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Abstract

We show that a single softmax neural net with
minimal changes can beat the uncertainty predic-
tions of Deep Ensembles and other more complex
single-forward-pass uncertainty approaches. Stan-
dard softmax neural nets suffer from feature col-
lapse and extrapolate arbitrarily for OoD points.
This results in arbitrary softmax entropies for
OoD points which can have high entropy, low,
or anything in between, thus cannot capture epis-
temic uncertainty reliably. We prove that this
failure lies at the core of "why" Deep Ensemble
Uncertainty works well. Instead of using softmax
entropy, we show that with appropriate inductive
biases softmax neural nets trained with maximum
likelihood reliably capture epistemic uncertainty
through their feature-space density. This den-
sity is obtained using simple Gaussian Discrim-
inant Analysis, but it cannot represent aleatoric
uncertainty reliably. We show that it is neces-
sary to combine feature-space density with soft-
max entropy to disentangle uncertainties well. We
evaluate the epistemic uncertainty quality on ac-
tive learning and OoD detection, achieving SOTA
~ 98 AUROC on CIFAR-10 vs SVHN without
fine-tuning on OoD data.

1. Introduction

Two types of uncertainty are often of interest in ML: epis-
temic uncertainty, which is inherent to the model, caused
by a lack of training data, and hence reducible with more
dateﬂ and aleatoric uncertainty, caused by inherent noise
or ambiguity in data, and hence irreducible with more data
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"We follow the definition of epistemic uncertainty at input  as
a quantity which is high for a previously unseen x, and decreases
when x’s label is added to the training set and the model is updated.

(Der Kiureghian & Ditlevsen, 2009; Kendall & Gal,[2017).
Disentangling these two and reasoning about each one inde-
pendently is critical for applications such as active learning
(Gal et al.L 2017) or detection of out-of-distribution (OoD)
samples (Hendrycks & Gimpel, [2016)): in active learning,
we wish to avoid inputs with high aleatoric but low epistemic
uncertainty, and in OoD detection, we wish to avoid mistak-
ing ambiguous in-distribution (iD) examples as OoD. This
is particularly challenging for noisy and ambiguous datasets
found in safety-critical applications like autonomous driving
(Huang & Chen, [2020) and medical diagnosis (Esteva et al.
2017} [Filos et al.,[2019).

Most well-known methods of uncertainty quantification in
deep learning (Blundell et al., 2015} |Gal & Ghahramanil
2016; |[Lakshminarayanan et al.l [2017; [Wen et al.l 2019;
Dusenberry et al., 2020) require multiple forward passes
at test time. Amongst these, Deep Ensembles (Lakshmi-
narayanan et al., |2017) have generally performed best in
uncertainty prediction (Ovadia et al.l 2019), but their signif-
icant memory and compute burden at training and test time
hinders their adoption in real-life and mobile applications.
Consequently, there has been an increased interest in uncer-
tainty quantification using deterministic single forward-pass
neural networks which have a smaller footprint and lower
latency.

Two recent works in single forward-pass uncertainty, DUQ
(van Amersfoort et al., [2020) and SNGP (Liu et al., [2020al),
propose distance-aware output layers, in the form of RBFs
(radial basis functions) or GPs (Gaussian processes), and
introduce additional inductive biases in the feature extractor
using a Jacobian penalty (Gulrajani et al.l 2017) or spectral
normalisation (Miyato et al., 2018), respectively. These
methods perform well and are competitive with Deep En-
sembles on common uncertainty benchmarks. However,
they require training to be changed substantially, use addi-
tional hyper-parameters due to the specialised output layers
used at training, and in the case of DUQ, do not differentiate
between epistemic and aleatoric uncertainty, all of which
hinders adoption.

In this paper we introduce a new model class, Deep Deter-
ministic Uncertainty (DDU), and show that by enforcing
smoothness and sensitivity on the feature-space as inductive
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biases, a single softmax neural network trained with maxi-
mum likelihood can reliably capture epistemic uncertainty
through its feature-space density, with no adaptations re-
quired for its training procedure. While sensitivity prevents
feature collapse, which happens when feature extractors
map OoD samples to iD regions in feature space (van Amers{
foort et al., 2020), smoothness ensures that feature-space
distances are meaningful (Liu et al.| |2020a}; Rosca et al.|
2020), and as we show below, this is closely tied to feature-
space density when using a distance-based density estima-
tor. Given a pre-trained softmax neural network with such
inductive biases, we employ Gaussian Discriminant Anal-
ysis (GDA), which fits a Gaussian Mixture Model (GMM)
with one Gaussian per class on the feature space of the pre-
trained network (Murphyl, 2012), and use its density to esti-
mate epistemic uncertainty. Our sensitivity and smoothness
constraints are crucial, as without these the feature-space
density alone might not separate in-distribution from OoD
data, possibly explaining the limited empirical success of
previous approaches which attempt to model feature-space
density with no constraints over the feature space (Lee et al.
2018bj |Postels et al., [2020). This can be clearly seen in
Figure [[(d)] further discussed below. Finally, by combin-
ing information from both the feature-space density and the
softmax entropy, we can correctly disentangle epistemic and
aleatoric uncertainty. We show that this is necessary since a
single output layer (either softmax or GDA) cannot gener-
ally be optimal for capturing both epistemic and aleatoric
uncertainty at the same time.

In Figure [I] we train a LeNet (LeCun et al,[1998), a VGG-
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(a) Dirty-MNIST (iD), (b) Softmax entropy (MNIST vs
Ambiguous-MNIST)

(d) Feature space density

(c¢) Softmax entropy

Figure 1: OoD separation for neural networks without
and with appropriate inductive biases (LeNet & VGG vs
ResNet+SN resp.), using softmax entropy (left) and feature-
space density (GMM, right). All trained on Dirty-MNIST
as in-distribution (iD) and evaluated on

, see Softmax entropy of a model with
appropriate inductive biases (ResNet+SN) trained on Dirty-
MNIST is able to capture aleatoric uncertainty correctly. It
separates MNIST from Ambiguous-MNIST, both iD in this
case. Softmax entropy has arbitrary values for OoD,
indistinguishable from iD, thus cannot separate OoD from
iD.[(d): Without appropriate inductive bias (LeNet & VGG),
feature density suffers from feature collapse, leading to OoD
density overlapping with iD. However, with appropriate
inductive biases (DDU with ResNet+SN), the densities do
not overlap.

16 (Simonyan & Zisserman, 2015) and a model with our
inductive biases (a ResNet-18 with spectral normalisation,
ResNet+SN (He et al.} 2016; Miyato et al.,|2018))) on Dirty-
MNIST, a modified version of MNIST (LeCun et al., [1998)
with additional ambiguous digits (Ambiguous-MNIST).
Ambiguous-MNIST contains samples with multiple plau-
sible labels and thus higher aleatoric uncertainty (see Fig-
ure [I(a)). We refer to Appendix [D]for details on how this
dataset was generated. With ambiguous data having various
levels of aleatoric uncertainty, Dirty-MNIST is more repre-
sentative of real-world datasets compared to well-cleaned
curated datasets, like MNIST and CIFAR-10, commonly
used for benchmarking in ML (Filos et al.| 2019} |Krizhevsky
et al.| 2009). At the same time, Dirty-MNIST poses a chal-
lenge for recent uncertainty estimation methods, which often
confound aleatoric and epistemic uncertainty. Figure|l(c)
shows that the softmax entropy of a deterministic model
is unable to distinguish between iD (Dirty-MNIST) and
OoD (Fashion-MNIST (Xiao et al., 2017))) samples as the
entropy for the latter heavily overlaps with the entropy for
Ambiguous-MNIST samples. However, the feature-space
density of the model with our inductive biases in Figure[TI(d)|
captures epistemic uncertainty reliably and is able to distin-
guish iD from OoD samples. The same cannot be said for
LeNet or VGG in Figure [I(d)} whose densities are unable
to separate OoD from iD samples. This demonstrates the
importance of the inductive bias to ensure the sensitivity
and smoothness of the feature space as we further argue
below. Finally, Figure [I(b)] and Figure [I(d)] demonstrate
that our method is able to separate aleatoric from epistemic
uncertainty: samples with low feature density have high
epistemic uncertainty, whereas those with both high fea-
ture density and high softmax entropy have high aleatoric
uncertainty—note the high softmax entropy for the most
ambiguous Ambiguous-MNIST samples in Figure [I(b)]

Our contributions are as follows. In Section 2] we show
that i) we cannot estimate epistemic uncertainty from a de-
terministic softmax model’s softmax entropy (and in fact,
this is tied to the very reason why Deep Ensembles cap-
ture uncertainty well), hence we must resort to alternatives
such as feature-space density; ii) feature collapse leads to a
failure in capturing epistemic uncertainty via feature-space
density of a deterministic softmax model, and enforcing
smoothness and sensitivity on the feature space alleviates
this problem; iii) that we need both softmax entropy and
feature density to disentangle epistemic uncertainty from
aleatoric uncertainty; and iv) we must use separate output
layers for aleatoric and epistemic uncertainty because a sin-
gle output layer cannot generally be optimal for both. In
Section 3] we detail how to implement our approach, DDU,
with no change to training procedure and minimal changes
to softmax models’ architecture. Finally, in Appendix [C]
we validate on relevant tasks like OoD detection and active



Deterministic Neural Networks with Inductive Biases Capture Epistemic and Aleatoric Uncertainty

learning that with DDU, using a single deterministic model
with appropriate inductive biases, we are able to outper-
form Deep Ensemble uncertainty and other deterministic
uncertainty baselines while maintaining high accuracy.

2. Uncertainty in Deterministic Softmax
Models

In Appendix [A] and Appendix [B} we provide a detailed
description of related work and background concepts for
this paper. In this section, we motivate DDU step by step.
Additional formalisations and proofs for all statements in
this section are provided in the Appendix [I}

Softmax entropy cannot capture epistemic uncertainty
because Deep Ensembles can. As mentioned in Ap-
pendix [B] Equation (I) can be used with Deep Ensem-
bles, as each ensemble member can be considered a sample
from some distribution p(w | D) over model parameters
w C  (e.g. a uniform distribution over K trained ensem-
ble members wy, ..., wg ). Note that the mutual information
I[Y;w | z, D] isolates epistemic from aleatoric uncertainty
for Deep Ensembles as well, whereas the predictive entropy
H[Y | z, D] (often used with Deep Ensembles) measures
predictive uncertainty, which will be high whenever either
epistemic or aleatoric uncertainties are high. Furthermore,
the mechanism underlying Deep Ensemble uncertainty that
pushes epistemic uncertainty to be high on OoD data is the
function disagreement between different ensemble compo-
nents, i.e. arbitrary extrapolations of the softmax models
composing the ensemble (leading the “aleatoric” term in
Equation to vanish (Smith & Gal, |2018))). From this and
Equation (TJ), we can draw the following conclusion:

Proposition 2.1. Let x1 and x5 be points such that x1 has
higher epistemic uncertainty than xo under the ensemble:
I[Y1;w | 21, D] > [[Yo;w | 22, D] + 6, with § > 0. Further
assume both have similar predictive entropy | H[Y1 |z1, D]—
H[Y: | 22,D]| < €, for € > 0. Then, there exist sets of
ensemble members Q2 with p(Q | D) > 0, such that for all
softmax models w € () the softmax entropy of 1 is lower
than the softmax entropy of xo: H[Y7 | x1,w] < H[Y: |
Zo,w| — (0 — €).

This shows that if a sample is assigned higher epistemic
uncertainty (in the form of mutual information) by a Deep
Ensemble, it will necessarily be assigned lower softmax
entropy by at least one of the ensemble’s members. As a
result, the empirical observation that the mutual informa-
tion of an ensemble can quantify epistemic uncertainty well
implies that the softmax entropy of a deterministic model
cannot. This claim is further supported by Figure (and
Appendix [H] and where we observe the softmax en-
tropy for OoD samples to have values which can be high,
low or anywhere in between. This failure of softmax entropy
motivates us to study feature density as an alternative.

Capturing epistemic uncertainty in feature space re-
quires sensitivity and smoothness. As discussed in Ap-
pendix [B] feature extractors without sensitivity and smooth-
ness constraints can suffer from feature collapse: they might
map OoD samples to iD regions of the feature space. ivan
Amersfoort et al.| (2020) argue that sensitivity and smooth-
ness are necessary for capturing epistemic uncertainty and
show this empirically. [Liu et al.| (2020a) also show that a
bi-Lipschitz constraint ensures both smoothness and sensi-
tivity. This motivates our choice to focus on bi-Lipschitz
constraints for DDU. The effects of these inductive biases
on feature collapse are visible in Figure[I] In the case of
feature collapse, we must have some OoD inputs for which
the features are mapped on top of the features of iD inputs.
The distances of these OoD features to each class centroid
must be equal to the distances of the corresponding iD in-
puts to class centroids, and hence the density for these OoD
inputs must be equal to the density of the iD inputs. If the
density histograms do not overlap, no feature collapse can
be presenﬂ We see no overlapping densities in Figure c,
right) when we use an appropriate inductive bias, therefore
we indeed have no feature collapse.

Disentangling epistemic and aleatoric uncertainty is not
trivial. A feature-density estimator fit to iD data cannot
generally estimate aleatoric uncertainty well: an iD sam-
ple ought to have a high density regardless of whether it
is ambiguous (with high aleatoric uncertainty) or not, as
is the case with Dirty-MNIST (see Section E]) Likewise,
softmax entropy cannot capture epistemic uncertainty (see
Figure where entropy cannot distinguish OoD from
ambiguous iD samples).

Observation 2.2. Neither the softmax entropy of a deter-
ministic model, nor the feature density alone, even with
sensitivity and smoothness, can be used to disentangle epis-
temic from aleatoric uncertainty.

Furthermore, as we prove next, the predictive probability
induced by the feature-density estimator will generally not
be well-calibrated as there is an objective mismatch. This
was overlooked in previous research on uncertainty quantifi-
cation for deterministic models (Lee et al.,[2018b; |[L1u et al.|
2020a; ivan Amersfoort et al., [2020; He et al., 2016)) as they
do not consider ambiguous samples which can be found in
many real world applications.

Capturing aleatoric and epistemic uncertainty requires
multiple generative classifiers. A single output layer,
whether a softmax layer or GMM, cannot be optimal for
both feature-space density and predictive distribution esti-
mation as there is an objective mismatch:

Proposition 2.3. For an input z, let z = fo(x) denote its
Note though that the opposite (‘if the density histograms over-

lap then there must be feature collapse’) needs not hold: the his-
tograms can also overlap due to other reasons.
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feature representation in a feature extractor fg with param-
eters 0. Then the following hold:

1. A discriminative classifier p(y | z), e.g. a softrmax layer,
is well-calibrated in its predictions when it maximises
the conditional log-likelihood log p(y | 2);

2. A feature-space density estimator q(z) is optimal when
it maximises the marginalised log-likelihood log q(z);

3. A mixture model q(y, z) cannot generally maximise both
objectives, conditional log-likelihood and marginalised
log-likelihood, at the same time. In the specific instance
that it does maximise both, the resulting model must be
a GDA (but the opposite does not hold).

Note that if the two objectives coincide, then the resulting
model must be a GDA. But the opposite is not true: given
a GDA, the two objectives might not coincide. Hence, we
use both a discriminative classifier and a feature-density es-
timator on a model trained using conditional log-likelihood
(cross-entropy objective): we fit a density estimator on
the feature representations of the training data to capture
epistemic uncertainty, and use softmax entropy to capture
aleatoric uncertainty.

From this, we conclude that we can use softmax layer to
capture aleatoric uncertainty for iD samples and a feature-
space density estimator to capture epistemic uncertainty.
This combination allows us to disentangle aleatoric and
epistemic uncertainty in deterministic models.

3. Algorithm

Using the insights developed above, we propose a deter-
ministic neural network with appropriate inductive biases
to satisfy our conditions. Additionally, we show how to
disentangle its uncertainties, which enables us to outper-
form Deep Ensemble Uncertainty on standard uncertainty
benchmarks.

Ensuring sensitivity & smoothness: We introduce induc-
tive biases into the model to learn representations that
avoid feature collapse. Specifically, we encourage bi-
Lipschitzness by using residual connections together with
spectral normalisation following (Liu et al.l [2020a)), who
found empirically that this leads to the avoidance of feature
collapse, which is further supported by our Figure [T] and
experiments below. Comparing to the Jacobian gradient
penalty used in (van Amersfoort et al., 2020), spectral nor-
malisation is significantly faster and has more stable training.
Additionally, using gradient penalty with residual connec-
tion leads to some difficulties, as discussed in (Liu et al.|
2020a). We make minor changes to the standard ResNet
model architecture to further encourage bi-Lipschitzness
without sacrificing accuracy (detailed in Appendix [E). Un-
like other approaches (van Amersfoort et al.| 2020; [Liu
et al., |2020a), DDU is trained using a standard softmax
output layer with a maximum likelihood (cross-entropy)

objective.

Disentangling epistemic & aleatoric uncertainty: To
quantify epistemic uncertainty, a feature-space density
model is fitted after training the softmax model. For this,
DDU uses GDA: a GMM ¢(y, z) with a single Gaussian
mixture component per class. We fit each class component
of the GDA by computing the empirical mean and covari-
ance, per class, of the feature vectors z = fy(x), which
are the outputs of the last convolutional layer of the model
computed on the training samples x (note that we do not
require OoD data to fit these). Unlike fitting a GMM us-
ing the expectation maximization algorithm, this requires
just a single pass through the training set given a trained
model. Moreover, as the softmax layer as an implicit GMM
leads to clustering (Hess et al.,[2020)), we found that a single
Gaussian per class is sufficient for state-of-the-art perfor-
mance. At test time, we compute the epistemic uncertainty
by evaluating the marginal likelihood of the feature rep-
resentation under our density ¢(z) = >_, q(z[y)q(y). To
quantify aleatoric uncertainty for in-distribution samples,
we use the entropy H[Y |z, 0] of the softmax distribution
p(y|z, 8) following proposition 2.3] Note that the softmax
distribution thus obtained, can be further calibrated using
temperature scaling (Guo et al.l 2017). Finally, we disentan-
gle aleatoric and epistemic uncertainty in DDU using the
following steps:

1. For a given input, a high feature-space density indicates
low epistemic uncertainty, i.e. the input is iD, and we
can trust the aleatoric uncertainty estimated by the soft-
max entropy It can either be unambiguous (low softmax
entropy) or ambiguous (high softmax entropy)

2. A low feature-space density indicates high epistemic un-
certainty, i.e., the input is OoD, and the softmax entropy
for the input can take any arbitrary value.

In Appendix [C] we provide detailed experimental results to
study DDU’s performance in disentangling epistemic and
aleatoric uncertainty, in Active Learning using both clean
and Dirty-MNIST and on OoD detection using CIFAR-10
vs SVHN/CIFAR-100 and CIFAR-100 vs SVHN datasets.

4. Conclusion

Deep Deterministic Uncertainty (DDU) can outperform the
state-of-the-art on uncertainty quantification including Deep
Ensembles on active learning and OoD detection. We have
shown that, with appropriate inductive biases, a neural net-
work with a regular off-the-shelf architecture can quantify
epistemic uncertainty through its feature-space density and
can also disentangle aleatoric from epistemic uncertainty
using its softmax entropy. Hence, DDU provides a very
simple method to produce excellent epistemic and aleatoric
uncertainty estimates without requiring the complexities or
computational cost of the current state-of-the-art.
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A. Related Work

Several methods to model uncertainty using feature-space density exist, but unfortunately under-perform compared to
standard approaches for uncertainty. In this work we identify possible reasons for this failure, namely feature collapse and
objective mismatch, and propose appropriate inductive biases to alleviate this failure. We note that our method also improves
on the performance of Deep Ensembles, the state-of-the-art uncertainty method that requires significantly more compute.

Among the approaches that model feature-space density, |Lee et al.|(2018b) uses Mahalanobis distances to quantify uncertainty
by fitting a class-wise Gaussian distribution (with shared covariance matrices) on the feature space of a pre-trained ResNet
encoder. The competitive results they report require input perturbations, ensembling GMM densities from multiple layers,
and fine-tuning on OoD hold-out data. They do not discuss any constraints which the ResNet encoder should satisfy, and
therefore, are vulnerable to feature collapse. In Figure for example, the feature density of a LeNet and a VGG are
unable to distinguish OoD from iD samples. |[Postels et al.|(2020) also propose a density-based estimation of aleatoric and
epistemic uncertainty. Similar to (Lee et al.,|2018b), they do not constrain their pre-trained ResNet encoder. They do discuss
feature collapse though, noting that they do not address this problem. Moreover, they do not consider the objective mismatch
that arises (see Proposition[2.3]below) and use a single estimator for both epistemic and aleatoric uncertainty. Consequently,
they report worse epistemic uncertainty: 74% AUROC on CIFAR-10 vs SVHN, which we show to considerably fall behind
modern approaches for uncertainty estimation in deep learning in Appendix [C] Likewise, Liu et al| (2020b) compute an
unnormalized density based on the softmax logits without taking into account the need for inductive biases to ensure
smoothness and sensitivity of the feature space.

On the other hand, Winkens et al.| (2020) use contrastive training on the feature extractor before estimating the feature-space
density. Our method is separate from this work as we restrict ourselves to the supervised setting and show that the inductive
biases that result in bi-Lipschitzness (van Amersfoort et al., [2020; |[Liu et al., |2020a) are a sufficient condition for the
feature-space density to reliably capture epistemic uncertainty.

Lastly, our method differs from ivan Amersfoort et al.| (2020) and [Liu et al.|(2020a) by alleviating the need for additional
hyperparameters: DDU only needs minimal changes from the standard softmax setup to obtain excellent results on
uncertainty benchmarks, and our GMM parameters are optimised for the already trained model using the training set. DDU
does not require training or fine-tuning with OoD data. Note that|Liu et al.|(2020a) examine using the softmax entropy and
not the feature-space density of a deterministic network with inductive biases (bi-Lipschitz) as a baseline to their proposed
method, SNGP, and find it to underperform. We provide insights into why their baseline fails in Section 2]

B. Background

In this section, we provide a brief overview of approaches for quantifying uncertainty in deep learning and discuss related
work to motivate our approach.

Bayesian Models (Neal, [2012; MacKayl |1992) provide a principled way of measuring uncertainty. Starting with a prior dis-
tribution p(w) over model parameters w, they infer a posterior p(w|D), given the training data D. The predictive distribution
p(y|x, D) for a given input x is computed via marginalisation over the posterior: p(y|z, D) = Ey,pw|p) [p(y|7, w)]. As
mentioned in|Gal|(2016) and Smith & Gal|(2018), the predictive entropy H[Y |z, D] of p(y|x, D) upper-bounds the epistemic
uncertainty, where epistemic uncertainty is quantified as the mutual information I[Y'; w|x, D] (expected information gain)
between parameters w and output y, following the equation:

H[Y |z, D] = I[Y; w|z, D] 4 Ep ) py [H[Y |2, w]] - (D
——
predictive epistemic aleatoric (for iD x)

Note that aleatoric uncertainty is only meaningful in-distribution, as, by definition, it quantifies the level of ambiguity
between the different classes which might be observed for input x (i.e. if multiple labels were to be observed at x, aleatoric
will be hig. Predictive uncertainty will be high whenever either epistemic uncertainty is high (for "far away inputs"
such as OoD), or when aleatoric uncertainty is high (for near-by ambiguous inputs). The intractability of exact Bayesian
inference in deep learning has led to the development of methods for approximate inference (Hinton & Van Camp, |1993;
Hernandez-Lobato & Adams, 2015} Blundell et al.| 2015; |Gal & Ghahramanil, [2016). In practice, however, these methods

3More so, if the probability of observing x under the data generating distribution is zero, the probability p(y|z) = £ ;g&?

entropy as a measure of aleatoric uncertainty, is not defined.

, hence
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are either unable to scale to large datasets and model architectures, suffer from low uncertainty quality, or require expensive
Monte-Carlo sampling.

Deep Ensembles (Lakshminarayanan et al., 2017) are an ensemble of neural networks which average the models’ softmax
outputs. Uncertainty is then estimated as the entropy of this averaged softmax vector. Despite incurring a high computational
overhead at training and test time, Deep Ensembles, along with recent extensions (Smith & Gall 2018} |Wen et al., [2019;
Dusenberry et al.| [2020) form the state-of-the-art in uncertainty quantification in deep learning. It is interesting to note that
ensembling might also be seen as performing Bayesian Model Averaging (He et al.,[2020;|Wilson & Izmailov} [2020), as each
ensemble member, producing a softmax output p(y|z,w), can be considered to be drawn from some distribution p(w|D)
over the trained model parameters w, which is induced by the pushforward of the weight initialization under stochastic
optimization. As a result, Equation (1]) can also be applied to Deep Ensembles to disentangle epistemic from predictive
uncertainty.

In practice, both mutual information I[Y; w|x, D] and predictive entropy H[Y |z, D] are used in the literature to detect OoD
samples. As seen in Equation (TJ), predictive entropy can be high for both iD ambiguous samples (high aleatoric uncertainty)
as well as for OoD samples (high epistemic uncertainty). Hence, predictive entropy is only an effective measure for OoD
detection when used with curated datasets that do not contain ambiguous samples, unlike Dirty-MNIST in Figure

Deterministic Models produce a softmax distribution p(y|z,w) and use either the maximum softmax probability
max. p(y = c|lz,w) (confidence) or the softmax entropy H[Y |z, w] as a measure of uncertainty. It is well-known that these
measures are often not indicative of OoD data (Hendrycks & Gimpel, 2016} (Guo et al.| [2017). Popular approaches to
tackle this problem include pre-processing of inputs and post-hoc calibration methods (Liang et al., [2018; Guo et al., [2017),
alternative objective functions (Lee et al., 2018a; DeVries & Taylor, [2018), and exposure to outliers (Hendrycks et al., 2018)).
However, these methods suffer from several shortcomings including failing to perform under distribution shift (Ovadia et al.,
2019), requiring significant changes to the training setup, and assuming the availability of OoD samples during training
(which many applications do not have access to). In the next section, we demonstrate that the softmax entropy is inherently
inappropriate to capture epistemic uncertainty.

Feature-Space Distances and Density offer a different approach for estimating uncertainty in deterministic models (Lee
et al.| 2018b; |van Amersfoort et al.,2020; |L1u et al.l 2020bza; |Postels et al.,[2020). By definition, epistemic uncertainty must
decrease when previously unseen samples are added to the training set. Feature space distances and density methods realise
this by estimating distance (density) to training data in the feature space, where a previously unseen point with high distance
(low density), once added to the training data, will have low distance (high density). Hence, they can be used as a proxy for
epistemic uncertainty (under important assumptions about the feature space as detailed below). None of these methods,
however, is competitive with the state-of-the-art (i.e., Deep Ensembles) in uncertainty quantification, potentially for the
reasons discussed next.

Feature Collapse (van Amersfoort et al.,|2020) is a reason as to why distance and density estimation in the feature space
may fail to capture epistemic uncertainty out of the box: feature extractors might map the features of OoD inputs to iD
regions in the feature space (van Amersfoort et al.l 2021} c.f. Figure 2). To fix this issue, a feature extractor fy, with
parameters 6, can be subjected to a bi-Lipschitz constraint as follows:

Kiflxi = xol[r <|lfo(xa) = fo(xo)l|r < Ksllxi = xal[r, 2)

for all inputs, x; and x5, where ||.||; and ||.|| = denote metrics in the input and feature space respectively, and K7 and K5
denote the lower and upper Lipschitz constants (Liu et al.,[2020a). These are named sensitivity and smoothness conditions
(van Amersfoort et al., 2020), where the lower Lipschitz bound ensures sensitivity to distances in the input space, and
the upper Lipschitz bound ensures smoothness in the features, preventing them from becoming too sensitive to input
variations, which, otherwise, can lead to poor generalisation and loss of robustness (Hess et al.,|2020; Rosca et al., [2020).
Contemporaneous methods of ensuring the bi-Lipschitz condition include: i) gradient penalty, by applying a two-sided
penalty to the L2 norm of the Jacobian (Gulrajani et al.L 2017), and ii) spectral normalisation (Miyato et al.| | 2018)) in models
with residual connections, like ResNets (He et al.,[2016).

C. Experiments

In this section, we first show DDU’s performance on the well-known Two Moons toy dataset. We then show that DDU can
disentangle epistemic and aleatoric uncertainty. We evaluate DDU’s quality of epistemic uncertainty estimation in active
learning (Cohn et al.,[1996) using both clean and ambiguous versions of MNIST and in OoD detection on the challenging
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Figure 2: Uncertainty on Two Moons dataset. Blue indicates high uncertainty and yellow indicates low uncertainty. Both
the softmax entropy of a single model as well as the predictive entropy of a deep ensemble are uncertain only along the
decision boundary whereas the feature-space density of DDU is uncertain everywhere except on the data distribution (the
ideal behaviour).
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CIFAR-10 vs SVHN/CIFAR-100 and CIFAR-100 vs SVHN dataset pairings, where we set new state-of-the-art performance.

C.1. Toy-Setup: Two-Moons

In this section, we evaluate DDU’s performance on a well-known toy setup: the Two Moons dataset. We use scikit-learn’s
datasets package to generate 2000 samples with a noise rate of 0.1. We use a 4-layer fully connected architecture, ResFFN-
4-128 with 128 neurons in each layer and a residual connection, following (Liu et al.,|2020a). The input is 2-dimensional
and is projected into the 128 dimensional space using a fully connected layer. Using this architecture we train 3 baselines:

1. Softmax: We train a single softmax model and use the softmax entropy as the uncertainty metric.

2. 3-ensemble: We train an ensemble of 3 softmax models and use the predictive entropy of the ensemble as the measure
of uncertainty.

3. DDU: We train a single softmax model applying spectral normalization on the fully connected layers and using the
feature density as the measure of model confidence.

Each model is trained using the Adam optimiser for 150 epochs. In Figure[2] we show the uncertainty results for all the
above 3 baselines. It is clear that both the softmax entropy as well as the predictive entropy of the ensemble is uncertain
only along the decision boundary between the two classes whereas DDU is confident only on the data distribution and is not
confident anywhere else. It is worth mentioning that even DUQ and SNGP perform well in this setup and deep ensembles
have been known to underperform in the Two-Moons setup primarily due to the simplicity of the dataset causing all the
ensemble components to generalise in the same way. Thus, we note that DDU captures uncertainty reliably in a small 2D
setup like Two Moons.

C.2. Disentangling Epistemic and Aleatoric Uncertainty

We used a simple example in Section [T]to demonstrate that a single softmax model with a proper inductive bias can reliably
capture epistemic uncertainty via its feature-space density and aleatoric uncertainty via its softmax entropy. To recreate
the natural characteristics of uncurated real-world datasets, which contain ambiguous samples, we use MNIST (LeCun
et al.,[1998)) as an iD dataset of unambiguous samples, Ambiguous-MNIST as an iD dataset of ambiguous samples and
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Table 2: OoD detection performance of different baselines using a Wide-ResNet-28-10 architecture with the CIFAR-10
vs SVHN/CIFAR-100 and CIFAR-100 vs SVHN dataset pairs averaged over 25 runs. Note: SN stands for Spectral
Normalisation, JP stands for Jacobian Penalty.

Train Dataset Method Penalty  Aleatoric Uncertainty  Epistemic Uncertainty  Test Accuracy Test ECE AUROC SVHN  AUROC CIFAR100
Softmax - Softmax Entropy Softmax Entropy 95.98+£0.02 0.85+0.02 94.4440.43 89.39 £ 0.06
Energy-based (Liu et al. ;20205 - Softmax Entropy Softmax Density 95.98+£0.02 0.85+0.02 94.56 +0.51 88.89 £0.07
DUQ (van Amersfoort et al. 12020} JpP Kernel Distance Kernel Distance 94.6 +0.16 1.554+0.08 93.71 +0.61 85.92 +0.35
CIFAR-10 SNGP (Liu et al. £2020a] SN Predictive Entropy Predictive Entropy 96.04 £ 0.09 1.8+0.1 94.0+1.3 91.13£0.15
5-Ensemble . Predictive Entro Predictive Entropy 96.59 £0.02 0.76+0.03 97.73+£0.31 92.13 £0.02
(Lakshminarayanan et al. 12017 Py Mutual Information 96.59 +0.02 0.76 £0.03 97.18 £0.19 91.33 £0.03
DDU (ours) SN Softmax Entropy GMM Density 95.97+£0.03 0.85+0.04 97.86+0.19 91.34 £0.04
Test Accuracy Test ECE AUROC SVHN
Softmax - Softmax Entropy Softmax Entropy 80.26 £0.06 4.62 £0.06 77.42 £0.57
Energy-based (Liu et al. 120200 - Softmax Entropy Softmax Density 80.26 £0.06 4.62 £ 0.06 78 +0.63
ot 2 1ctt H H ) =
CIFAR-100 SNGP (Liu et al.}2020a] SN Predictive Entropy Predictive Entropy 80.00+£0.11 4.33+£0.01 85.71 £ 0.81
5-Ensemble B Predictive Entro Predictive Entropy 82.79£0.10 3.324+0.09 79.54 £0.91
{Cakshminarayanan et al J2017] PY " Mutual Information ~ 82.79+0.10  3.32 +0.09 77.00 + 1.54
DDU (ours) SN Softmax Entropy GMM Density 80.98 +£0.06 4.10+£0.08 87.53 £0.62

Fashion-MNIST (Xiao et al [2017) as an OoD dataset (see Figure [I(a)), with more details in Appendix [D] We train a
LeNet (LeCun et al.,[1998)), a VGG-16 (Simonyan & Zisserman, 2015) and a ResNet-18 (He et al., |2016) with spectral
normalisation (SN) on Dirty-MNIST (a mix of Ambiguous- and standard MNIST) with the training setup detailed in

Appendix [F1]

Table|l| gives a quantitative evaluation of the qualitative results in Section|l} The AUROC metric reflects the quality of the
epistemic uncertainty as it measures the probability that iD and OoD samples can be distinguished, and OoD samples are
never seen during training while iD samples are semantically similar to training samples. The ECE metric measures the
quality of the aleatoric uncertainty. The softmax outputs capture aleatoric uncertainty well, as expected, and all 3 models
obtain similar ECE scores on the Dirty-MNIST test set. However, with an AUROC of around 84% for all the 3 models,
on Dirty-MNIST vs Fashion-MNIST, we conclude that softmax entropy is unable to capture epistemic uncertainty well.
This is reinforced in Figure[I(c)] which shows a strong overlap between the softmax entropy of OoD and ambiguous iD
samples. At the same time, the feature-space densities of LeNet and VGG-16, with AUROC scores around 71% and 89%
respectively, are unable to distinguish OoD from iD samples, indicating that simply using feature-space density without
appropriate inductive biases (as seen in (Lee et al.,[2018b))) is not sufficient.

Only by fitting a GMM on top of a feature extractor with appropriate inductive biases (DDU) and using its feature density
are we able to obtain performance far better (with AUROC of 99.9%) than the alternatives in the ablation study (see Table
also noticeable in Figure[I(d)). The entropy of a softmax model can capture aleatoric uncertainty, even without additional
inductive biases, but it cannot be used to estimate epistemic uncertainty (see Section [Z). On the other hand, feature-space
density can only be used to estimate epistemic uncertainty when the feature extractor is sensitive and smooth, as achieved by
using a ResNet and spectral normalisation in DDU.

C.3. Active Learning

We further demonstrate the quality of our uncertainty disentanglement in active learning (AL) (Cohn et al.,|1996). AL aims
to train models in a data-efficient manner. The goal is to label as few samples as possible while reaching a satisfactory
model accuracy. Additional training samples are iteratively acquired from a large pool of unlabelled data and labelled with
the help of an expert. After each acquisition step, the model is retrained on the newly expanded training set. This is repeated
until the model achieves a desirable accuracy or when a maximum number of samples have been acquired.

Quickly obtaining a high-accuracy model with AL relies on acquiring the most informative samples during each acquisition
step. This can be achieved by selecting points with high epistemic uncertainty (Gal et al.;[2017). On the other hand, repeated
acquisition of points with high aleatoric uncertainty is not informative for the model and such acquisitions lead to data
inefficiency. AL, therefore, makes an excellent application for evaluating epistemic uncertainty and the ability of models to
separate different sources of uncertainty. We evaluate DDU on two different setups: i) with clean MNIST samples in the
pool set, and ii) with Dirty-MNIST, having a 1:60 ratio of MNIST to Ambiguous-MNIST samples, in the pool set.

Clean MNIST in the Pool set: In this setup, we use normal MNIST samples in the pool set and compare 3 baselines:
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i) a ResNet-18 with softmax entropy as the acquisition function (samples with the top-%k softmax entropies are acquired
at each step), ii) DDU trained using a ResNet-18 with the feature density as the acquisition function (samples with the
bottom-k densities are acquired at each step) , and iii) a Deep Ensemble of 3 ResNet-18s with the predictive entropy (PE)
and mutual information (MI) of the ensemble as the acquisition functions (samples with the top-k predictive entropies or
mutual information values are acquired at each step). We start with an initial training-set size of 20 randomly chosen MNIST
points, and in each iteration, acquire 5 new samples. For each step, we train the models using Adam (Kingma & Ba, [2015)
for 100 epochs and choose the one with the best validation set accuracy. We stop the process when the training set size
reaches 300. In Figure DDU clearly outperforms the deterministic softmax baseline and is competitive with Deep
Ensembles. The softmax baseline reaches 90% test-set accuracy at a training-set size of 245. DDU reaches 90% accuracy at
a training-set size of 160, whereas Deep Ensemble reaches the same at 185 and 155 training samples with PE and MI as the
acquisition functions respectively. Note that DDU is three times faster than a Deep Ensemble, which needs to train three
models independently after every acquisition.

Dirty-MNIST in the Pool set: The MNIST samples in the pool set of the previous setup lack ambiguity. However, real-life
datasets often contain observation noise and ambiguous samples. What happens when the pool set contains a lot of such
noisy samples having high aleatoric uncertainty? In such cases, it becomes important for models to identify unseen and
informative samples with high epistemic uncertainty and not with high aleatoric uncertainty. In order to study this scenario
in greater detail, we construct a pool set with samples from Dirty-MNIST (see Appendix [C.2). We significantly increase the
proportion of ambiguous samples by using a 1:60 split of MNIST to Ambiguous-MNIST (a total of 1K MNIST and 60K
Ambiguous-MNIST samples). With this new pool set, we compare DDU with the deterministic softmax baseline as well as
the Deep Ensembles. In Figure [J[b)] the difference in the performance of DDU and the deterministic softmax model is stark.
While DDU achieves a test set accuracy of 70% at a training set size of 240 samples, the accuracy of the softmax baseline
peaks at a mere 50%. Note that DDU also performs better than Deep Ensembles with the PE acquisition function. The
difference gets larger as the training set size grows: DDU’s feature density and Deep Ensemble’s MI solely capture epistemic
uncertainty and hence, do not get confounded by iD ambiguous samples. This leads to the acquisition of unseen points from
the pool set which have high epistemic uncertainty and low aleatoric uncertainty, thereby leading to better performance.

C.4. CIFAR-10 (iD) vs SVHN/CIFAR-100 (OoD) & CIFAR-100 (iD) vs SVHN (OoD)

OoD detection is an application of epistemic uncertainty quantification: we expect OoD data points to have higher epistemic
uncertainty than iD data. We use CIFAR-10 (Krizhevsky et al., 2009) vs SVHN (Netzer et al., |2011)/CIFAR-100 and
CIFAR-100 vs SVHN as iD vs OoD dataset pairs for this experiment. These pairings are known to be challenging (Nalisnick
et al} 2019). The training setup is described in Appendix [F:2] In addition to using softmax entropy of a deterministic model
(Softmax) for both aleatoric and epistemic uncertainty, we also compare with the following baselines that do not require
training or fine-tuning on OoD data:

» Energy-based model (Liu et al.||2020b): We use the softmax entropy of a deterministic model as aleatoric uncertainty
and the unnormalized softmax density (using the logsumexp of the logits of the model) as epistemic uncertainty without
regularisation to avoid feature collapse. We only compare with the version that does not train with OoD data.

* DUQ (van Amersfoort et al.,|2020), SNGP (Liu et al.||2020a): We compare with the state-of-the-art deterministic methods
for uncertainty quantification including DUQ and SNGP. For SNGP, we use the entropy of the average of the MC softmax
samples as uncertainty. For DUQ, we use the closest kernel distance. Note that for CIFAR-100, we noticed DUQ’s
centroids to not converge during training and hence, we do not include the DUQ baseline for CIFAR-100.

* 5-Ensemble: We use an ensemble of 5 networks and compute the predictive entropy of the ensemble as both epistemic and
aleatoric uncertainty and mutual information as epistemic uncertainty.

DDU beats Deep Ensembles on CIFAR-100 vs SVHN by a large margin. Table [2] shows the AUROC scores on CIFAR-10 vs
SVHN/CIFAR-100 and CIFAR-100 vs SVHN along with their respective test set accuracy and test set ECE after temperature
scaling. For DDU, post-hoc calibration, e.g. in the form of temperature scaling (Guo et al.,2017), is straightforward as it
does not affect the GMM density. For OoD detection, DDU outperforms all other methods including the state-of-the-art
Deep Ensembles as well as DUQ, SNGP and the energy-based model approach from |Liu et al.| (2020b) on CIFAR-10
vs SVHN/CIFAR-100 and CIFAR-100 vs SVHN. Importantly, the superior performance in OoD detection comes without
compromising on the single-model test set accuracy (we do not claim to improve accuracy over Deep Ensembles).

Additional ablations for the CIFAR-10/100 experiments are detailed in Appendix [G} Table 3] and Table [d These tables
show that the feature density of a VGG-16 (i.e., without the appropriate inductive biases) is unable to beat a VGG-16
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ensemble, whereas a Wide-ResNet-28-10 (with appropriate inductive biases) outperforms its corresponding ensemble in
almost all the cases. This result further validates the importance of having the bi-Lipschitz constraint on the model to obtain
smoothness and sensitivity. Finally, even without spectral normalisation, a Wide-ResNet-28 has the inductive bias of residual
connections built into its model architecture, which can be a contributing factor towards good performance in general as
residual connections already make the model sensitive to changes in the input space.

D. Ambiguous- and Dirty-MNIST

Each sample in Ambiguous-MNIST is constructed by decoding a linear combination of latent representations of 2 different
MNIST digits from a pre-trained VAE (Kingma & Welling} 2014)). Every decoded image is assigned several labels sampled
from the softmax probabilities of an off-the-shelf MNIST neural network ensemble, with points filtered based on an
ensemble’s MI (to remove ‘junk’ images) and then stratified class-wise based on their softmax entropy (some classes are
inherently more ambiguous, so we “amplify” these; we stratify per-class to try to preserve a wide spread of possible entropy
values, and avoid introducing additional ambiguity which will increase all points to have highest entropy). All off-the-shelf
MNIST neural networks were then discarded and new models were trained to generate Fig 1 (and as can be seen, the
ambiguous points we generate indeed have high entropy regardless of the model architecture used). We create 60K such
training and 10K test images to construct Ambiguous-MNIST. Finally, the Dirty-MNIST dataset in this experiment contains
MNIST and Ambiguous-MNIST samples in a 1:1 ratio (with 120K training and 20K test samples).

E. Additional Architectural Changes

Increasing sensitivity: Using residual connections to enforce sensitivity works well in practice when the layer is defined
as ¢’ = z + f(x). However, there are several places in the network where additional spatial downsampling is done in f(-)
(through a strided convolution), and in order to compute the residual operation x needs to be downsampled as well. These
downsampling operations are crucial for managing memory consumption and generalisation. The way this is traditionally
done in ResNets is by introducing an additional function g(-) on the residual branch (obtaining 2’ = g(x) + f(x)) which is
a strided 1x1 convolution. In practice, the stride is set to 2 pixels, which leads to the output of ¢(-) only being dependent on
the top-left pixel of each 2x2 patch, which reduces sensitivity. We overcome this issue by making an architectural change
that improves uncertainty quality without sacrificing accuracy. We use a strided average pooling operation instead of a 1x1
convolution in g(-). This makes the output of g(-) dependent on all input pixels. Additionally, we use leaky ReLU activation
functions, which are equivalent to ReLLU activations when the input is larger than 0, but below 0 they compute p * z with
p = 0.01 in practice. These further improve sensitivity as all negative activations still propagate in the network.

F. Experimental Details
F.1. Dirty-MNIST

We train for 50 epochs using SGD with a momentum of 0.9 and an initial learning rate of 0.1. The learning rate drops by a
factor of 10 at training epochs 25 and 40. Following SNGP (Liu et al.| 2020a), we apply online spectral normalisation with
one step of a power iteration on the convolutional weights. For 1x1 convolutions, we use the exact algorithm, and for 3x3
convolutions, the approximate algorithm from |Gouk et al.|(2021)). The coefficient for SN is a hyper-parameter which we set
to 3 using cross-validation.

F.2. CIFAR-10 vs SVHN/CIFAR-100 & CIFAR-100 vs SVHN

We use Wide-ResNet-28-10 (Zagoruyko & Komodakis| 2016) as the model architecture for all the baselines. We train
the softmax baselines for 350 epochs using SGD as the optimiser with a momentum of 0.9, and an initial learning rate of
0.1. The learning rate drops by a factor of 10 at epochs 150 and 250. We train the 5-Ensemble baseline using this same
training setup. The SNGP and DUQ models were trained using the setup of SNGP and hyper-parameters mentioned in their
respective papers (Liu et al.,2020aj; [van Amersfoort et al.|[2020).

F.3. Compute Resources

Each model (ResNet-18, Wide-ResNet-28-10 or VGG-16) used for the large scale active learning, CIFAR-10 vs
SVHN/CIFAR-100 and CIFAR-100 vs SVHN tasks was trained on a single Nvidia Quadro RTX 6000 GPU. Each model
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Ablations Aleatoric Uncertainty Epistemic Uncertainty Test Accuracy (1) Test ECE ({) AUROC SVHN (1) AUROC CIFAR-100 (1)
Architecture Ensemble  Residual Connections SN GMM

X Softmax Entro Softmax Entropy 95.98 + 0.02 0.85 4 0.02 94.44 + 0.43 89.39 + 0.06
x : 24 Softmax Density 95.98 £ 0.02 0.85 £ 0.02 94.56 + 0.51 88.89 £ 0.07
v Softmax Entropy GMM Density 95.98 4 0.02 0.85 4 0.02 96.08 + 0.25 90.94 4 0.03

X v
Wide-ResNet-28-10 ) Softmax Entropy 95.97 4+ 0.03 0.85 4 0.04 94.05 + 0.26 90.02 4 0.07
, X Softmax Entropy Softmax Density 95.97 £ 0.03 0.85 & 0.04 94.31 £ 0.33 89.78 + 0.08
v Softmax Entropy GMM Density 95.97+0.03 0.85+0.04  97.86+0.19 91.34 4+ 0.04
. Predictive Entropy 96.59 £ 0.02 0.76 £ 0.03 97.73 £ 0.31 92.13 £ 0.02
v v x x Predictive Entropy Mutual Information 96.59+0.02  0.76+0.03  97.18+0.19 91.33 % 0.03
p Softmax Entropy Softmax Entropy 93.63 + 0.04 1.64 + 0.03 85.76 + 0.84 82.48 +0.14
VGG-16 x X x Softmax Density 93.63 4 0.04 1.64 + 0.03 84.24 4+ 1.04 81.91 4 0.17
v Softmax Entropy GMM Density 93.63 + 0.04 1.64 + 0.03 89.25 + 0.36 86.55 + 0.10
L Predictive Entropy 94.9 + 0.05 2.03 4 0.03 92.80 4+ 0.18 89.01 4 0.08
v d X o Predictive Entropy Mutual Information 94.9 +0.05 2.03 + 0.03 91 +0.22 88.43 + 0.08

Table 3: OoD detection performance of different ablations trained on CIFAR-10 using Wide-ResNet-28-10 and VGG-
16 architectures with SVHN and CIFAR-100 as OoD datasets averaged over 25 runs. Note: SN stands for Spectral
Normalisation.

Ablations Aleatoric Uncertainty Epistemic Uncertainty Test Accuracy (1) Test ECE (]) AUROC SVHN (1)
Architecture E bl Residual C: i SN GMM

x Softmax Ent Softmax Entropy 80.26 £ 0.06 4.62 + 0.06 77.42 £0.57
X oltmax tntropy Softmax Density 80.26 = 0.06 4.62 + 0.06 78.00 £ 0.63
v Softmax Entropy GMM Density 80.26 £ 0.06 4.62 £ 0.06 87.54 £ 0.61

X v
Wide-ResNet-28-10 Softmax Entropy 80.98 + 0.06 4.10 + 0.08 85.37 + 0.36
, X Softmax Entropy Softmax Density 80.98 £ 0.06 4.10 £ 0.08 86.41 £ 0.38
v Softmax Entropy GMM Density 80.98 + 0.06 4.10 £ 0.08 87.53 £ 0.62
L Predictive Entropy 82.79 £0.10 3.32+£0.09 79.54 £ 0.91
v v X X Predictive Entropy Mutual Information 82.79 4+ 0.10 3.32 4 0.09 79.54 + 0.91
X Softmax Entropy Softmax Entropy 73.48 £ 0.05 4.46 £ 0.05 76.73 £0.72
VGG-16 x X X Softmax Density 73.48 £ 0.05 4.46 £ 0.05 77.70 £ 0.86
v Softmax Entropy GMM Density 73.48 £ 0.05 4.46 £ 0.05 75.65 £ 0.95
- Predictive Entropy 77.84+0.11 5.32 4+ 0.10 79.62 £ 0.73
4 x X X Predictive Entropy Mutual Information 77841011 5.3240.10 72.07 % 0.48

Table 4: OoD detection performance of different ablations trained on CIFAR-100 using Wide-ResNet-28-10 and VGG-16
architectures with SVHN as the OoD dataset averaged over 25 runs. Note: SN stands for Spectral Normalisation.

(LeNet, VGG-16 and ResNet-18) used to get the results in Figure|l|and Table|l| was trained on a single Nvidia GeForce
RTX 2060 GPU.

G. Additional Results (CIFAR-10 vs SVHN/CIFAR-100 & CIFAR-100 vs SVHN)

In this section, we provide details of additional results on the OoD detection task using CIFAR-10 vs SVHN/CIFAR-100 and
CIFAR-100 vs SVHN for various ablations on DDU. As mentioned in Section 3} DDU consists of a deterministic softmax
model trained with appropriate inductive biases. It uses softmax entropy to quantify aleatoric uncertainty and feature-space
density to quantify epistemic uncertainty. In the ablation, we try to experimentally evaluate the following scenarios:

1. Effect of inductive biases (sensitivity + smoothness): We want to see the effect of removing the proposed inductive
biases (i.e., no sensitivity and smoothness constraints) on the OoD detection performance of a model. To do this, we train
a VGG-16 without spectral normalisation. Note that VGG-16 does not have residual connections and hence, a VGG-16
trained without spectral normalisation does not follow the sensitivity and smoothness (bi-Lipschitz) constraints.

2. Effect of sensitivity alone: Since residual connections make a model sensitive to changes in the input space by lower
bounding its Lipschitz constant, we also want to see how a network performs with just the sensitivity constraint alone. To
observe this, we train a Wide-ResNet-28-10 without spectral normalisation (i.e., no explicit upper bound on the Lipschitz
constant of the model).

3. Metrics for aleatoric and epistemic uncertainty: With the above combinations, we try to observe how different metrics
for aleatoric and epistemic uncertainty perform. To quantify aleatoric uncertainty, we use the softmax entropy of the
model. On the other hand, to quantify the epistemic uncertainty, we use i) the softmax entropy, ii) the softmax density
(Liu et al.} 2020b) or iii) the GMM feature density (as described in Section E])

Finally, for the purposes of comparison, we also present scores obtained by a 5-Ensemble of the respective architectures
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Figure 4: Visualisation of softmax outputs/entropies along with the Predictive Entropy (PE) and Mutual Information of a
5-Ensemble. Figures [(a)and [(b)] show that the softmax entropy is high at points of ambiguity, i.e., where the label changes
from O to 1 for the data, thereby capturing aleatoric uncertainty, whereas softmax entropy can be low or high for OoD
(between -2 to 2). At the same time, figure |(c)| shows that the MI of the ensemble is only high for OoD, thereby solely
capturing epistemic uncertainty, whereas the PE of the ensemble is high for both OoD and for regions of ambiguity, thereby
capturing both epistemic and aleatoric uncertainty.

(i.e., Wide-ResNet-28-10 and VGG-16) in Table 3] for CIFAR-10 vs SVHN/CIFAR-100 and in Table @] for CIFAR-100 vs
SVHN. Based on these results, we can make the following observations (in addition to the ones we make in Appendix [C.4):

Inductive biases are important for feature density. From the AUROC scores in Table[3] we can see that using the feature
density of a GMM in VGG-16 without the proposed inductive biases yields significantly lower AUROC scores as compared
to Wide-ResNet-28-10 with inductive biases. In fact, in none of the datasets is the feature density of a VGG able to
outperform its corresponding ensemble. This provides yet more evidence (in addition to Figure[T) to show that the GMM
feature density alone cannot estimate epistemic uncertainty in a model that suffers from feature collapse. We need sensitivity
and smoothness conditions (see Section 2)) on the feature space of the model to obtain feature densities that capture epistemic
uncertainty.

Sensitivity creates a bigger difference than smoothness. We note that the difference between AUROC obtained from
feature density between Wide-ResNet-28-10 models with and without spectral normalisation is minimal. Although Wide-
ResNet-28-10 with spectral normalisation (i.e., smoothness constraints) still outperforms its counterpart without spectral
normalisation, the small difference between the AUROC scores indicates that it might be the residual connections (i.e.
sensitivity constraints) that make the model detect OoD samples better. This observation is also intuitive as a sensitive
feature extractor should map OoD samples farther from iD ones.

DDU, the best of both worlds. In DDU, we use the softmax output of a model to get aleatoric uncertainty. We use the
GMM'’s feature-density to estimate the epistemic uncertainty. Hence, DDU does not suffer from miscalibration as the
softmax outputs can be calibrated using post-hoc methods like temperature scaling. At the same time, the feature-densities
of the model are not affected by temperature scaling and capture epistemic uncertainty well.

H. 5-Ensemble Visualisation

In Figure [ we provide a visualisation of a 5-ensemble (with five deterministic softmax networks) to see how softmax
entropy fails to capture epistemic uncertainty precisely because the mutual information (MI) of an ensemble does not (see
Section[2)). We train the networks on 1-dimensional data with binary labels 0 and 1. The data is shown in Figure #(b)] From
Figure #(a)]and Figure A(b)] we find that softmax entropy is high in regions of ambiguity where the label changes from 0 to
1 (i.e., at x value -4 and 4). This indicates that softmax entropy can capture aleatoric uncertainty. Furthermore, in the x
interval (—2,2), we find that the deterministic softmax networks disagree in their predictions (see Figure and have
softmax entropies which can be high, low or anywhere in between (see Figure (b)) following our claim in Section 2} In fact,
this disagreement is the very reason why the MI of the ensemble is high in the interval (—2, 2), thereby reliably capturing
epistemic uncertainty. Finally, note that the predictive entropy (PE) of the ensemble is high both in the OoD interval (—2, 2)
as well as at points of ambiguity (i.e., at -4 and 4). This indicates that the PE of a Deep Ensemble captures both epistemic
and aleatoric uncertainty well. From these visualisations, we draw the conclusion that the softmax entropy of a deterministic
softmax model cannot capture epistemic uncertainty precisely because the MI of a Deep Ensemble can.
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I. Theoretical Results
I.1. Softmax entropy cannot capture epistemic uncertainty because Deep Ensembles can
I.1.1. QUALITATIVE STATEMENT

We start with a proof of Proposition which quantitatively examines the qualitative statemets that given the same
predictive entropy, higher epistemic uncertainty for one point than another will cause some ensemble members to have lower
softmax entropy.

Proposition 2.1. Let x1 and x4 be points such that x1 has higher epistemic uncertainty than xo under the ensemble:
I[Y1;w | 21, D] > [[Yo;w | 22, D] + 6, with 6 > 0. Further assume both have similar predictive entropy |H[Y1 | 21, D] —
H[Y3 | 22, D]| < ¢, for € > 0. Then, there exist sets of ensemble members 2 with p(Q | D) > 0, such that for all softmax
models w € ) the softmax entropy of x1 is lower than the softmax entropy of xo: H[Y] | 21,w] < H[Y2 | 22,w] — (§ — €).

Proof. From Equation (TJ), we obtain

|1[Y1;w | 1, D] + Epypy [H[Y7 | 21, w]]

3)
—1[Ya;w | 22, D] = Epuipy [H[Y2 | 22,w]] | < e
and hence we have
Epwip) [H[Y: | 21, w]] = Epup) [H[Y2 | 22, w]]
+ (I[Y1;w | 1, D] — [[Ya;w | €2, D]) <. )
>6
We rearrange the terms:
Epwipy [H[Y: | 21, w]] < By [H[Yz2 | 22, w]] — (6 —€). ®)

Now, the statement follows by contraposition: if H[Y] | 21, w] > Ep(p) [H[Y2 | 72, w]] — (6 —€) for all w, the monotonicity
of the expectation would yield Ey,py [H[Y1 | 21, w]] > Ep oy [H[Y2 | 22, w]] — (6 — €). Thus, there is a non-null-set €
with p(Q') > 0, such that

H[Y: | 21, w] < H[Y2 | 22,w] — (6 — €), (6)

forallw € Q. O

While this statement provides us with an intuition for why ensemble members and thus deterministic models cannot provide
epistemic uncertainty reliably through their softmax entropies, we can examine this further by establishing some upper
bounds.

1.1.2. INFINITE DEEP ENSEMBLE

There are two interpretations of the ensemble parameter distribution p(w | D): we can view it as an empirical distribution
given a specific ensemble with members w;c(1,... i}, OF we can view it as a distribution over all possible trained models,
given: random weight initializations, the dataset, stochasticity in the minibatches and the optimization process. In that
case, any Deep Ensemble with K members can be seen as finite Monte-Carlo sample of this posterior distribution. The
predictions of an ensemble then are an unbiased estimate of the predictive distribution E, ) [p(y|x, w|)], and similarly the
expected information gain computed using the members of the Deep Ensemble is just a (biased) estimator of I[Y;w | z, D].

1.1.3. ANALYSIS OF SOFTMAX ENTROPY OF A SINGLE DETERMINISTIC MODEL ON OOD DATA USING PROPERTIES
OF DEEP ENSEMBLES

Based on the interpretation of Deep Ensembles as a distribution over model parameters, we can walk backwards and, given
some value for the predictive distribution and epistemic uncertainty of a Deep Ensemble, estimate what the softmax entropies
from each ensemble component must have been. IL.e. if we observe Deep Ensembles to have high epistemic uncertainty on
OoD data, we can deduce from that what the softmax entropy of deterministic neural nets (the ensemble components) must
look like. More specifically, given a predictive distribution p(y | ) and epistemic uncertainty, that is expected information
gain [[Y; w | 2], of the infinite Deep Ensemble, we estimate the expected softmax entropy from a single deterministic model,
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considered as a sample w ~ p(w | D) and model a lower bound for the variance. Empirically, we find the variance to be
higher by a large amount for OoD samples, showing that softmax entropies do not capture epistemic uncertainty well for
samples with high epistemic uncertainty.

We will need to make several strong assumptions that limit the generality of our estimation, but we can show that our
analysis models the resulting softmax entropy distributions appropriately. This will show that deterministic softmax models
can have widely different entropies and confidence values.

Given the predictive distribution p(y | ) and epistemic uncertainty I[Y;w | 2], we can approximate the distribution
over softmax probability vectors p(y|z,w) for different w using its maximum-entropy estimate: a Dirichlet distribution
(Y1,...,Yk) ~ Dir(«) with non-negative concentration parameters « = (a1, ...,ax) and ap := > ;. Note that the
Dirichlet distribution is used only as an analysis tool, and at no point do we need to actually fit Dirichlet distributions to our
data.

Preliminaries

Before we can establish our main result, we need to look more closely at Dirichlet-Multinomial distributions. Given
a Dirichlet distribution Dir(a) and a random variable p ~ Dir(«), we want to quantify the expected entropy
Ep~Dir(a) Hy ~cat(p)[Y] and its variance Varppir(a) Hy ~cat(p)[Y]. For this, we need to develop more theory. In

the following, I" denotes the Gamma function, ¢ denotes the Digamma function, 1)’ denotes the Trigamma function.
Lemma L.1. Given a Dirichlet distribution and random variable p ~ Dir(«), the following hold:

1. The expectation E [log p;] is given by:

E [log pi] = (i) — ¥(ao). (7
2. The covariance Cov[log p;,log p,| is given by
Cov[log pi,log p;| = ¥'(ci) dij — ¥’ (co). (8)

3. The expectation E [p?p}” log pi} is given by:

E [p;'p} log pi]
af o 9)
= (Y(ai +n) —P(ag +n+m)),

n+m
Qg

where i # j, andn® =n(n+1) ... (n+ k — 1) denotes the rising factorial.

Proof. 1. The Dirichlet distribution is members of the exponential family. Therefore the moments of the sufficient statistics
are given by the derivatives of the partition function with respect to the natural parameters. The natural parameters of the
Dirichlet distribution are just its concentration parameters ;. The partition function is

k
Ae) =) "logT () — logT (a) , (10)
=1

the sufficient statistics is 7'(x) = log z, and the expectation E [T] is given by

0A(«)
E [T = 11
7] = 5. an
as the Dirichlet distribution is a member of the exponential family. Substituting the definitions and evaluating the partial
derivative yields

P k k
E [logp:] = o Zlogf (a;) —logT (Z ozZ)] (12)
v Li=1 i=1

= (o) ~ ¥ (a0) a0, (13)

K3
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where we have used that the Digamma function 1) is the log derivative of the Gamma function ¢ (z) = % InT(x). This

proves (7) as 52 -ap = 1.
2. Similarly, the covariance is obtained using a second-order partial derivative:

0% A(a
CovlT, T3] = 0 éa) (14)
Again, substituting yields
0
Covllog p;,log p;] = o [V (i) — 1 (a0)] (15)
J
=" (a;) 8;5 — ' (o) - (16)

3. We will make use of a simple reparameterization to prove the statement using Equation (7). Expanding the expectation
and substituting the density Dir(p; «), we obtain

E [p;'p} logp:] = /Dir(p;a) p; P}’ log p; dp (17)

/H ™ Hp”‘k ' p}' p}' logpi dp (18)
i= 1 ?

I(a; +n)l(a; + m)F(aO +n+m)
I'(ai)T(ey)T (o)

(19)
/ Dir(p; &) p;' p;" log pi dp
al ™
= —LEllogpi, (20)
0
where p ~ Dir(&) with & = (ap, ..., a;+n,...,aj+m,..., o) and we made use of the fact that F(z(i)") 2™, Finally,
we can apply Equation (7) on p ~ Dlr( ) to show
af aft
= — (Y(a; +n) — V(g +n+m)). 21)
0
O

With this, we can already quantify the expected entropy Ep,pir(a) Hy ~cat(p)[Y]:

Lemma 1.2. Given a Dirichlet distribution and a random variable p ~ Dir(a), the expected entropy
Ep~Dir(a) Hy ~cat(p)[Y] of the categorical distribution Y ~ Cat(p) is given by

K

o

Eppla) H[Y | p] = ¢(a0 + 1) E CTOw a; +1). (22)
y=1

Proof. Applying the sum rule of expectations and Equation (9) from Lemma [T} we can write
H[Y | p] = [ Z p; log pz] = —Y E[p;logpi] (23)
= 72070 ($(as + 1) = (ag +1)). (24)

The result follows after rearranging and making use of ), & (” =1. O

With these statements, we can answer a slightly more complex problem:
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Lemma L.3. Given a Dirichlet distribution and a random variable p ~ Dir(c), the covariance Cov[p; log p;, p}* log p;]
is given by

Cov|[p} log pi, pj* log p;] (25)
al ajm

—== ((¢¥(ai +n) — (a0 +n +m))
g

(e +m) —¢(ao +n+m))

—'(ap +n+m)) (26)
a o™

+ —L(¢(a; +n) — p(ag +n))
Qg Qg

(Y(aj +m) —Y(ag +n)),

for i # j, where ¢ is the Digamma function and <)’ is the Trigamma function. Similarly, the covariance
Cov[p} log p;, pj"* log p;] is given by

Cov|[p; log ps, p;" log p;)

27)
altm
. (((i +n+m) —(ag +n+m))?
o
+ (e +ntm) =9 (ao +n+m)) 28)
of af"

aﬁam(d)(ai + n) - 1/1(@0 + TL))
0 **0

(Y(ai +m) = Y(ag +n)).

Regrettably, the equations are getting large. By abuse of notation, we introduce a convenient shorthand before proving the
lemma.

Definition I.4. We will denote by

E [log ;"] = (i + n) — (o +n+m),

(29)
and use E [log p?] for E [log f);"’o}. Likewise,
Cov(log p;""™,log p"""] = ¢ (i +n)dij — ¢’ (o + 1 +m). (30)

This notation agrees with the proof of Equation (7) and (8) in Lemma|[[.I] With this, we can significantly simplify the
previous statements:

Corollary 1.4.1. Given a Dirichlet distribution and random variable p ~ Dir(«),

o
J

E [pyp] logp:] =

——E [logp;"""],

3D
o)
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Cov[p;' log pi, p}" log p;] (32)
aiﬁ Oéjm 1,11 XD
== (E [logp;""|E [logpj "]
N
Cov(logp;"™, log f);’m]) (33)
4 am T o 571E Moz 571 .
+ =% E [log p}|E [log p;n} fori # j, and
@y @g
Cov[p; log p;, p;" log pi] (34)
aftm T
=—4t— (IE [log p+™]
0
+Cov[log p?*™, log p"+m}) (35)
a? aimiw Am
+ —=—=E [log p}|E [logpj ]
ap g

Proof of Lemma This proof applies the well-know formula (cov) Cov|[X,Y] =E [X Y] — E [X] E [Y] once forward
and once backward (rcov) E [X Y] = Cov[X, Y] + E [X] E [Y] while applying Equation (9) several times:

Cov[p; log pi, p;" log p;] (36)
COV

= E [p; log(p:) p}' log(p;)]
— E [p} logp;] E [p}" log p;]

o o™ i i
= =2 E[log(pi’])log(pj’])}

an-i—m

(37)

(38)
—E [log ] E [log pﬂ
i

n+m
)

+E [log 5}’ | E [log 5}’ ) (39)
L L [logpl] E [logpﬂ ,
@y &

n
(rcov) a; o

(COV log p;”, log p;”]

where p*/ ~ Dir(a®’) with ™/ = (..., a; +n,...,a; +m,...). p*/7 and o/7 are defined analogously. Applying
Equation (8) and Equation (7) from Lemma|[.T]yields the statement. For i = j, the proof follows the same pattern. O

Now, we can prove the theorem that quantifies the variance of the entropy of Y:
Theorem L5. Given a Dirichlet distribution and a random variable p ~ Dir(a), the variance of the entropy
Vary, pir(a) Hy ~cat(p) Y] of the categorical distribution Y ~ Cat(p) is given by

Var[H[Y | p]] (40)

2
-y (cov log b7, log p7] + E log 571

+Z i Q <Cov log p}, logpj] +E [log p;’ } E [log f);,l}) 4D
i#j 0

- Z J E [log p}]E [log f)jl]

Proof. We start by applying the well-known formula Var([} >, X;] = >, ; Cov[X;, X;] and then apply Lemmarepeatedly.
O
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Main Result

All the above allows us to formulate our main result for an ensemble with a given predictive entropy p(y | #) and mutual
information I[Y;w | z]:

Theorem L.6. Fix p(y|z), I[Y;w | x|, a distribution over models p(w | D), and a sample x. The maximum-entropy estimate
of the distribution over probability vectors p(y | x,w) for models w ~ p(w | D) given p(y | ) and 1[Y ;w | ] is a Dirichlet
distribution p ~ Dir(«) that satisfies:
(&%)
p(y|z)=— (42)
o
HIY 2] = I[Y;w [ 2] = ¢(a0 +1)

K
(43)
= py | @)(ao ply | z) +1).
y=1
The variance Var[H[Y | z,w]] of the softmax entropy over models w ~ p(w | D) is bounded by Var[H[Y | p]]:
Var,[H[Y | z,w]] > Varp[H[Y | p]] (44)

with the latter term given in eq. (41)).

Proof. We can use moment matching to fix the distribution. Equation @I) is just the mean E [Y], and Equation follows
from Equation (1) and Lemma .2} when we substitute 5 = p;. It is easy to check that Equation |i is monotonously
increasing in oy, which is thus uniquely determined. Furthermore, we can use the variance of the entropy of the maximum
entropy estimate as a lower bound because the Dirichlet distribution is a maximum entropy distribution. O

Given that we can view an ensemble member as a single deterministic model and vice versa, this provides an intuitive
explanation for why single deterministic models report inconsistent and widely varying predictive entropies and confidence
scores for OoD samples for which a Deep Ensemble would report high epistemic uncertainty (expected information gain)
and high predictive entropy.

Corollary 1.6.1. Assuming that p(y|z,w) only depends on p(y | ) and I[Y'; w | x], the maximum-entropy estimate for the
distribution p(y|x,w) for a given w and different OoD z is given by a Dirichlet distribution Dir(«) that satisfies:

o

p(y|z) = a—; 45)

H[Y |z] = 1[Y;w | 2] = ¥(ao + 1) (46)
K

—> ply|x)e(ao ply | ) +1).. 47)
y=1

Then, we can model the softmax distribution using a random variable p ~ Dir(«) as:
p(y | z,w) ~ Cat(p). (48)

The variance Var[H[Y | z, w]] of the softmax entropy for different samples x given p(y | ) and I[Y; w | x] is bounded by
Var[H[Y | p]]:

Var,[H[Y | z,w]] > Varp[H[Y | p]] (49)
with the latter term given in eq. @1).

We empirically find this to be true.
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Figure 5: Softmax entropy histograms of 30 Wide-ResNet-28-10+SN models trained on CIFAR-10, evaluated on SVHN
(OoD). The softmax entropy distribution of the different models varies considerably.
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Figure 6: The variance of softmax entropies can be lower-bounded by fitting Dirichlet distributions on the samples p(y |z, w).
[(@)] The empirical variance of softmax entropies is lower-bounded by the prediction using Theorem[[.6] The red dashed line
depicts equality. [(b)] Using uniform predictions in Equation leads to a violation of the predicted lower bounds (black
dashed line). The ratio histogram shows that there are only few violations due to precision issues (< 2% vs < 22%
for[(B)] not depicted). [(d)] The variance of the softmax entropy is not linearly correlated to the epistemic uncertainty. For
both high and low epistemic uncertainty, the variance decreases. It is still lower-bounded by Equation @)

Empirical Results

We empirically verify that softmax entropies vary considerably in Figure[5] In Figure[6] we verify the validity of Equation (@4))
empirically. Morever, Figure [6(d)] shows both i) the non-linear relationship between epistemic uncertainty and variance in
the softmax entropies and ii) that Dirichlet distributions cannot capture it and can only provide a lower bound. Nonetheless,
this simple approximation seems to be able to capture the empirical entropy distribution quite well as shown in Figure[7]

L.2. Capturing aleatoric and epistemic uncertainty requires multiple mixture models

In Section 2] we noted that the objectives that lead to optimal estimators for aleatoric and epistemic uncertainty via
softmax entropy and feature-space density do not match, and DDU therefore uses the softmax layer as a discriminative
classifier (implicit LDA) to estimate the predictive entropy, while it is using a GMM as generative classifier to estimate the
feature-space density. Here we prove this.

1.2.1. PRELIMINARIES

Before we prove Proposition[2.3] we will introduce some additional notation following [Kirsch et al] (2020).

Definition 1.7. 1. p(y, 2) is the data distribution of the D in feature space with class labels y and feature representation z.
2. py() is a probability distribution parameterized by 6.
3. Entropies and conditional entropies are over the empirical data distribution p(-):

H[-] =H(B()) = Ep() [~ log ()] (50)
4. H[Y | 2] is the entropy of D(y | 2) for a given z, whereas H[Y | Z| is the conditional entropy:

H]Y | Z] = gy HY | 2]. (51)
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Figure 7: Simulated vs empirical softmax entropy on WideResNet-28-10+SN and VGG 6. Even though the Dirichlet variance
approximation lower-bounds the empirical softmax entropy variance, sampling from the fitted Dirichlet distributions does
approximate the empirical entropy distribution quite well.

5. H(p(y, 2) || a(y|z])) is the cross-entropy of q(y | z) under p(y | z) in expectation over p(z):

H(p(y, 2) [ aly | 2)) = Ep() Hip(y | 2) || aly [ 2))
= Ep(y,z) [_ IOg q(y | Z)] .

6. Similarly, Dx1,(p(y, 2) || a(y|z|)) is the Kullback-Leibler divergence of q(y | z) under p(y | z) in expectation over p(z):

Dxr(p(y, 2) || alylz])) = Epeey Dxu(p(y | 2) || a(ylzl))
=H(p(y, 2) || a(ylz])) — H[Y | Z]

7. For cross-entropies of po(-) under p(z,y), we use the convenient short-hand Hy[-] = H(p(z,y) || po(-))-

Then we can observe the following connection between Hp|[-] and H][]:

Lemma L8. Cross-entropies upper-bound the respective entropy with equality when pg(-) = p(-), which is important for
variational arguments:

1. HolY, Z] > H]Y, Z],
2. Hy[Z] > H[Z], and
3. HylY | Z] > H[Y | Z].

Proof. 1. HylY, Z] — H[Y, Z] = Dx.(D(y, 2) || pe(y, z)) > 0.
2. follows from Item[Il
3. We expand the expectations and note that inequality commutes with expectations:

Ho[Y'| 2] —H[Y | Z] = Ep(s) [Ho[Y | 2] — H[Y | 2]] 2 0,

because Hy[Y | z] — H[Y | z] > 0 for all z. The equality conditions follows from the properties of the Kullback-Leibler
divergence as well.

O
‘We also have:

Lemma L.9.

Ho[Y, Z] = Ho[Y" | Z] + Hy[Z] (52)
=Hy[Z | Y]+ Hy[Y]. (53)
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Proof. We substitute the definitions and obtain:

Hy D/v Z] = IEp(y,z) [7 log q(y, Z)} (54)
= IEp(y,z) [_ IOg Q(y | Z)] =+ IEp(y,z) [_ 1Og Q(Z)] (55)

— Ho[Y | Z) + HolZ]. (56)

O

The same holds for entropies: H[Y, Z] = H[Y | Z] + H[Z] = H[Y | Z] + H[Y] (Cover, |1999).

1.2.2. PROOF

We can now prove the observation.

Proposition 2.3. For an input x, let z = fg(x) denote its feature representation in a feature extractor fy with parameters 0.
Then the following hold:

1. A discriminative classifier p(y | z), e.g. a softmax layer, is well-calibrated in its predictions when it maximises the
conditional log-likelihood log p(y | z);

2. A feature-space density estimator (2) is optimal when it maximises the marginalised log-likelihood log (2);

3. A mixture model ((y, z) cannot generally maximise both objectives, conditional log-likelihood and marginalised log-
likelihood, at the same time. In the specific instance that it does maximise both, the resulting model must be a GDA (but
the opposite does not hold).

Proof. 1. The conditional log-likelihood is a strictly proper scoring rule (Gneiting & Rafteryl [2007). The optimization
objective can be rewritten as

max Elog p, (y1z) = min Ho[Y' | Z] > HY | Z]. (57)

An optimal discriminative classifier py(y | z) would thus capture the true (empirical) distribution everywhere: py(y | 2) =
P(y | z). This means the negative conditional log-likelihood will be equal H[Y | Z] and Hy[Y | 2] = H[Y | 2] for all z.
H[Y | ] is the irreducible residual conditional entropy, the aleatoric uncertainty.

2. For density estimation q(z), the maximum likelihood E [log q(z)] using the empirical data distribution is maximized. We
can rewrite this as

m;%xE}g(y,z) logpe(z) = meinH(;[Z] > H[Z]. (58)

We see that the negative marginalized likelihood of the density estimator upper-bounds the entropy of the feature representa-
tions H[Z]. We have equality and pg(z) = p(z) in the optimum case.

3. Using HylY, Z] = Hp[Z | Y] 4+ Hy[Y], we can relate the objectives from Equation and (38) to each other. First, we
characterize a shared optimum, and then we show that both objectives are generally not minimized at the same time. For
both objectives to be minimized, we have VHy[Z | Y] = 0 and V Hj[Z] = 0, and we obtain

VH[Y, Z] = VH[Z | Y] + VH[Y] = 0. (59)

From this we conclude that for minimizing both objectives also minimizes Hy[Y, Z], and that generally the objectives
trade-off with each other at stationary points 6 of Hy[Y, Z]:

VHy[Z|Y]=—VH[Y] when VH[Y,Z]=0 (60)

As can easily be verified, a trivial minimizer q*(y, z) for Hy[Y, Z] given an empirical data distribution p(y, z) is an adapted
Parzen estimator:

a*(y,2) = > D) Esupziy N (3 2, 0°T), (61)
Y

for small enough o. However, generally, there is no guaranteed shared optimum for other generative classifiers.
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Specifially, we will examine GMMs with one component per class. Minimizing Hy[Y, Z] on an empirical data distribution
is equivalent to Gaussian Discriminant Analysis, as is easy to check, and minimizing Hy[Z] is equivalent to fitting a density
estimator, following Equation (58)). The difference is that using a GMM as a density estimator does not constrain the
component assignment, unlike in GDA. Consequently, we can intuitively see that all objectives can be minimized at the
same time exactly when the feature representations of different classes are perfectly separated, such that a GMM fit as
density estimator would assign each class’s feature representations to a single component.

By the above, we can construct a simple example that shows this: if we have two classes whose features lie in well-separated
clusters, GDA will minimize all objectives. The opposite does not hold: it will fail for example if some of the class labels
are flipped. An optimal density estimator will still fit to the original clusters, while GDA will not.

Given that perfect separation is impossible with ambiguous data, a shared optimum is rare, but only then is GDA optimal. In
all other cases, GDA does not optimize both objectives, and neither can any other GMM (with one component per class).
Moreover, Equation (60) shows that a GMM fit using EM is a better density estimator than GDA, and a softmax layer is a
better classifier, as optimizing the softmax objective Hy[Y | Z] or density objective H[Z] using gradient descent will move
away from the GDA optimum.

O
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