture and hyperparameters below:
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Colored MNIST. We use the LeNet-5 CNN architecture in the pytorch image classification tutorial. We train with SGD,
few epochs E = 5, SGD, learning rate 1e-3, batch size 32, default weight decay 5e-4, and momentum 0.9.

Waterbirds. We use the torchvision implementation of ResNet-50 with pretrained weights from ImageNet as in
Sagawa et al. (2019). Also as in (Sagawa et al., 2019), we train with SGD, default epochs E = 300, learning rate 1e-3, batch
size 128, and momentum 0.9. However we use high weight decay 1.0.

CelebA. We also use the torchvision ImageNet-pretrained ResNet-50 and default hyperparameters from Sagawa
et al. (2019) but with high weight decay: we train with SGD, default epochs E = 50, learning rate 1e-4, batch size 128,
momentum 0.9, and high weight decay 0.1.

CivilComments-WILDS. We use the HuggingFace (pytorch-transformers) implementation of BERT with pre-
trained weights and number of tokens capped at 300 as in Koh et al. (2021). As in Liu et al. (2021), with other hyperparameters
set to their defaults (Koh et al., 2021) we tune between using the AdamW optimizer with learning rate 1e-5 and SGD
with learning rate 1e-5, momentum 0.9, and the PyTorch ReduceLROnPlateau learning rate scheduler. Based on our
criterion, we use SGD, few number of epochs E = 2, learning rate 1e-5, batch size 16, default weight decay 1e-2, and
momentum 0.9.

D.2.3. CONTRASTIVE BATCH SAMPLING DETAILS

We provide further details related to collecting predictions from the trained ERM models, and the number of positives and
negatives that determine the contrastive batch size.

ERM model prediction. To collect trained ERM model predictions on the training data, we explored two approaches: (1)
using the actual predictions, i.e. the argmax for each classifier layer output vector, and (2) clustering the representations, or
the last hidden-layer outputs, and assigning a cluster-specific label to each datapoint in one cluster. This latter approach is
inspired by Sohoni et al. (2020), and we similarly note that ERM models trained to predict ground-truth labels in spuriously
correlated data may learn data representations that are clusterable by spurious attribute. As a viable alternative to collecting
the “actual” predictions of the trained ERM model on the training data, with C ground-truth classes, we can then cluster
these representations into C clusters, assign the same class label only to each datapoint in the same cluster, and choose the
label-cluster assignment that leads to the highest accuracy on the training data. We also follow their procedure to first apply
UMAP dimensionality reduction to 2 UMAP components, before clustering with K-means or GMM (Sohoni et al., 2020).
To choose between all approaches, we selected the procedure that lead to highest worst-group accuracy on the validation
data after the second-stage of training. While this cluster-based prediction approach was chosen as a computationally
efficient heuristic, we found that in practice it either lead to comparable or better final worst-group accuracy on the validation
set. To better understand this, as a preliminary result we found that when visualizing the validation set predictions with
the Waterbirds dataset, the cluster-based predictions captured the actual spurious attributes better than the classifier layer
predictions (Fig. 5). We defer additional discussion to Sohoni et al. (2020) and leave further analysis to future work.

Color by ERM output prediction Color by spurious attribute Color by ERM cluster prediction

Figure 5. UMAP visualization of ERM data representations for the Waterbirds training data. We visualize the last hidden layer outputs for
a trained ERM ResNet-50 model given training samples from Waterbirds, coloring by either the ERM model’s “standard” predictions, the
actual spurious attribute values (included here just for analysis), and predictions computed by clustering the representations as described
above. Clustering-based predictions more closely align with the actual spurious attributes than the ERM model outputs.

Number of positives and negatives per batch. One additional difference between our work and prior contrastive learning
methods (Chen et al., 2020; Khosla et al., 2020) is that we specifically construct our contrastive batches by sampling anchors,
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positives, and negatives first. This is different from the standard procedure of randomly dividing the training data into
batches first, and then assigning the anchor, positive, and negative roles to each datapoint in a given batch. As a result, we
introduce the number of positives M and the number of negatives N as two hyperparameters that primarily influence the
size of each contrastive batch (with number of additional anchors and negatives also following M and N with two-sided
batches). To maximize the number of positive and negative comparisons, as a default we set M and N to be the maximum
number of positives and negatives that fit the sampling criteria specified under Algorithm 1 that also can fit in memory. In
Appendix D.2.4, for each dataset we detail the ERM prediction method and number of positives and negatives per batch.

D.2.4. STAGE 2 CONTRASTIVE MODEL TRAINING DETAILS

In this section we describe the model architectures and training hyperparameters used for training the second model of our
procedure, corresponding the reported worst-group and average test set results in Table 1. In this second stage, we train a
new model with the same architecture as the initial ERM model, but now with a contrastive loss and batches sampled based
on the initial ERM model’s predictions. We report test set worst-group and average accuracies from models selected with
hyperparameter tuning and early stopping based on the highest validation set worst-group accuracy. For all datasets, we
sample contrastive batches using the clustering-based predictions of the initial ERM model. Each batch size specified here is
also a direct function of the number of positives and negatives: 2M + 2N .

Colored MNIST. We train a LeNet-5 CNN. For CNC, we use M = 32, N = 32, batch size 128, temperature τ = 0.05,
contrastive weight λ = 0.75, SGD optimizer, learning rate 1e-3, momentum 0.9, and weight decay 1e-4. We train for 3
epochs, and use gradient accumulation to update model parameters every 32 batches.

Waterbirds. We train a ResNet-50 CNN with pretrained ImageNet weights. For CNC, we use M = 17, N = 17, batch
size 68, temperature τ = 0.1, contrastive weight λ = 0.75, SGD optimizer, learning rate 1e-4, momentum 0.9, weight decay
1e-3. We train for 5 epochs, and use gradient accumulation to update model parameters every 32 batches.

CelebA. We train a ResNet-50 CNN with pretrained ImageNet weights. For CNC, we use M = 64, N = 64, batch size
256, temperature τ = 0.05, contrastive weight λ = 0.75, SGD optimizer, learning rate 1e-5, momentum 0.9, and weight
decay 1e-1. We train for 15 epochs, and use gradient accumulation to update model parameters every 32 batches.

CivilComments-WILDS. We train a BERT model with pretrained weights and max number of tokens 300. For CNC, we
use M = 16, N = 16, batch size 64, temperature τ = 0.1, contrastive weight λ = 0.75, AdamW optimizer, learning rate
1e-4, weight decay 1e-2, and clipped gradient norms. We train for 10 epochs, and use gradient accumulation to update
weights every 128 batches.

D.2.5. COMPARISON METHOD TRAINING DETAILS

As reported in the main results (Table 1) we compare CNC with the ERM and Group DRO baselines, as well as robust
training methods that do not require spurious attribute labels for the training data: joint DRO (Levy et al., 2020), GEORGE
(Levy et al., 2020), Learning from Failure (LfF) (Levy et al., 2020), and Just Train Twice (JTT) (Liu et al., 2021). For each
dataset, we use the same model architecture for all methods. For the Waterbirds, CelebA, and CivilComments-WILDS
datasets, we report the worst-group and average accuracies reported in Liu et al. (2021) for all comparison methods except
GEORGE. For GEORGE, we report the accuracies reported in Sohoni et al. (2020). For these hyperparameters, we defer to
the respective papers. For Colored MNIST, we run implementations for GEORGE and all other methods using code from the
GEORGE (Sohoni et al., 2020) and JTT (Liu et al., 2021) authors respectively. We include training details below:

Colored MNIST. For JTT, we train with SGD, learning rate 1e-3, momentum 0.9, weight decay 5e-4, batch size 32, and
report best worst-group accuracy after 20 epochs. We use the same initial ERM model as CNC, with hyperparameters
described in Appendix D.2.2. For upsampling we first tried constant factors {10, 50, 100, 200, 1000}. We also tried a
resampling strategy where for all the datapoints with the same initial ERM model prediction, we upsample the incorrect
points such that they equal the correct points in frequency, and found this worked the best. With pcorr = 0.995, this
upsamples each incorrect point by roughly 1100. We also use this approach for the results in Fig. 7.

For Group DRO we use the same training hyperparameters as JTT, but without the upsampling and instead set group
adjustment parameter C = 0. For LfF, we use the same hyperparameters as JTT, but instead of upsampling gridsearched
the q parameter ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, using q = 0.7. For joint DRO we do the same but use hyperparameter α = 0.1.
Finally for GEORGE we also train with SGD, learning rate 1e-3, momentum 0.9, weight decay 5e-4, and 20 epochs.
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Table 3. CNC Average total training time for first and second stages of CNC

Dataset CMNIST p = 0.995 Waterbirds CelebA CivilComments-WILDS

Stage 1 ERM train time 2 min. 1.5 hrs 3 hrs 3.1 hrs
Stage 2 CNC train time 1.2 hrs 1.8 hrs 32.2 hrs 37.6 hrs

Comparison limitations. One limitation of our comparison is that because for each dataset we sample new contrastive
batches which could repeat certain datapoints, the number of total batches per epoch changes. For example, 50 epochs
training the second model in CNC does not necessarily lead to the same total number of training batches as 50 epochs
training with ERM, even if they use the same batch size. However, we note that the numbers we compare against from Liu
et al. (2021) are reported with early stopping. In this sense we are comparing the best possible worst-group accuracies
obtained by the methods, not the highest worst-group accuracy achieved within a limited number of training batches. We
also found that although in general the time to complete one epoch takes much longer with CNC, CNC requires fewer
overall training epochs for all but the CivilComments-WILDS dataset to obtain the highest reported accuracy.

D.3. CNC compute resources and training time

All experiments for Colored MNIST, Waterbirds, and CelebA were run on a machine with 14 CPU cores and a single
NVIDIA Tesla P100 GPU. Experiments for CivilComments-WILDS were run on an Amazon EC2 instance with eight CPUs
and one NVIDIA Tesla V100 GPU.

Regarding runtime, one limitation with the current implementation of CNC is its comparatively longer training time
compared to methods such as standard ERM. This is both a result of training an initial ERM model in the first stage, and
training another model with contrastive learning in the second stage. In Table 3 we report both how long it takes to train the
initial ERM model and long it takes to complete one contrastive training epoch on each dataset. We observe that while in
some cases training the initial ERM model is negligible, especially if we employ training with only a few epochs to prevent
memorization (for Colored MNIST it takes roughly two minutes to obtain a sufficient initial ERM model), it takes roughly
1.5 and 3 hours to train the high regularization initial models used for Waterbirds and CelebA. While these hurdles are
shared by all methods that train an initial ERM model, we find that the second stage of CNC occupies the bulk of training
time. Prior work has shown that contrastive learning typically requires longer training times and converges more slowly than
supervised learning (Chen et al., 2020). We also observe this in our work.

We note however that because we sample batches based on the ERM model’s predictions, the contrastive training duration is
limited by how many datapoints the initial ERM model predicts incorrectly. In moderately sized datasets with very few
datapoints in minority groups, (e.g. Waterbirds, which has roughly 4794 training points and only 56 datapoints in its smallest
group), the total time it takes to train CNC is on par with ERM. Additionally, other methods such as additional hard negative
mining (Robinson et al., 2021) have been shown to improve the efficiency of contrastive learning, and we can incorporate
these components to speed up training time as well.

E. Additional evaluations and ablations
E.1. Visualization of learned data representations

In Fig. 6, we visualize and compare the learned representations of test set samples from models trained with ERM, JTT,
and CNC. Compared to ERM models, both JTT and CNC models learn representations that better depict dependencies on
the ground-truth classes. However, especially with the Waterbirds and CelebA datasets, CNC model representations more
clearly depict dependencies only on the ground-truth class, as opposed to JTT models which also show some organization by
the spurious attribute still.

E.2. Representation metrics vs. worst-group accuracy with increasing spurious correlations strength

While Table 1 and Fig. 2 show that CNC’s superior worst-group accuracy goes hand-in-hand with lower alignment loss and
lower representation mutual information with spurious attributes, we also study how this relation between representation
metrics and worst-group accuracy scales with the strength of the spurious correlations. We compute the same metrics, but
now with CNC, ERM, and JTT models trained on increasingly spurious (increasing pcorr) Colored MNIST datasets, and
report the resulting alignment and estimated mutual information metrics in Fig. 7.
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(a)
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Figure 6. UMAP visualizations of learned representations for Colored MNIST (a), Waterbirds (b), and CelebA (c). We color datapoints
based on the ground-truth (left) and spurious attribute (right). Most consistently across datasets, CNC representations exhibit dependence
and separability by the ground-truth but not the spurious attribute, suggesting that they best learn features which only help classify
ground-truth labels.

We observe that with high spurious correlations, ERM fails to classify digits in the minority classes, while CNC and JTT
comparably maintain high worst-group accuracy. However, CNC performs marginally higher in more spurious settings with
pcorr > 0.95. Both of these improvements over ERM are reflected by drops in alignment loss, but CNC also consistently
achieves lowest Lalign as a result of training with a contrastive loss. Fig. 7c shows that CNC’s learned representations
maintain a more favorable balance of mutual information between the ground-truth and spurious attribute than JTT. While
JTT models exhibit slightly higher estimated I(Y ;Z) than CNC models, CNC models exhibit much lower dependence on
the spurious attribute.

E.3. Empirical validation of CNC components

We validate the design choices of CNC through various ablations studying the effects of the individual components of our
method on worst-group accuracy.

E.3.1. IMPORTANCE OF ERM-GUIDED CONTRASTIVE SAMPLING

Although CNC relies on an initial trained ERM model’s predictions, can we still improve worst-group accuracy without this
step and with supervised contrastive learning alone, i.e. by sampling positives uniform randomly from all datapoints with
the same label as the anchor? In Table 4, we show that this “vanilla” contrastive learning implementation competes with
ERM on Waterbirds and outperforms ERM on CelebA in worst-group accuracy, while achieving similar average accuracy
(standard deviation with three seeds recorded in parenthesis). However, we still achieve substantially higher worst-group
accuracy with our full method. This supports that using initial ERM predictions to sample “hard comparisons” helps obtain
best observed worst-group accuracy. We conjecture this is the case because positive samples with the ERM model are not
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(c)(a) (b) (d)
Figure 7. Alignment loss and mutual information representation metrics with worst-group accuracy on increasingly spurious CMNIST.
CNC highest worst-group accuracy (a) coincides with learning representations with better alignment (b) and ratio of mutual information
dependence on the labels vs the spurious attribute (c).

only the same class as anchors, but different enough such that an initial trained ERM model classified them differently.
Comparing these against negatives which are also presumably more similar to the anchors than in the no-ERM setup lends
additional contrastive learning signal to not learn dependencies on spurious differences.

Table 4. CNC accuracies without initial ERM model for contrastive sampling

Method Waterbirds CelebA
Accuracy (%) Worst-group Average Worst-group Average

ERM 72.6 85.9 47.2 95.6
CNC (no ERM) 71.0 (1.92) 85.9 (0.8) 60.8 (0.8) 84.9 (0.4)
CNC (Ours) 89.0 (0.6) 90.4 (0.4) 88.8 (0.9) 89.85 (0.5)

Table 5. Ablation over CNC algorithmic components on Waterbirds. Default choices achieve highest worst-group and average accuracy.

Method CNC (Default) Projection Head One-sided Contrasting Train + Finetune

WG Acc. (%) 89.0 (0.6) 82.4 (1.8) 85.2 (3.6) 84.0 (1.7)
Avg. Acc. (%) 90.4 (0.4) 88.7 (0.6) 90.1 (1.6) 87.7 (1.1)

E.3.2. ADDITIONAL DESIGN CHOICE ABLATIONS

To validate the additional algorithmic components of CNC, we report how CNC performs on the Waterbirds dataset when
modifying the individual design components. We use the same hyperparameters as in the main results, and report accuracies
as the average over three training runs for the following ablations. Table 5 summarizes that across these design ablations,
default CNC as presented consistently outperforms these alternative implementations.

No projection head. We incorporate a nonlinear projection head as is typical in prior contrastive learning works (Chen
et al., 2020), that maps the encoder output to lower-dimensional representations (from 2048 to 128 in our case). We then
update the encoder layers and the projection head jointly by computing the contrastive loss on the projection head’s output,
still passing the encoder layer’s direct outputs to the classifier to compute the cross-entropy loss. We note that using the
projection head decreases worst-group accuracy substantially. We reason that as previously discussed, while using the
projection head in prior work can allow the model to retain more information in its actual hidden layers (Chen et al., 2020),
in our case to remove dependencies on spurious attributes we actually want to encourage learning invariant representations
when we model the differences between anchor and positive datapoints as due to spurious attributes.

Two-sided contrastive batches. Instead of “two-sided” contrasting where we allow both sampled anchors and positives to
take on the anchor role, for each batch we only compute contrastive updates by comparing original positives and negatives
with the original anchor. When keeping everything else the same, we find that just doing these one-sided comparisons
also leads to a drop in performance for worst-group accuracy. This suggests that the increased number of comparisons and
training setup where we swap the roles of anchors and positives of the two-sided batches introduces greater contrastive
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learning signal.

Joint training of encoder and classifier layers. Instead of training the full model jointly, we first only train the encoder
layers with the contrastive loss in CNC, before freezing these layers and finetuning the classifier layers with the cross-entropy
loss. With this implementation, we also obtain noticeable drop in performance. While we leave further analysis for the joint
cross-entropy and contrastive optimization for future work, one conjecture is that the cross-entropy loss may aid in learning
separable representations while also training the full model to keep the average error small. From our theory, the contrastive
loss can help bound the gap between worst-group and average error, and so to improve worst-group performance it may
make sense to also try to minimize average error in the same parameter update.

This also follows prior work, where updating the entire model and finetuning all model parameters instead of freezing the
encoder layers leads to higher accuracy (Chen et al., 2020). However, we found that with an initial encoder-only training
stage, if we did not freeze the trained layers the fine-tuning on a dataset with spurious correlations would “revert” the
contrastive training, resulting in a large gap between worst-group and average error similar to ERM.

E.4. Comparison to domain-invariant learning

We also study how EIIL, an invariance-learning method that similarly aims to use an initial ERM model to infer groups and
learn an optimal classifier across all of them, compares with previously introduced methods for improving worst-group
accuracy. In Table 6, we compare the worst-group and average accuracy obtained by EIIL on Waterbirds with the rest of
our main results, reporting numbers from Creager et al. (2020). All methods use the same torchvision ResNet-50
implementation. We find that EIIL substantially outperforms the ERM baseline and joint DRO in worst-group accuracy,
and also outperforms LfF, another approach that uses an ERM model’s predictions to guide training a mroe robust model.
However, it’s worst-group accuracy falls below the others studied in this work. While EIIL has a similar objective with
CNC to learn features that reliably predict the true class regardless of the domain, we conjecture that the contrastive
learning component in CNC more directly encourage this invariance at the representation level, especially with respect to
rarer minority groups that its initial ERM model frequently misclassifies. GEORGE and JTT may also outperform EIIL
in worst-group accuracy as they actually focus training on the inferred minority groups, as opposed to invariant-learning
mechanism in EIIL.

Table 6. Worst-group (WG) and average (Avg) accuracies for the Waterbirds dataset, with emphasis on comparing EIIL, a domain-invariant
learning method, to others previously introduced.

Method ERM Joint DRO LfF EIIL* GEORGE JTT CNC (Ours) GDRO

WG Acc. (%) 72.6 69.5 75.2 78.7* 83.8 86.0 89.0 85.7
Avg Acc. (%) 85.9 88.5 91.6 96.9* 90.5 90.3 90.4 89.5

E.5. Additional GradCAM visualizations

We include additional GradCAM visualizations depicting saliency maps for samples from each group in the Waterbirds and
CelebA datasets. Warmer colors denote higher saliency, suggesting that the model considered these pixels more important in
making the final classification as measured by gradient activations. For both datasets, we compare maps from models trained
with ERM, the next most competitive method for worst-group accuracy JTT, and CNC. CNC models most consistently
measure highest saliency with pixels directly associated with ground-truth and not spurious attributes.
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Figure 8. Additional GradCAM visualizations for the Waterbirds dataset. We use GradCAM to visualize the “salient” observed features
used to classify images by bird type for models trained with ERM, JTT, and CNC. ERM models output higher salience for spurious
background attribute pixels, sometimes almost exclusively. JTT and CNC models correct for this, with CNC better exclusively focusing
on bird pixels.
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