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Abstract
Several density estimation methods have shown
to fail to detect out-of-distribution (OOD) sam-
ples by assigning higher likelihoods to anomalous
data. Energy-based models (EBMs) are flexible,
unnormalized density models which seem to be
able to improve upon this failure mode. In this
work, we provide an extensive study investigating
OOD detection with EBMs trained with different
approaches on tabular and image data and find
that EBMs do not provide consistent advantages.
We hypothesize that EBMs do not learn semantic
features despite their discriminative structure sim-
ilar to Normalizing Flows. To verify this hypothe-
ses, we show that supervision and architectural
restrictions improve the OOD detection of EBMs
independent of the training approach.

1. Introduction
To leverage deep learning in security-critical application
areas, such as medical applications and autonomous driving,
robustness, and uncertainty have recently received increased
attention (Varshney, 2016). An open question is to ensure
that the model does account for out-of-distribution (OOD)
data where recent work has shown that models tend to make
over-confident predictions (Lakshminarayanan et al., 2017;
Hein et al., 2019). One approach to solve this problem is to
estimate the training data distribution and reject samples if
the density at that point is low. However, Normalizing Flows,
(Rezende & Mohamed, 2016) which are powerful density
estimators based on a sequence of invertible transforma-
tions, tend to assign higher likelihoods to the OOD than the
in-distribution (ID) data (Nalisnick et al., 2019a). Another
promising class of density estimators without restrictions on
the architecture are Energy-based models (EBM) (LeCun
et al.). Recently, Grathwohl et al. (2020b) improved OOD
detection by interpreting discriminative models as EBMs.
This encourages that EBMs might be better suited for the
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task of OOD detection. In this work, we aim to investigate
this claim and the main factors facilitating superior OOD
detection of EBMs.
We summarize our contributions as follows: (1) we find
that EBMs do not strictly outperform Normalizing Flows
across multiple training methods, (2) identify that learning
semantic features induced by supervision improves OOD
detection in recent discriminative EBMs (Grathwohl et al.,
2020b) and, (3) show that one can use architectural modi-
fications to improve OOD detection with EBMs similar to
Normalizing Flows (Kirichenko et al., 2020).

2. Related Work
Classifier-based OOD detection. Initially, Hendrycks &
Gimpel (2018) proposed to use the maximum softmax prob-
ability as OOD score. Liang et al. (2020); Hsu et al. (2020)
augment this approach by temperature scaling. Other meth-
ods add additional loss terms to the objective to encourage
maximum entropy predictions for OOD inputs (Hendrycks
et al., 2019; Lee et al., 2018a; Sricharan & Srivastava, 2018;
Hein et al., 2019). Malinin & Gales (2018; 2019); Charp-
entier et al. (2020) obtain uncertainty estimates for OOD
detection by predicting parameters of a Dirichlet distribu-
tion for classification.
Density-based OOD detection. A set of methods estimates
the distribution over activations at multiple layers (Lee et al.,
2018b; Zisselman & Tamar, 2020). Other methods focus on
the data distribution directly: Nalisnick et al. (2019a) discov-
ered that the density learned by generative models cannot
distinguish between ID and OOD inputs. Various works
study this observation identifying background statistic (Ren
et al., 2019), excessive influence of input complexity (Serrà
et al., 2020), and mismatch between the typical set and high-
density regions (Nalisnick et al., 2019b; Choi et al., 2019;
Morningstar et al., 2020) as causes. In comparison to our
work, these methods focus on flow-based and autoregressive
density methods with tractable likelihood.
Recently, there has also been increasing interest in leverag-
ing EBMs as generative models for OOD detection. Du &
Mordatch (2020) investigate the generative capabilities and
generalization of EBMs to OOD inputs. Zhai et al. (2016)
train EBM architectures with a score matching objective
for anomaly detection. Grathwohl et al. (2020b;a) derive
optimization procedures for hybrid EBMs and investigate
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their OOD detection performance. However, existing work
does not study the factors leading to improved OOD detec-
tion with EBMs compared to other generative models. Thus,
most relevant to our work are the studies by Kirichenko et al.
(2020); Schirrmeister et al. (2020) which found that Nor-
malizing Flows learn low-level features common to image
datasets and thus struggle with detecting OOD inputs. We
aim to provide similar insight for EBMs.

3. Method
In the following, we specify the structure of the EBMs and
provide an overview of the training methods considered in
this work.
Energy-based model. EBMs (LeCun et al.) are defined by
an energy-function Eθ which defines a density over the data
x as

pθ(x) =
exp(−Eθ(x))

Z(θ)
(1)

where Z(θ) =
∫
exp(−Eθ(x))dx is the normalizing con-

stant and θ are learnable parameters. In particular, Eθ can
be any function E : RD 7→ R placing no restrictions on the
model compared to Normalizing Flows.
Joint Energy model. We additionally consider Joint Energy
models (JEM) for discriminative EBMs (Grathwohl et al.,
2020b). Given a classifier f : RD 7→ RC assigning logits
for C classes for a datapoint x ∈ RD, the probabilities over
the classes are defined as

pθ(y | x) =
exp(fθ(x)[y])∑
y′ exp(fθ(x)[y

′]
(2)

where fθ(x)[y] denotes the y-th logit. The logits fθ(x)[y]
can be interpret as unnormalized probabilities of the joint
distribution pθ(x, y) which yields the marginal distribution
over x as

pθ(x) =
∑
y

pθ(x, y) =
∑
y

exp(f(x)[y])

Z(θ)
(3)

We follow (Grathwohl et al., 2020b) and optimize the
factorization log pθ(x, y) = log pθ(x) + log pθ(y | x) us-
ing Equation (2) and Equation (3). In particular, we use
a Cross Entropy objective to optimize pθ(y | x) weighted
with hyperparameter γ.
For optimizing pθ(x), we consider different approaches
which have shown to scale to high-dimensional data. Note
that this term should contribute significantly to the OOD de-
tection performance of the model. We introduce the training
approaches used in this work in the following.
Sliced score matching. Hyvärinen (2005) propose to learn
an unnormalized density by approximating the score of the
distribution sθ(x) = ∇xp(x). Song et al. (2019) introduce

an efficient update formula based on random projection
EpvEp(x)

[
vT∇xsθ(x)v + 1

2‖sθ(x)‖
2
2

]
where v ∼ pv is a

simple distribution of random vectors.
Contrastive divergence. Hinton (2002) approximates
the gradient of the maximum likelihood objective by
∇θpθ(x) = Epθ(x′) [∇θEθ(x′)] −∇θEθ(x) Following re-
cent literature (Du & Mordatch, 2020), we approximate the
expectation with samples obtained through Stochastic Gra-
dient Langevin Dynamics (Welling & Teh, 2011).
VERA. Lastly, we consider the recently proposed Varia-
tional Entropy Regularized Approximate maximum like-
lihood (VERA) training (Grathwohl et al., 2020a) which
learns the parameters φ of a auxiliary distribution qφ as
the optimum of logZ(θ) = maxqφ Eqφ(x) [fθ(x)] +H(qφ)
which can be plugged into Equation (1) to obtain an alter-
native method for training EBMs. Grathwohl et al. (2020a)
propose a variational approximation to estimate the entropy
term Hqφ circumventing the need for sampling (Dieng et al.,
2019; Titsias & Ruiz, 2019).
While more approaches for training EBMs exist, they either
assume knowledge about a noise distribution close to the
ground-truth data distribution (Gutmann & Hyvarinen; Cey-
lan & Gutmann, 2018) or have shown to require prohibitive
amounts of training time in our experiments (Gao et al.,
2020).

4. Experiments
We investigate the OOD detection performance of EBMs
trained with the approaches discussed in Section 3. In par-
ticular, we verify the following hypotheses improving OOD
detection with EBMs in recent works (Grathwohl et al.,
2020b;a) compared to Normalizing Flows:
Dimensionality reduction. The manifold hypotheses (Fef-
ferman et al., 2013) suggests that high-dimensional data
such as images reside on a lower-dimensional manifold. Nor-
malizing Flows require invertible transformations and thus
operate in the original data space. We hypothesize that this
hinders OOD detection as they need to model off-manifold
directions. Contrarily, EBMs do not require invertibility,
which allows pruning of redundant dimensions without se-
mantic content.
Supervision. Kirichenko et al. (2020); Schirrmeister et al.
(2020) show that Normalizing Flows learn low-level features
without semantic meaning (smoothness, etc.) common to
all natural images (Serrà et al., 2020). We hypothesize that
label information encourages semantic, high-level features
instead, improving OOD detection.

Setup. We perform OOD detection by comparing the den-
sity of ID and OOD inputs under the learned pθ(x). For
evaluation, we consider OOD detection as a binary classi-
fication problem with labels 1 for ID and 0 for OOD and
report average precision (AUC-PR) as commonly done in



On Out-of-distribution Detection with Energy-Based Models

Table 1. AUC-PR for OOD detection on the respective in-distribution dataset.
ID dataset CIFAR-10 FMNIST Segment Sensorless

OOD dataset CIFAR-100 CelebA LSUN SVHN Textures KMNIST MNIST NotMNIST Segment OOD Sensorless OOD

CE 62.76 ± 1.46 64.47 ± 2.44 65.18 ± 5.79 47.51 ± 4.58 39.17 ± 2.28 69.07 ± 6.73 82.5 ± 12.27 50.9 ± 6.73 33.35 ± 1.82 33.02 ± 1.32
NF 58.34 74.68 62.99 31.58 50.23 62.22 49.03 93.68 99.45 ± 0.18 94.35

CD 50.51 ± 2.13 43.86 ± 5.85 54.43 ± 11.37 60.72 ± 24.59 76.21 ± 17.44 50.52 ± 9.39 31.69 ± 0.9 76.85 ± 2.66 98.18 ± 2.18 72.83 ± 16.19
SSM 53.82 ± 3.12 57.72 ± 7.0 52.79 ± 3.16 45.75 ± 7.24 48.82 ± 4.34 58.98 ± 5.48 67.86 ± 11.4 57.27 ± 13.73 79.43 ± 24.29 67.14 ± 20.31
VERA 55.95 ± 2.68 73.97 ± 2.63 67.39 ± 2.57 37.27 ± 4.66 46.29 ± 8.1 78.11 ± 21.05 67.53 ± 21.63 76.22 ± 22.11 94.63 ± 7.22 45.66 ± 10.55

ID dataset CIFAR-10 FMNIST Segment Sensorless

OOD dataset Constant Noise OODomain Constant Noise OODomain Constant Noise Constant Noise

CE 45.26 ± 8.8 61.13 ± 21.02 30.69 ± 0.0 35.5 ± 3.08 55.84 ± 22.32 30.74 ± 0.11 41.74 ± 18.57 33.66 ± 2.77 32.38 ± 1.19 31.97 ± 1.26
NF 30.87 83.65 100.0 71.07 98.04 100.0 99.95 100.0 100.0 100.0

CD 58.75 ± 28.17 100.0 ± 0.0 58.41 ± 37.96 70.59 ± 12.84 100.0 ± 0.0 100.0 ± 0.0 95.47 ± 2.34 95.14 ± 3.71 100.0 ± 0.0 100.0 ± 0.0
SSM 47.24 ± 15.56 70.28 ± 31.39 68.57 ± 25.2 47.57 ± 15.18 49.45 ± 21.19 76.76 ± 21.1 73.91 ± 25.44 81.1 ± 17.87 69.79 ± 6.62 64.61 ± 17.35
VERA 31.51 ± 0.66 100.0 ± 0.0 63.48 ± 34.37 53.24 ± 22.65 79.34 ± 27.34 72.42 ± 37.61 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.85 ± 0.31

the literature (Hendrycks & Gimpel, 2018). We train EBMs
with Sliced Score Matching (SSM), Contrastive Divergence
(CD), and VERA as described in Section 3. For baselines,
we compare with Normalizing Flow (NF) and the energy
score of a classifier (Liu et al., 2020) (CE) 1.
Datasets. Following (Charpentier et al., 2020), we consider
the tabular datasets Sensorless drive and Segment, with di-
mensionality 18 and 49 and 4 and 11 classes, respectively.
To obtain a representative OOD dataset, we remove one
class (sky) from Segment and two classes (10, 11) from Sen-
sorless drive. Further, we evaluate on image datasets. We
use FMNIST (Xiao et al., 2017) as ID dataset and MNIST
(Lecun et al., 1998), NotMNIST (Bulatov, 2011), KMNIST
(Clanuwat et al., 2018) as OOD datasets. Additionally, we
train on CIFAR-10 (Krizhevsky, 2009) and use LSUN (Yu
et al., 2016), Textures (Huang et al., 2020), CIFAR-100
(Krizhevsky, 2009), SVHN (Netzer et al., 2011) and Celeb-
A (Liu et al., 2015) as out-of-distribution. In the following,
we refer to these OOD datasets as natural OOD datasets. Fi-
nally, we generate non-natural OOD datasets with noise and
constant input. As proposed by Charpentier et al. (2020),
we also consider an OODomain dataset where the input data
is not normalized into the range [0, 1].
Natural vs. non-natural datasets. Note that the differentia-
tion of natural and non-natural datasets allows evaluating
distinct properties of the learned density: A model able to
distinguish natural inputs can recognize semantic features
of the high-level content of images, e.g., corresponding to
classes, while non-natural inputs are easily detected seman-
tically but lie farther away from the data manifold, thus, re-
quire the model to decrease the density when moving away
from the data distribution. Architectures. We use MLPs on
the tabular datasets and WideResNet-10-2 (Zagoruyko &
Komodakis, 2017) for the image datasets. For the Normal-
izing Flow baseline, radial flows (Rezende & Mohamed,
2016) are used on the tabular and Glow (Kingma & Dhari-
wal, 2018) on the image datasets. We provide more details
in Appendix C.

1We provide code at https://github.com/selflein/
EBM-OOD-Detection

4.1. Are EBMs better than baselines in general?

Experiment 1. We establish baseline results by training
EBMs and baseline models. In Table 1, we find that EBMs
consistenly outperform the CE baseline by 62.9%, 55.0%,
and 36.4% for CD, VERA, and SSM respectively. The im-
provements are moderate in comparison to the Normalizing
Flow baselines with 11.9%, 4.3%, and −4.3%. Notably,
improvements are mostly on natural datasets. As EBMs
perform dimensionality reduction since they map to the
scalar energy and do not consistently outperform Normaliz-
ing Flows in this experiment across all training methods, we
conclude that dimensionality reduction plays a minor role in
the OOD detection performance of recent EBMs (Grathwohl
et al., 2020b). We attribute slight improvements on natural
data to the ability to discard non-semantic dimensions in
EBMs.

4.2. Does supervision improve OOD detection?

Next, we consider two ways of incorporating labels to inves-
tigate the influence of supervision. Firstly, by applying an
additional loss term as in (Grathwohl et al., 2020b) which
affects the optimization directly, and secondly, perform-
ing density estimation on embeddings of a classification
model which incorporates supervision indirectly through
class-related features.
Experiment 2. We consider JEMs as introduced in Sec-
tion 3 and apply a cross entropy objective with weighting
hyperparameter γ optimizing pθ(y | x). In Table 2, we
find substantial improvements in OOD detection on most
datasets compared to the baseline models. Using label infor-
mation within the model encourages discriminative features
relevant for classification, improving detection of natural,
OOD inputs by 29.61%. These results indicate that EBM
training tends to assign high-likelihood to all natural, struc-
tured images, an issue also observed in other generative
models (Ren et al., 2019). Note however that supervision
decreases performance on some natural datasets and consis-
tently worsens results at differentiating non-natural inputs
(−11.74%). Investigating the difference in results between
natural and non-natural datasets, we observe in Figure 1

https://github.com/selflein/EBM-OOD-Detection
https://github.com/selflein/EBM-OOD-Detection
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Figure 1. AUC-PR for OOD detection for different settings of the weighting hyperparameter γ
of the cross entropy objective. FMNIST is used as the in-distribution dataset.

Figure 2. Unnormalized density p̃θ(x)
of inputs with increasing L2-norm.

Table 2. % improvement in AUC-PR for OOD detection when
using additional supervision during training.

Model ID dataset Natural Non-natural

CD

CIFAR-10 -10.82 -9.11
FMNIST 47.17 3.24
Segment 1.85 0.89
Sensorless 29.72 -0.02

SSM

CIFAR-10 7.33 -27.94
FMNIST 50.61 -20.26
Segment 25.89 -21.94
Sensorless 22.13 -40.73

VERA

CIFAR-10 -1.16 -3.00
FMNIST 33.66 -15.53
Segment 4.98 -0.57
Sensorless 97.93 0.07

that the OOD detection on non-natural images is negatively
impacted by increasing weighting of the cross-entropy ob-
jective. In Figure 2, we observe that the EBM assigns ex-
ponentially increasing density to datapoints distant from
the training data distribution for higher settings of γ sim-
ilar to what has been proven for the confidence in ReLU
networks (Hein et al., 2019). As a result non-natural inputs
which are further away from the training data than natural
images become increasingly harder to detect. We conclude
that training with this factorization requires tuning of γ to
achieve high OOD detection performance on both natural
and non-natural inputs.
Experiment 3. Sidestepping the issue of tuning γ, we fol-
low Kirichenko et al. (2020) noticing that training Normal-
izing Flows on high-level features improves OOD detection.
To investigate this behavior for EBMs, we store the features
from a classifier trained with cross-entropy objective after
convolutional layers. Subsequently, we train EBMs on these
embeddings. In Table 3, we observe that density estimation
on embeddings significantly improves results on natural
datasets compared to the baseline trained on images directly
(+53.65%). Further, performance on non-natural datasets
does not deteriorate with this approach and increases perfor-
mance by 10.98% on average. As training on discriminative
features directly improves OOD detection, this supports our
hypotheses that EBMs trained on high-dimensional data
such as images struggle to learn semantic features.

Table 3. % improvement in
AUC-PR for OOD detection
when training on embeddings.
Model ID dataset Natural Non-natural

CD CIFAR-10 48.60 3.37
FMNIST 95.79 -13.52

SSM CIFAR-10 53.84 -2.31
FMNIST 58.40 59.59

VERA CIFAR-10 50.16 16.97
FMNIST 15.12 1.80

Table 4. % improvement in
AUC-PR for OOD detection
after introducing bottlenecks.
Model ID dataset Natural Non-natural

CD CIFAR-10 20.18 20.38
FMNIST 67.95 10.88

SSM CIFAR-10 14.76 33.34
FMNIST 1.75 -5.92

VERA CIFAR-10 19.66 33.22
FMNIST 26.84 32.94

4.3. Can we encourage semantic features?

While EBMs inherently perform dimensionality reduction,
the previous experiments suggest this being insufficient to
capture semantic features within the data. As shown by
Kirichenko et al. (2020), introducing a bottleneck in the
coupling transforms of Normalizing Flows enforces the net-
work to learn semantic features improving OOD detection.
This can also be interpret in the frame of compression (Serrà
et al., 2020) where redundant information is removed.
Experiment 4. We introduce bottlenecks after every block
of the WRN through a set of 1× 1 convolutions mapping
to 0.2× the original dimensionality. In Appendix A, we pro-
vide results for other settings of the bottleneck. In Table 4,
we observe that this simple adjustment yields improvements
in OOD detection on natural images for all training methods.
The bottlenecks force the network to compress the features
removing redundant information and enable improved OOD
detection supporting the hypotheses that generic EBMs re-
tain non-semantic features. We provide further investigation
on low-level features in Appendix A.1.

5. Conclusion
Overall, we find that (1) EBMs struggle with OOD detec-
tion on high-dimensional data but to a lower degree than
Normalizing Flows, (2) incorporating task-specific priors
such as supervision significantly improves OOD detection
on natural OOD data, and (3) architectural modifications
can be used to improve the OOD detection performance.



On Out-of-distribution Detection with Energy-Based Models

References
Bulatov, Y. Machine Learning, etc: notMNIST dataset,

September 2011.

Ceylan, C. and Gutmann, M. U. Conditional
Noise-Contrastive Estimation of Unnormalised Models.
arXiv:1806.03664 [cs, stat], June 2018.
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Appendix

A. Additional results
For completeness, we report the full results for OOD de-
tection on natural datasets in Table 5 and on non-natural
datasets in Table 6. Model with -E suffix correspond to mod-
els trained on embeddings of the classifier, while models
with the -S suffix correspond to model trained with addi-
tional supervision in the form of cross-entropy objective
weighted with parameter γ = 1.

We also present the results for different choices of the bot-
tleneck dimensionality in Table 7.

In addition to the results on the effect of the weighting pa-
rameter γ of the cross-entropy loss on OOD detection in
EBMs on FMNIST in the main paper, we add results for the
Segment dataset in Figure 6, the Sensorless dataset in Fig-
ure 7 and CIFAR-10 in Figure 8. Our findings hold that the
choice of γ heavily affects the OOD detection performance
in particular on high-dimensional datasets.

A.1. Low-level features in EBMs

In the main paper, we argue that supervision encourages
semantic features while unsupervised EBMs learn generic
local pixel correlations (low-level features) common to all
natural images as shown by Schirrmeister et al. (2020)
which results in worse OOD detection performance on these
datasets.

Figure 3. Example images generated with pooling sizes 2, 3, 4, and
16. Note that images become smoother the higher the pooling size.

Experiment 5 To provide further evidence for our ob-
servation that low-level features affect the likelihood of
unsupervised EBMs, we include density histograms for
datasets with varying low-level features. We take inspira-
tion from (Serrà et al., 2020) and generate images with
varying smoothness properties which has shown to affect
the likelihood of samples in other generative models. In or-
der to obtain images with different smoothness, we sample
uniform noise at each pixel independently, apply average
pooling with different pooling sizes, and resize to the origi-

nal image dimensions with nearest neighbour upsampling.
Images after this pre-processing procedure are shown in Fig-
ure 3. Subsequently, we estimate the density of 1000 images
generated at each pooling fidelity under our models. Note
that we use average pooling in comparison to max pooling
in Serrà et al. (2020) since max pooling leads to images with
different statistics (higher mean) for higher pooling sizes.
Average pooling allows use to isolate the contribution of the
change of features independent of image statistics.

In Figure 4a, we observe that unsupervised EBMs assign
higher likelihood to smoother versions of the dataset (cor-
responding to higher pooling sizes), while the supervised
EBM is not affected by the change of low-level features
in Figure 4b. This demonstrates that unsupervised EBMs
are susceptible to low-level features affecting the likelihood
of samples, while supervised EBMs rely on higher-level,
semantic features to assign likelihoods.

In Figure 4c and Figure 4d, we investigate the effect of ap-
plying the bottleneck to the architecture of the unsupervised
EBM. We observe that the EBM with bottleneck assigns
higher relative likelihood to the FashionMNIST test set vs.
the artificial noise datasets containing low-level features
only. This supports our observation in the main paper that
including bottlenecks within the EBM helps the model to
learn semantic features rather than local, low-level feature
correlations.

Experiment 6 Finally, we investigate images under the
learned EBMs. Samples from the FashionMNIST dataset
can be found in Figure 5a. We optimize the likelihood of
these samples under the model and visualize samples for
unsupervised EBM in Figure 5b and for supervised EBM in
Figure 5c.

We observe that while the semantic content of samples under
the unsupervised model becomes almost indistinguishable,
the samples under the supervised model largely preserve
their class semantics.

This result once more highlights that low-level features are
the driving factor for high likelihood in unsupervised EBMs,
while a notion of semantics is learned in supervised EBMs.

B. Training details
In this section, we provide further details on the training pro-
cedures and hyperparameters used for individual methods.
Unless otherwise specified we use the Adam optimizer with
default parameters β1 = 0.9 and β2 = 0.999. Further, we
use learning rate warm-up with 2500 steps across all models.
We train the models on the tabular datasets for 10, 000 steps
and the image datasets for 50 epochs. We perform model se-
lection based on the AUC-PR on an OOD validation dataset.
For CIFAR-10, we use the validation sets of CelebA and
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(a) Unsupervised EBM. (b) Supervised EBM.

(c) EBM (unsupervised) without bottleneck. (d) EBM (unsupervised) with bottleneck.

Figure 4. (a, b) Density histograms of generated dataset of noise images with different smoothness under different EBMs. Higher pooling
corresponds to higher smoothness of the input images as visualized in Figure 3. (c, d) Comparison of density histogram of ID test set of
FMNIST vs. low-level feature datasets for an EBM with and without bottleneck.

CIFAR-100, while for FMNIST we use the validation sets
of MNIST and KMNIST. On the tabular dataset, we use
10% of the data of the removed classes for model selection
and the remaining data as the test set.

Contrastive Divergence Following (Grathwohl et al.,
2020b; Du & Mordatch, 2020), we use persistent contrastive
divergence (Tieleman, 2008) which significantly reduces
compute compared to seeding new chains at every itera-
tion as in (Nijkamp et al., 2019). For the parameters of the
Stochastic Gradient Langevin Dynamics sampler, we use
the settings of Grathwohl et al. (2020b) and set the step size
α to 1 and reinitialize samples from the replay buffer with
probability 0.05. The size of the buffer is set to 10000. In
contrast to (Grathwohl et al., 2020b), we found that training
with 20 SGLD steps consistently diverged, thus, we set the
number of SGLD steps to 100 which lead to stable con-
vergence. Further, we set the initial learning rate to 0.001.
We add additive Gaussian noise with variance 0.1 to the
inputs in order to stabilize training (Du & Mordatch, 2020;
Nijkamp et al., 2019).

VERA We use the default hyperparameters proposed in
(Grathwohl et al., 2020a) and initialize the variance of the
variational approximation η with 0.1 and clamp it in the
range [0.01, 0.3]. We perform a grid search for the entropy

regularizer in [1e − 4, 1] and found 1e−4 to yield to the
best results in terms for training stability. Further, we set the
learning rate of the EBM to 3e−4 and the learning rate of the
generator to 6e−4. The Adam optimizer is used to optimize
the generator with parameters β1 = 0.0 and β2 = 0.9.

For the generator architecture, we use a 5-layer MLP for the
tabular datasets with hidden dimension 100 and leaky ReLU
activations with slope 0.2. The latent distribution is a 16-
dim. isotropic Normal distribution. For the image datasets,
we follow (Grathwohl et al., 2020a) and use the generator
from (Miyato et al., 2018) based on ResNet blocks with
latent dimension 128.

Sliced Score Matching We set the distribution pv to a
multivariate Rademacher distribution which enables to use
the variance reduced objective (SSM-VR) where the ex-
pectation Epv

[
vT sm(x; θ))2

]
= ‖sm(x; θ)‖22 can be inte-

grated analytically (Song et al., 2019). sm denotes the score
function of the EBM. During training, we use a single pro-
jection vector v from pv to compute the objective.

Normalizing Flow We train Normalizing Flow models
with maximum likelihood and learning rate 1e−3. We per-
form early stopping based on the log-likelihood with pa-
tience 10.
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Cross-entropy classifier We train our cross-entropy base-
line with learning rate 1e−3 on the tabular and 1e−4 on the
image datasets. Further, we use weight decay with weight
5e−4 and perform early stopping based on the accuracy of
the model.

C. Architecture details
For the Normalizing Flows on the image datasets, we use
a Glow (Kingma & Dhariwal, 2018) implementation with
L = 3 layers, K = 32 steps, and C = 512 channels2. On
the tabular datasets, we use 20 stacked radial transforms
(Rezende & Mohamed, 2016). For all other models, we use
a 5-layer MLP with ReLU activations on the tabular datasets
and WideResNet-10-2 (Zagoruyko & Komodakis, 2017) on
the image datasets.

D. Dataset details
In this section, we provide additional details on how we gen-
erate non-natural OOD datasets used in the paper. For the
Noise dataset, we use an equal amount of samples from a
Gaussian distribution N(0, 1) and a uniform distribution
U(−1, 1). The Constant dataset is sampled by drawing
a scalar from U(−1, 1) and then filling a tensor with the
same shape as the input data with the sampled value. Fi-
nally, OODomain inputs are the SVHN dataset and KM-
NIST dataset, where we do not apply normalization, for the
in-distribution datasets of CIFAR-10 and FMNIST, respec-
tively. As a result, the data is in the range [0, 255].

2https://github.com/chrischute/glow
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(a) Dataset samples. (b) Optimized samples under unsupervised EBM.

(c) Optimized samples under supervised EBM.

Figure 5. Samples from the FMNIST dataset.

Figure 6. AUC-PR for OOD detection for different settings of the weighting hyperparameter γ of the cross entropy objective. Segment is
used as the in-distribution dataset.

Figure 7. AUC-PR for OOD detection for different settings of the weighting hyperparameter γ of the cross entropy objective. Sensorless
is used as the in-distribution dataset.
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Figure 8. AUC-PR for OOD detection for different settings of the weighting hyperparameter γ of the cross entropy objective. CIFAR10 is
used as the in-distribution dataset.

Table 5. AUC-PR for OOD detection on the natural datasets when trained on the respective in-distribution dataset.
ID dataset CIFAR-10 FMNIST Segment Sensorless

OOD dataset CIFAR-100 CelebA LSUN SVHN Textures KMNIST MNIST NotMNIST Segment OOD Sensorless OOD
Model

CE 62.76 ± 1.46 64.47 ± 2.44 65.18 ± 5.79 47.51 ± 4.58 39.17 ± 2.28 69.07 ± 6.73 82.5 ± 12.27 50.9 ± 6.73 33.35 ± 1.82 33.02 ± 1.32
NF 58.34 74.68 62.99 31.58 50.23 62.22 49.03 93.68 99.12 94.35

CD 50.51 ± 2.13 43.86 ± 5.85 54.43 ± 11.37 60.72 ± 24.59 76.21 ± 17.44 50.52 ± 9.39 31.69 ± 0.9 76.85 ± 2.66 98.18 ± 2.18 72.83 ± 16.19
CD-E 77.88 ± 1.61 66.21 ± 1.94 80.61 ± 4.26 97.38 ± 1.15 98.6 ± 0.56 90.53 ± 3.38 93.05 ± 2.88 88.05 ± 4.5 - -
CD-S 49.81 ± 1.15 50.15 ± 4.24 53.09 ± 1.04 45.14 ± 7.55 46.55 ± 4.37 93.88 ± 1.44 83.47 ± 2.93 98.03 ± 0.53 100.0 ± 0.0 94.48 ± 2.11

SSM 53.82 ± 3.12 57.72 ± 7.0 52.79 ± 3.16 45.75 ± 7.24 48.82 ± 4.34 58.98 ± 5.48 67.86 ± 11.4 57.27 ± 13.73 79.43 ± 24.29 67.13 ± 20.31
SSM-E 84.73 ± 0.67 78.62 ± 2.23 89.4 ± 1.18 74.69 ± 2.76 69.8 ± 2.72 97.88 ± 0.66 95.57 ± 0.97 96.44 ± 0.83 - -
SSM-S 62.71 ± 0.98 57.15 ± 2.18 68.77 ± 4.5 46.54 ± 3.54 43.51 ± 2.74 93.77 ± 1.08 99.22 ± 0.19 84.93 ± 2.07 100.0 ± 0.0 81.99 ± 21.79

VERA 55.95 ± 2.68 73.97 ± 2.63 67.39 ± 2.57 37.27 ± 4.66 46.29 ± 8.1 78.11 ± 21.05 67.53 ± 21.63 76.22 ± 22.11 94.63 ± 7.22 45.66 ± 10.55
VERA-E 76.66 ± 3.23 73.41 ± 6.68 81.31 ± 3.92 83.6 ± 7.45 78.52 ± 7.98 85.8 ± 15.18 88.52 ± 13.91 79.58 ± 15.61 - -
VERA-S 61.37 ± 0.74 85.02 ± 2.38 58.91 ± 3.66 38.35 ± 1.08 36.68 ± 0.52 98.89 ± 0.61 99.64 ± 0.53 97.75 ± 1.72 99.35 ± 1.08 90.38 ± 3.78

Table 6. AUC-PR for OOD detection on the non-natural datasets when trained on respective in-distribution dataset.
ID dataset CIFAR-10 FMNIST Segment Sensorless

OOD dataset Constant Noise OODomain Constant Noise OODomain Constant Noise Constant Noise
Model

CE 45.26 ± 8.8 61.13 ± 21.02 30.69 ± 0.0 35.5 ± 3.08 55.84 ± 22.32 30.74 ± 0.11 42.57 ± 18.3 33.82 ± 3.14 32.42 ± 1.04 31.96 ± 1.28
NF 30.87 83.65 100.0 71.07 98.04 100.0 99.97 100.0 100.0 100.0

CD 58.75 ± 28.17 100.0 ± 0.0 58.41 ± 37.96 70.59 ± 12.84 100.0 ± 0.0 100.0 ± 0.0 96.13 ± 2.55 95.43 ± 3.58 100.0 ± 0.0 100.0 ± 0.0
CD-E 99.92 ± 0.07 87.5 ± 24.31 30.69 ± 0.0 96.63 ± 7.53 86.7 ± 26.75 35.83 ± 7.8 - - - -
CD-S 31.32 ± 0.29 98.01 ± 0.93 70.86 ± 30.57 71.17 ± 10.16 97.79 ± 1.02 100.0 ± 0.0 94.57 ± 2.11 98.68 ± 1.9 99.97 ± 0.06 99.98 ± 0.03

SSM 47.24 ± 15.56 70.28 ± 31.39 68.57 ± 25.2 47.57 ± 15.18 49.45 ± 21.19 76.76 ± 21.1 74.86 ± 23.37 80.35 ± 17.38 69.66 ± 6.12 64.81 ± 17.03
SSM-E 65.64 ± 3.66 64.5 ± 4.05 42.74 ± 6.73 82.51 ± 4.95 87.54 ± 2.17 98.49 ± 1.94 - - - -
SSM-S 37.8 ± 3.49 64.24 ± 12.88 30.69 ± 0.0 37.61 ± 1.83 33.71 ± 1.07 70.03 ± 17.45 51.57 ± 25.04 70.09 ± 17.57 37.5 ± 13.23 41.6 ± 12.05

VERA 31.51 ± 0.66 100.0 ± 0.0 63.48 ± 34.37 53.24 ± 22.65 79.34 ± 27.34 72.42 ± 37.61 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.88 ± 0.25
VERA-E 83.95 ± 8.71 36.19 ± 4.43 30.69 ± 0.0 77.82 ± 21.24 60.28 ± 10.11 60.29 ± 28.5 - - - -
VERA-S 31.7 ± 0.55 45.32 ± 25.14 92.1 ± 8.59 36.01 ± 4.24 33.73 ± 3.21 100.0 ± 0.0 99.01 ± 1.45 99.9 ± 0.3 100.0 ± 0.0 100.0 ± 0.01
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Table 7. AUC-PR for OOD detection of EBMs with different choices of the dimension of the bottleneck introduced into the WideResNet-
10-2.

ID dataset CIFAR-10 FashionMNIST

OOD dataset SVHN LSUN CelebA CIFAR-100 Textures Noise OODomain Constant KMNIST MNIST NotMNIST Noise OODomain Constant
Model Bottleneck

MCMC

0.05 81.29 42.16 42.82 53.09 59.13 100.0 76.77 78.4 65.27 43.26 80.72 100.0 100.0 73.18
0.10 67.93 48.3 52.71 53.47 61.99 100.0 62.19 70.85 73.8 53.23 83.25 100.0 100.0 78.27
0.20 77.97 43.8 42.19 51.85 63.53 100.0 85.99 79.71 73.46 51.8 81.2 99.99 100.0 64.49
1.00 60.72 54.43 43.86 50.51 76.21 100.0 58.41 58.75 50.52 31.69 76.85 100.0 100.0 70.59

SSM

0.05 53.6 49.44 54.06 53.47 43.3 51.57 89.8 67.7 56.79 62.09 49.05 42.48 77.2 46.42
0.10 52.51 49.4 57.4 51.54 40.74 40.81 87.05 62.91 58.32 69.04 48.75 46.52 65.72 42.82
0.20 52.69 49.29 59.96 52.37 49.31 49.26 71.39 57.82 62.31 53.76 68.8 67.07 65.84 56.88
1.00 45.75 52.79 57.72 53.82 48.82 70.28 68.57 47.24 58.98 67.86 57.27 49.45 76.76 47.57

VERA

0.05 33.34 89.65 82.69 55.22 58.13 72.28 86.14 30.92 87.52 80.64 75.22 74.43 100.0 33.09
0.10 34.52 80.64 79.4 54.44 54.84 45.02 84.56 33.65 86.85 85.65 66.3 75.58 96.28 31.54
0.20 33.95 73.29 76.1 54.03 45.01 48.29 73.57 31.31 88.7 89.06 60.7 59.56 100.0 36.01
1.00 37.27 67.39 73.97 55.95 46.29 100.0 63.48 31.51 78.11 67.53 76.22 79.34 72.42 53.24


