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Abstract
Supervised learning datasets often have privileged
information, in the form of features which are
available at training time but are not available
at test time e.g. the ID of the annotator that pro-
vided the label. We argue that privileged infor-
mation is useful for explaining away label noise,
thereby reducing the harmful impact of noisy la-
bels. We develop a simple and efficient method
for supervised neural networks: it transfers the
knowledge learned with privileged information
via weight sharing and approximately marginal-
izes over privileged information at test time. Our
method, TRAM (TRansfer and Marginalize), has
the same test time computational cost as not using
privileged information, and performs strongly on
CIFAR-10H and ImageNet benchmarks.

1. Introduction
Classification problems are typically formalized as learning
a conditional distribution p(y|x), y ∈ {1, ..., C} and x ∈ X
from (xi, yi), i = 1, ..., N pairs. Yet we often have access
to additional features a ∈ A at training time that will not be
available at test time. These features are known as privileged
information (Vapnik & Vashist, 2009), or PI for short. An
example of PI are features describing the human annotator
that provided a given label, such as the annotator ID, the
length of time to provide the label, the experience of the
annotator, etc. Annotators do not always agree on the correct
label for a given x, some annotators may be more reliable
than others and the reliability of annotators may depend on
the location of x in the input domain X (Snow et al., 2008;
Sheng et al., 2008).

The expanded training dataset consists of (xi,ai, yi) triplets.
Given that our test time predictive distribution cannot be
conditioned on a, what use is this PI? As a thought experi-
ment, suppose there exists a malicious (or lazy) annotator

1Google AI. Correspondence to: Mark Collier <markcol-
lier@google.com>.

Presented at the ICML 2021 Workshop on Uncertainty and Robust-
ness in Deep Learning., Copyright 2021 by the author(s).

Figure 1. TRAM diagram.

that provides random labels. It is known that random la-
bels harm the performance of supervised learning models
(Frénay & Verleysen, 2013). If these random labels can be
explained away via access to PI, such as the annotator ID,
then this harm can be prevented. In particular we can use
the PI to explain away noise in the labels which otherwise
would be irreducible aleatoric uncertainty.

More formally, suppose A, the PI random variable, is predic-
tive of Y given X, in the sense that the conditional mutual
information I(Y;A|X) is non-zero. Then, the entropy of
Y is reduced if we condition on both X and A rather than
X alone, as summarised in Lemma 1.1.

Lemma 1.1 I(Y;A|X)> 0⇒H(Y|X,A)<H(Y|X).

Under some assumptions, prior work has proven that PI can
lead to generalization bounds with better sample complexity
(Vapnik & Vashist, 2009; Lambert et al., 2018).

In this paper we focus on exploiting PI in supervised deep
neural networks. The production deployment of such mod-
els often has tight latency and memory constraints. Hence
a number of methods have been developed to utilize PI
with the same test time memory and computation cost as
networks trained without PI (Yang et al., 2017; Lambert
et al., 2018; Lopez-Paz et al., 2015). Yang et al. (2017)
uses PI as a form of input-dependent regularizer. Lambert
et al. (2018) train with heteroscedastic Gaussian dropout,
with the training-time dropout variance a function of the PI.
Lopez-Paz et al. (2015) distill a network trained with PI into
a network without access to a.
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Below we develop a method, TRAM, which transfers knowl-
edge via weight sharing from the network trained using PI
to the test time network which does not have access to PI. At
test time, TRAM makes a simple, efficient approximation to
the integral p(y|x) =

∫
p(y|x,a)p(a|x)da. Making predic-

tions without PI is no more costly than that with a standard
network without access to PI. Unlike prior work which re-
quires specific techniques such as Gaussian Dropout, we
need not constrain the form of the predictors to make the
downstream marginalization possible. Implementation and
training are simple. Empirically, we show that our method
performs better than a series of baselines.

2. Method: TRAM
We consider learning under privileged information (Vapnik
& Vashist, 2009), LUPI. Our proposed method, TRAM,
consists of a single neural network with two output heads,
providing predictions for both p(y|x,a) and p(y|x); see
Figure 1. There are two key ingredients to TRAM; (i) the
p(y|x) head is a simple, yet a provably valid, approximation
to the marginal

∫
p(y|x,a)p(a|x)da and (ii) a partition of

the parameter space such that the neural network weights are
shared between the two output heads, and that these shared
weights are updated solely based on the gradients from the
p(y|x,a) head which has access to PI. Below we develop
TRAM in the classification setting but the method can natu-
rally be extended to the regression setting, Appendix B.

2.1. Ingredient #1: Marginalize over PI at test time

A natural probabilistic approach to LUPI is (i) to learn the
conditional distribution p(y|x,a) during training and (ii)
then, at test time, marginalize over the A domain p(y|x) =∫
p(y|x,a)p(a|x)da (Lambert et al., 2018).

Predicting with the marginal p(y|x) at test time is motivated
by the following key observation. Consider the set of dis-
tributions Q over the C class labels, Q = {q(y|·)|∀x ∈
X , q(y|x) ∈ ∆C} where ∆C is the C-dimensional simplex.
Among all the distributions q ∈ Q, the marginal distribution
x 7→ p(y|x) minimizes the following optimization problem:

min
q∈Q

E(x,a)∼p(x,a) [DKL(p(y|x,a)‖q(y|x))] . (1)

See proof in Appendix A. In words, p(y|x) is optimal in
the sense that it minimizes the expected KL divergence to
p(y|x,a). Access to p(y|x) also enables minimizing the
Bayes risk (Murphy, 2012) at test time.

Directly computing p(y|x) has two problems; (i) for all
but the simplest cases it is intractable and (ii) p(a|x) is
unknown and therefore must be learned, which is a chal-
lenging generative modelling problem in itself, especially
as a typically has mixed type features. A Monte Carlo
estimate of the integral by using the samples from A in

the training set is typically only feasible with the indepen-
dence assumption p(a|x) = p(a), so that p(y|x) reduces to∫
p(y|x,a)p(a)da ≈ 1

S

∑S
s=1 p(y|x,as) with as ∼ p(a).

Unfortunately this independence assumption is often vio-
lated in practice. In addition the memory and computational
cost of MC estimation scales linearly in S, the number of
MC samples. This O(S) scaling is undesirable for produc-
tion deployment with strict latency requirements.

Due to the challenge of computing the integral directly, we
thus propose a simple approximation q(y|x;w) to p(y|x).
It exploits the representation (1) of p(y|x) as the distribu-
tion minimizing the expected KL divergence to its condi-
tional p(y|x,a). We choose q to be cheap to evaluate at test
time. For example, for a multi-class vanilla TRAM classifier
q(y|x;w) = softmax(Wφ(x)).

2.2. Ingredient #2: Transfer via weight sharing

We partition the parameter space into four disjoint subsets;
(1) Let φ(x) be a feature extractor for x ∈ X .
(2) Similarly, let ψ(φ(x),a) be a feature extractor jointly
applied to (φ(x),a) for (x,a) ∈ X×A.
(3) The weights w parameterize the marginal distribution:
q(y|x;w) = q(y|φ(x);w).
(4) The weights u parameterize the conditional distribution:
q(y|x,a;u) = q(y|ψ(φ(x),a);u).

Two-step approach. Motivated by Eq. (1) and the connec-
tion between LUPI and multi-task learning (Jonschkowski
et al., 2016), we consider the following two-step approach:

min
u,φ,ψ

E(x,a,y)∼p(x,a,y)
[
L(y, q(y|x,a))

]
(2)

min
w

E(x,a,y)∼p(x,a,y)
[
CE(y, q(y|x))

]
with φ = φ? (3)

L is an arbitrary loss function and CE is the cross entropy.
We assume φ and ψ are parameterized as neural networks,
so minφ,ψ refers to optimizing the network weights.

Crucially φ? is the feature extractor learned in (2) with ac-
cess to PI. This weight sharing enables knowledge transfer
to the network trained without PI. Given (1), we know that
(3) approximates the true marginal distribution p(y|x) (ob-
serve that the KL divergence in (1) reduces to CE when
taking the one-hot training labels for p(y|x,a)).

Merging the two steps. To further simplify the above
approach, we propose to merge (2) and (3) into a single
training procedure. To that end, and reusing the terminology
commonly used in deep-learning frameworks, let us define

π(y|x;w) = q
(
y|stop gradient(φ(x));w

)
which coincides with q(y|x) except that its gradient only
depends on w. For some β > 0, we then consider:

min
u,w,φ,ψ

E(x,a,y)∼p(x,a,y)
[
CE(y, π(y|x))+βL(y, q(y|x,a))

]
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as the joint training objective. In practice, since the parame-
ters of the two losses are partitioned, we can set β = 1 and
fold instead the search over β into the search of the learning
rate, hence not introducing an extra hyperparameter.

2.3. TRAM variants

Privileged information may only explain away some of label
noise uncertainty. Below we propose two TRAM variants
which combine TRAM with existing noisy labels methods.

Het-TRAM. Heteroscedastic classifiers have been suc-
cessfully applied in this setting (Collier et al., 2021). Further
note that even in some cases where the conditional distri-
bution q(y|x,a) is homoscedastic, the marginal q(y|x) is
heteroscedastic, see Appendix C for details.

Hence we propose Het-TRAM, a TRAM variant in which
q(y|x) is heteroscedastic. This increases the expressiveness
of q, improving the approximation in the second step of our
optimization procedure, Eq. (3). We implement the method
of Collier et al. (2021) to make q(y|x) heteroscedastic.

Distilled-TRAM. Distillation (Hinton et al., 2015) is a
technique for transfering knowledge between two neural
networks. Distillation has been previously applied to LUPI
(Lopez-Paz et al., 2015). In Distilled-TRAM we set the loss
function, L in Eq. (2), to the distillation loss. The teacher
network is first trained with access to PI and in the second
step the distilled-TRAM model is trained.

3. Related Work
Vapnik & Vashist (2009) develop a theoretic framework for
the LUPI paradigm and introduce the SVM+ method for
training Support Vector Machines in this regime. The slack
variables for the SVM+ constraints are a function of the
PI. SVM+ has been extended in the SVM literature (Lapin
et al., 2014; Vapnik & Izmailov, 2015). Jonschkowski et al.
(2016) provide a unifying framework that connects together
multi-task learning, multi-view learning and LUPI.

Yang et al. (2017) extend the SVM+ approach to neural net-
work models with their MIML-FCN+ method. The authors
formulate a two-tower network similar to our network, but
without weight sharing between the towers. Both towers
make independent predictions given either x or a as inputs.
The tower with access to PI predicts the loss of the other
tower and this prediction is regularized to be close to the
true loss. In this way the PI tower outputs a neural network
analogue to the SVM+ slack variables.

Lambert et al. (2018) utilize PI by making the training-time
Gaussian-dropout variance (Kingma et al., 2015) a function
of the PI. At test time the PI is approximately marginalized
over by removing the dropout. Similarly Hernández-Lobato

et al. (2014) allow the additive Gaussian noise component of
a heteroscedastic Gaussian Process Classifier (Rasmussen
& Williams, 2006) to be a function of the PI. The classifier
is homoscedastic at test time.

Lopez-Paz et al. (2015) propose a distillation (Hinton et al.,
2015) style approach to learning with PI. The teacher net-
work is trained with access to PI. In the distillation step the
student network is given x as input and a convex combina-
tion of soft labels from the teacher network and true labels y
as targets. Xu et al. (2020) extend and apply this distillation
method to a recommender system.

TRAM implements knowledge transfer via weight sharing,
performs efficient approximate marginalization at test time
and can be applied to many widely used architectures. Lam-
bert et al. (2018) also share weights and approximate the
marginal p(y|x) however they require the use of Gaussian
dropout, which is not widely used. The distillation and
MIML-FCN+ methods do not transfer via weight sharing
and do not approximate p(y|x). Distillation also requires a
two-step training procedure. See Table 3 in the Appendix for
a comparison of the key features of selected LUPI methods.

4. Experiments
Our experiments tackle the general LUPI problem under la-
bel noise, especially when the PI refers to annotator features.
There are a few large-scale public datasets with annotator
features. We thus use both real datasets with annotator
features as well as synthesizing annotator features for a
re-labelled version of ImageNet (Deng et al., 2009).

We evaluate a number of baselines in addition to our method.
The “No PI” baseline is standard neural network training
which directly learns p(y|x) and never uses PI. Zero and
mean imputation learn p(y|x,a) at training time and substi-
tute a = 0 and a = 1

N

∑
i ai respectively at test time. For

mean imputation, averaging takes place after feature pre-
processing, e.g., one-hot encoding of the annotator ID. The
“Full marginalization” baseline is an expensive MC estimate
of p(y|x) =

∫
p(y|x,a)p(a|x)da at test time, see §2.1 for

details. It is a gold standard (up to independence assump-
tion error), impractical to compute in many applications.
Prior work did not evaluate against these simple imputation
baselines or full marginalization (Lopez-Paz et al., 2015;
Yang et al., 2017; Lambert et al., 2018). We also compare
distillation based approaches. “Distillation No PI” is an
ablation to see the effect of distillation alone, independent
of PI, in which a network trained without access to PI is
distilled into another network also without access to PI.

4.1. CIFAR-10H

One dataset with annotator features is CIFAR-10H (Peterson
et al., 2019), which is a re-labelled version of the CIFAR-10
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Table 1. CIFAR-10 negative log-likelihood & accuracy (trained on
CIFAR-10H). Averaged over 20 training runs ± 1 std. dev.

METHOD NLL ACCURACY

NO PI 1.058 ± 0.050 67.0 ± 1.7
ZERO IMPUTATION 1.009 ± 0.032 68.7 ± 1.4
MEAN IMPUTATION 0.963 ± 0.058 70.1 ± 1.5
FULL MARGINALIZATION 1.119 ± 0.058 70.3 ± 2.5
TRAM 0.980 ± 0.037 70.1 ± 1.4
HET-TRAM 0.972 ± 0.038 70.4 ± 1.5

DISTILLATION NO PI 1.118 ± 0.037 70.1 ± 1.4
LOPEZ-PAZ ET AL. (2015) 1.121 ± 0.040 70.2 ± 1.4
DISTILLED-TRAM 0.941 ± 0.039 71.8 ± 1.4

(Krizhevsky & Hinton, 2009) test set. The new labels are
provided by crowd-sourced human annotators. We make use
of three annotator features; the annotator ID, the reaction
time of the annotator to provide the label and how much
experience the annotator had with the task, as measured by
the number of labels the annotator had previously provided.

As we only have annotator features for the CIFAR-10 test
set, we use this as our training set and evaluate on the of-
ficial training set. As a result we have only 10,000 images
for training. To achieve reasonable performance we start
from a MobileNet (Howard et al., 2017) pretrained on Ima-
geNet. Images have on average> 50 annotations each. This
is unrealistic for typical applications where 1-3 labels per
example is more common. Therefore, we subsample 16,400
labels (1.64 labels per example), see Appendix D for details
of the subsampling procedure. The subsampled labels agree
with the true CIFAR-10 test set labels 79.4% of the time.

In Table 1 we see the results. First, and as expected, us-
ing annotator features via TRAM, full marginalization or
the imputation methods provides a significant performance
improvement over standard neural network training with-
out PI. Second, we see that TRAM performs on par with
full marginalization (which uses 16,400 MC samples of a
from the training set), despite having constant time com-
pute and memory requirements w.r.t. the number of MC
samples for the full marginalization baseline. Mean im-
putation is a strong baseline on CIFAR-10H. Het-TRAM
improves over TRAM demonstrating the efficacy of making
q(y|x,a) heteroscedastic. It is noteworthy that distillation
using PI, (Lopez-Paz et al., 2015) does not improve over
standard distillation without PI. However Distilled-TRAM
with makes use of PI for distillation but then performs ap-
proximate marginalization and transfer learning via weight
sharing shows significant improvement over the distillation
baselines on both accuracy and log-likelihood metrics.

4.2. ImageNet ILSVRC12

In order to create a large-scale dataset with annotator fea-
tures, we re-label the ImageNet ILSVRC12 training set by

Table 2. ImageNet validation set negative log-likelihood and accu-
racy. Averaged over 10 training runs ± 1 std. dev.

METHOD NLL ACCURACY

NO PI 1.196 ± 0.006 73.3 ± 0.1
ZERO IMPUTATION 1.136 ± 0.006 72.7 ± 0.2
MEAN IMPUTATION 1.128 ± 0.005 72.8 ± 0.2
FULL MARGINALIZATION 1.181 ± 0.005 74.1 ± 0.2
TRAM 1.161 ± 0.005 74.0 ± 0.2
HET-TRAM 1.166 ± 0.008 74.7 ± 0.2

DISTILLATION NO PI 1.607 ± 0.006 74.3 ± 0.2
LOPEZ-PAZ ET AL. (2015) 1.420 ± 0.006 74.7 ± 0.1
DISTILLED-TRAM 1.094 ± 0.006 75.1 ± 0.2

the following procedure. We download 16 different models
pre-trained on ImageNet, see Appendix D for further de-
tails. We also add a 17th malicious annotator model which
picks a label uniformly at random from the 1,000 ImageNet
ILSVRC12 classes. For each image in the training set we
select the malicious annotator with 10% probability and
otherwise sample one of the 16 models with equal probabil-
ity. We then sample a label from the predictive distribution
of that model for that image. This is the label used for
training. On average the sampled label agrees with the true
ImageNet label 68.3% of the time. The annotator features
are the model ID (a proxy for a human annotator ID) and
the probability of the label assigned by the model (a proxy
for the confidence of a human annotator).

See Table 2 for the results. The full marginalization base-
line uses 1,000 MC samples of a from the training set. The
imputation baselines perform worse than not using PI on
ImageNet, perhaps due to the imputed values having low
density under p(a|x). Again TRAM performs on par with
full marginalization and Het-TRAM has higher accuracy
than both. The ImageNet labels are known to exhibit het-
eroscedasticity (Collier et al., 2021), therefore we make both
q(y|x) and q(y|x,a) heads heteroscedastic for Het-TRAM.
The distillation method of Lopez-Paz et al. (2015) does
improve over distillation without access to PI on this bench-
mark; however again Distilled-TRAM has significantly bet-
ter NLL and accuracy than the distillation baselines.

5. Conclusion
We introduced TRAM, a new method for LUPI in super-
vised neural networks. TRAM (i) learns an efficient, simple
distribution to approximately marginalize over PI at test
time and (ii) partitions the parameter space enabling transfer
via weight sharing of the knowledge learned with access to
PI. TRAM can be successfully combined with established
methods for dealing with noisy labels; distillation (Distilled-
TRAM) and heteroscedastic output layers (Het-TRAM). We
have empirically validated TRAM on CIFAR-10H and a
noisy version of ImageNet.
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Table 3. Comparison to related work.

METHOD p(a|x) REQUIRED TRAINING TEST COST WEIGHT SHARING APPROXIMATE p(y|x)

IMPUTATION × 1 MODEL, 1 STEP = NO PI X ×
DISTILLATION (LOPEZ-PAZ ET AL., 2015) × 2 MODELS, 2 STEPS = NO PI × ×
HETEROSCEDASTIC DROPOUT (LAMBERT ET AL., 2018) × 1 MODEL, 1 STEP = NO PI X X
MIML-FCN+ (YANG ET AL., 2017) × 1 MODEL, 1 STEP = NO PI × ×
FULL MARGINALIZATION X 1 MODEL, 1 STEP O(S ∗ NO PI) X X

TRAM (OURS) × 1 MODEL, 1 STEP = NO PI X X
HET-TRAM (OURS) × 1 MODEL, 1 STEP = NO PI X X
DISTILLED-TRAM (OURS) × 2 MODELS, 2 STEPS = NO PI X X

A. Proof of Equation (1)
As a reminder, we consider C class labels and denote by
∆C the C-dimensional simplex. We define the set of distri-
butions Q over the C class labels by

Q = {q(y|·) | ∀x ∈ X , q(y|x) ∈ ∆C}.

Consider the optimization problem

min
q∈Q

Ex∼p(x) [DKL(p(y|x)‖q(y|x))] (4)

whose solution is straightforwardly given by the marginal
distribution x 7→ q?(y|x) = p(y|x). We recall that the KL
DKL(p(y|x)‖q(y|x)) is defined by

DKL(p(y|x)‖q(y|x))=

C∑
j=1

pj(y|x) log
(pj(y|x)

qj(y|x)

)
. (5)

For any x and j ≤ C, we can rewrite the terms of the sum

pj(y|x) log
(pj(y|x)

qj(y|x)

)
as

Ea|x∼p(a|x)

[
pj(y|x,a) log

(pj(y|x)

qj(y|x)

)]
where we have used (i) the fact that log(

pj(y|x)
qj(y|x) ) does not

depend on a and (ii) the definition of the marginal distribu-
tion

pj(y|x) =
∫
pj(y|x,a)p(a|x)da

= Ea|x∼p(a|x) [pj(y|x,a)] .

Multiplying and dividing in the argument of the log by
pj(y|x,a), we obtain

Ea|x∼p(a|x)

[
pj(y|x,a) log

(pj(y|x,a)

qj(y|x)

pj(y|x)

pj(y|x,a)

)]
.

Summing over j ∈ {1, . . . , C} to reconstruct the KL
term (5), this leads to, for any x,

DKL(p(y|x)‖q(y|x)) = Ea|x [DKL(p(y|x,a)‖q(y|x))]

−Ea|x [DKL(p(y|x,a)‖p(y|x))] .

Since the second term above does not depend on q, mini-
mizing (4) is equivalent to minimizing

min
q∈Q

Ex

[
Ea|x [DKL(p(y|x,a)‖q(y|x))]

]
= min

q∈Q
E(x,a)∼p(x,a) [DKL(p(y|x,a)‖q(y|x))]

which is equal to (1) and which is, analogously to (4), mini-
mized by the marginal distribution x 7→ q?(y|x) = p(y|x).

B. Regression
We developed TRAM and Het-TRAM focussing on the
classification setting but our approach is trivial to generalize
to regression problems.

In the regression case, we can choose the predictive distribu-
tion to be Gaussian, q(y|x) = N (µ(x), σ2(x)). For vanilla
TRAM we can choose σ2(x) = 1, while for Het-TRAM we
can choose σ2(x) = softplus(w>σ φ(x)). µ and σ2 are
parameterized as neural networks with our shared feature
extractor φ(x), similar to Kendall & Gal (2017). The joint
objective function Eq.( 2.2) is unchanged.

C. Heteroscedastic Motivation
We consider a simplified special case of our framework
in which the conditional model p(y|x,a) is homoscedas-
tic but the optimal variational distribution in the sense of
Eq. 1 is heteroscedastic. This motivates Het-TRAM, in
which the variational approximations q(y|x) and q(y|x,a)
are heteroscedastic.

Suppose we have a regression dataset constructed from la-
bels assigned by M annotators. Each annotator has their
own homoscedastic Gaussian model p(y|x, a = m) =
N (µθm(x), 1). Here the PI is a single discrete Categori-
cal feature representing the annotator ID which takes one of
M values with equal probability, a ∼ Cat( 1

M ).

The marginal p(y|x) is a Gaussian Mixture Model. We
choose our variational family to be the Gaussian distri-
bution, q(y|x) = N (µ(x), σ2(x)). The values of µ and
σ2 that minimize Eq. 1 are: µ∗(x) = 1

M

∑
m µθm(x)

and σ2
∗(x) = (M − µ∗(x)) + 1

M

∑
m µ

2
θm

(x) (Lakshmi-
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narayanan et al., 2017). Crucially note that despite the
conditional distribution being homoscedastic, the best varia-
tional distribution is heteroscedastic as the variance depends
on the location in X space.

D. Experimental Details
D.1. Data generation process

CIFAR-10H. We use the CIFAR-10 image as the non-
privileged information x. The annotator ID, the number of
prior annotations the annotator has provided and the reaction
time in milliseconds of the annotator, are used as privileged
information a. For feature pre-processing the annotator ID
is one-hot encoded. The number of prior annotations and the
reaction time are independently divided into 10 equally sized
quantiles and the quantile ID is one-hot encoded. The image
is pre-processed according the the standard MobileNet pre-
processing (Howard et al., 2017).

As CIFAR-10H has on average more than 50 annotations per
image and the labels are not particularly noisy. We subsam-
ple the CIFAR-10H labels by the following procedure. We
keep all labels by the 41 annotators that agree with the true
CIFAR-10 label less than 85% of the time. We then select a
further 41 annotators from the remaining annotators. The
average agreement of the bad annotators with the CIFAR-
10 label is 63.3%, in the full subset of labels: 79.2% and
in the full CIFAR-10H dataset: 94.9%. The subsampling
procedure leaves 16,400 labels from 82 annotators while
the full CIFAR-10H dataset has 514,200 labels from 2,571
annotators.

ImageNet. The ImageNet image is used as the non-
privileged information x. It is pre-processed with standard
ResNet-50 pre-processing (He et al., 2016). The annotator
features are the model ID used to re-label x, which is one-
hot encoded and the probability of that label being sampled.
See main paper for details on the sampling procedure and
see Table 4 for the list of models used and their accuracy
on the ImageNet training set. The pre-trained models are
downloaded from tf.keras.applications1.

D.2. Hyperparameters

CIFAR-10H. For all methods φ(x) (or equivalent) is a
MobileNet (Howard et al., 2017) pre-trained on ImageNet
ILSVRC12, followed by a global average pooling layer and
a Dense + ReLU layer with 64 units. ψ(x,a) is a two-layer
MLP with 64 units per layer and ReLU activation. The first
layer takes only a as an input, while the second layer takes
the output of the first layer concatenated with φ(x) as input.

All models are trained for 20 epochs with the Adam op-

1https://www.tensorflow.org/api docs/python/tf/keras/applications

Table 4. Pre-trained models used to re-label ImageNet ILSVRC12
training set and their accuracy on that training set.

Model Training set accuracy

ResNet50V2 0.70086
ResNet101V2 0.72346
ResNet152V2 0.72738
DenseNet121 0.74782
DenseNet169 0.76184
DenseNet201 0.77344
InceptionResNetV2 0.8049
InceptionV3 0.77994
MobileNet 0.70594
MobileNetV2 0.71458
MobileNetV3Large 0.75622
MobileNetV3Small 0.68158
NASNetMobile 0.74302
VGG16 0.71178
VGG19 0.71156
Xception 0.79076

timizer with base learning rate= 0.001, β1 = 0.9, β2 =
0.999, ε = 1e− 07. All models are trained with L2 weight
regularization with weighting 1e− 3.

Heteroscedastic models are trained using the method of Col-
lier et al. (2021) with 4 factors for the low-rank covariance
matrix approximation and a softmax temperature param-
eter of τ = 3.0. Distilled models are also trained with
a softmax temperature of τ = 3.0 to smooth the teacher
labels and with the distillation hyperparameter λ = 0.5
which weights the losses from the soft teacher labels and
the true labels. A grid search over τ ∈ {1.0, 2.0, 3.0, 4.0}
and λ ∈ {0.0, 0.25, 0.5, 0.75, 1.0} was conducted.

ImageNet. For all methods φ(x) (or equivalent) is a ran-
domly initialized ResNet-50 (He et al., 2016) with the output
layer removed. ψ(x,a) is a two-layer MLP with 128 units
per layer and ReLU activation, the output of this MLP is
concatenated with φ(x) and then passed to the output layer.
The first layer of the ψ(x,a) MLP takes only a as an input,
while the second layer takes the output of the first layer
concatenated with φ(x) as input.

All but Het-TRAM models are trained for 90 epochs with
the SGD optimizer with base learning rate= 0.1, decayed
by a factor of 10 after 30, 60 and 80 epochs. Following
Collier et al. (2021), Het-TRAM is trained for 270 epochs
with the same initial learning rate and learning rate decay
at 90, 180 and 240 epochs. All models are trained with L2
weight regularization with weighting 1e− 4.

Heteroscedastic models use 15 factors for the low-rank
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covariance matrix approximation and a softmax temper-
ature parameter of τ = 1.5. Distilled models are trained
with a softmax temperature of τ = 3.0 and with the dis-
tillation hyperparameter λ = 0.5. A grid search over
τ ∈ {1.0, 2.0, 3.0, 4.0} and λ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}
was conducted.


