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Abstract
For real-world deployments, it is essential to de-
velop reinforcement learning algorithms that al-
low for both effective exploration and safety. One
approach to this challenge that has not been as
extensively studied as other methods is the use of
uncertainty. In this paper, we evaluate the effec-
tiveness of certain uncertainty-based RL models
on different gridworld environments. Across all
models and environments tested, we conclude that
a Deep Ensemble-based approach using Random-
ized Prior functions (Osband et al., 2018) is ideal
for solving environments with sparse rewards
and rare solutions. Additionally, we observe that
UADQN (Clements et al., 2020), which utilizes
both aleatoric and epistemic uncertainty, can be
effective in balancing safety and exploration in
highly stochastic environments, but its ability to
do so is highly dependent on appropriate penaliza-
tion of negative events. Finally, we conclude that
UADQN’s ability to effectively estimate aleatoric
uncertainty of Q-values is greatly impacted by its
utilization of epistemic uncertainty to explore an
environment’s state-action space.

1. Introduction
In reinforcement learning (RL), being able to distinguish
between two types of uncertainty – epistemic and aleatoric
– can be extremely useful for applications that must strike
a balance between exploration and risk-sensitivity. Epis-
temic uncertainty is uncertainty arising from the scarcity
of data and is thus important for deciding whether more
exploration may be necessary. Aleatoric uncertainty, on
the other hand, is uncertainty due to stochasticity inherent
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in the environment and must be taken into consideration
when handling risk-sensitive applications (Hüllermeier &
Waegeman, 2020).

The role that uncertainty plays in safety and exploration
impacts a variety of real-world use cases. Ensuring agent
safety is a challenge that goes hand in hand with environ-
ments that have high aleatoric uncertainty: for instance,
autonomous vehicles driving in regions with random gusts
of wind, icy/slippery roads, or other high-risk situations
driven by randomness. On the other hand, environments
with rare solutions and sparse rewards necessitate high agent
exploration, which can be achieved with the help of epis-
temic uncertainty. Real-world examples of these types of
tasks, such as looking for resources in sparse landscapes
or leaving a maze, are particularly hard problems. Indeed,
even healthcare situations in which patient improvement
only comes after long periods of time, such as chemother-
apy, may necessitate high agent exploration.

While use-cases of estimates of epistemic and aleatoric
uncertainties are numerous, there are still many barriers to
disentangling and accurately estimating these uncertainties
(Hüllermeier & Waegeman, 2020) as well as understanding
how various uncertainty-based models compare against each
other in terms of agent safety and exploration.

In this paper, we analyze the effectiveness of various RL
models that use uncertainty in different ways on a handful
of gridworld environments. Our main contributions are as
follows: 1) an adaptation of various RL models evaluated on
gridworld environments; 2) a comparison of the models via
metrics assessing agent safety and performance; and 3) an
analysis of the usage of epistemic and aleatoric uncertainty
(if any) in these models and the effects on model behavior.

2. Related Work
2.1. Exploration

The role of exploration in RL has traditionally been framed
in terms of a few key questions (Thrun, 1992):

1) How should exploration strategies balance the speed and
cost of learning? This question targets notions of efficacy
and efficiency, as intuition suggests that agents should suffi-
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ciently explore their environments in order to perform well,
while excessive exploration wastes both time and compute
resources.

2) How should strategies trade off exploration and exploita-
tion (known as the exploration-exploitation tradeoff?)

Several classic exploration strategies have been extensively
studied in the literature (Akrour, 2017; McFarlane, 2018).
These approaches have been shown to work well with sim-
pler tabular RL methods as well as multi-armed bandits.
In Deterministic exploration via greedy-policy, an agent al-
ways takes the best action known. Stochastic exploration, in
contrast, involves sampling from a non-deterministic proba-
bility distribution in order to make decisions.

Additional classic methods are the Upper Confidence
Bounds (UCB) algorithm (which favors actions with strong
“potential” for optimality, measured by an upper confidence
bound of the reward) and Thompson sampling (which se-
lects an action according to the probability that it is optimal
given the history). Oftentimes, however, these classic meth-
ods are less capable of handling more difficult environments
such as those that rarely provide feedback and those with
noise (Burda et al., 2018). Several methods to tackle ex-
ploration in these environments include Intrinsic rewards
as exploration bonuses, in which we augment the environ-
ment reward with an additional bonus signal to encourage
exploration (Bellemare et al., 2016; Schmidhuber, 1991),
and Bootstrapped exploration, in which multiple Q-value
heads are trained in parallel but each only consumes a boot-
strapped sub-sampled set of data and has its own target
network (Osband et al., 2016).

2.2. Safety

A significant number of recent approaches for achieving
safety in deep RL have been constraint-based. In these ap-
proaches, the standard optimization procedure of an RL
agent is augmented to exactly or approximately adhere
to constraints over functions of costs, which are incurred
when the agent experiences certain negative events (Altman,
1999). Some of these approaches add Lagrange multipliers
to the loss function of the agent to meet the constraints (Ray
et al., 2019), and a recent paper improves upon this by us-
ing a PID controller, which is generally used for dynamical
systems, to edit the value of the multiplier in a more stable
way (Stooke et al., 2020). Other methods are designed to
meet constraints when using specific RL algorithms (such
as Constrained Policy Optimization (Achiam et al., 2017)
and Deep Constrained Q-learning (Kalweit et al., 2020)).
Additionally, recent work has shown the effectiveness of
pretraining networks to approximate costs using log data
or agent behavior in low-stakes environments and utilizing
these networks to constrain optimization in safety-critical
scenarios (Srinivasan et al., 2020; Dalal et al., 2018).

We believe that constraint-based and aleatoric uncertainty-
based approaches to RL safety are orthogonal. The former
attempts to protect against any unsafe event, while the latter
only tackles negative events that occur stochastically, and
we hypothesize that utilizing aleatoric uncertainty can help
better satisfy safety constraints when probabilistic catas-
trophes can occur (this can be experimentally explored in
future work).

Finally, some previous uses of uncertainty in RL for safety
are Depeweg et al. 2018, which provides a different decom-
position of aleatoric and epistemic uncertainty than UADQN
does (and applies it to Batch RL), and Lütjens et al. 2019,
which uses epistemic uncertainty to prevent taking under-
explored actions when deploying an agent.

3. Models
3.1. DQN

Of the models studied, Deep Q-Networks (DQN) are the
most standard utilization of deep learning for RL. Their key
idea is to utilize an artificial neural network to iteratively
approximate the optimal Q function (Mnih et al., 2013). The
Q function is:

Q∗(s, a) =
maxπ E

[
rt + γrt+1 + γ2rt+2 + . . . | st = s, at = a, π

]
,

which is the maximum sum of rewards rt discounted by
γ at each timestep t, achievable by a behavior policy
π = P (a | s), after making an observation (s) and tak-
ing an action (a) (Sutton & Barto, 2018). Deep Q learning
addresses instabilities and inefficiencies in RL by 1) ran-
domly sampling data from a replay buffer of memory and
2) only periodically updating Q values towards the target.
During training, an ε-greedy policy is used to explore by
sampling random (non-greedy) actions with an ε probability.
However, DQN makes no use of uncertainty (Mnih et al.,
2015).

3.2. UADQN

Uncertainty-aware Deep Q Networks (UADQN) (Clements
et al., 2020) is an approach based on distributional RL that
disentangles epistemic and aleatoric uncertainty. Quantile
regression based distributional RL involves learningN quan-
tiles (each referred to here as yi) of a return distribution for
a state-action pair instead of only its expected value using
a neural network with parameters θ (Dabney et al., 2017).
UADQN treats this neural network as a Bayesian Neural
Network and places a prior over θ.

For epistemic uncertainty over the Q value of a state-action
pair, the authors propose taking the average across quantiles
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of the variance of the BNN’s quantile estimate:

σ2
epistemic = Ei∼U{1,N}

[
varθ∼P (θ|D) (yi(θ, s, a))

]
Additionally, UADQN defines aleatoric uncertainty as the
variance of the expected value of the BNN quantile estimates
with respect to the posterior distribution over θ:

σ2
aleatoric = vari∼U{1,N}

[
Eθ∼P (θ|D)yi(θ, s, a)

]
UADQN computes unbiased estimates of these two uncer-
tainty measures using two networks that are approximate
samples from the posterior distribution (utilizing random-
ized MAP sampling). Then, when taking an action at each
time step, the Q value for each action is computed using the
following procedure using aleatoric factor = λ, epistemic
factor = β, and Q value mean µS,A (mean of all Q value
quantile estimates).

µS,A = µS,A − λσaleatoric; QS,A ∼ N (µS,A, β
2σ2

epistemic)

3.3. (DQNRP) Deep Q Network With Randomized
Priors

Randomized Priors for Deep RL aims to solve the
fundamental problem of bootstrapped models not having
a mechanism for uncertainty that does not come from the
observed data. This approach trains an ensemble of models,
each on perturbed versions of the data, to approximate a
Bayesian posterior. To then inject a prior, each member of
the ensemble is initialized together with a random but fixed
prior function. Predictions in each ensemble member are
then taken as the sum of a trainable neural network and its
prior function (Osband et al., 2018).

With this approach, ensemble networks will perform
differently in areas with or without data, similar to normal
Bayesian inference; that is, ensemble models will agree in
rich data regions of the state space but vary in areas with
no training data (indicating use of epistemic uncertainty).
DQNRP’s proposed benefit is to have good performance
on especially difficult tasks with rare solutions and sparse
rewards, such as the chain environment described in Section
4 (Osband et al., 2018).

4. Environments
4.1. Gridworld with stochastic falls

This environment was used in experiments of the UADQN
paper (Clements et al., 2020) and is a 2× 5 grid with start-
ing location in the upper left corner and goal location in
the upper right corner. An agent is given a -1 reward per
timestep, a 10 reward for reaching the goal, and can “fall” (a
negative event) off of the environment (resetting its position
to the start) with probability 0.05 if it is on the top row of

the environment but not on a start or goal tile. These random
restarts due to “falls” are a source of aleatoric uncertainty
over Q values. We aim to explore the effects of explicitly pe-
nalizing agent falls (which the UADQN paper does not do)
in this environment by testing a version of the environment
with a -15 additional reward for falls (as well as a version
with 0 additional reward for falls).

4.2. Gridworld with stochastic rewards

This is a 3× 4 grid with the same start and goal locations
as the previous environment. An agent can also receive an
additional reward with probability 0.05 if it is on the top row
of the environment but not on the goal tile. By setting the
stochastic additional reward to -5 (reception of this reward
is called a negative event), we explore the behavior of agents
in a high aleatoric uncertainty environment when the source
of this uncertainty is only due to variance in single-step
rewards (and not environment restarts).

4.3. Chain Environment

This type of environment is used in Osband et al. 2018
and features an agent on an N ×N grid that samples from
Unif(0, 1) at each time step. Before the start of the task,
a number from Unif(0, 1) is also drawn for each grid lo-
cation and is the number that corresponds to the action
“right” for that location. The agent moves downward at each
timestep, receives a −0.01/(N − 1) reward for a right ac-
tion, 0 reward for a left action, and 1 reward for finishing
in the bottom right corner. This environment requires ef-
fective exploration for success due to a rare solution action
sequence and sparse large rewards. Therefore, it is use-
ful for evaluating different approaches to using epistemic
uncertainty to improve agent exploration.

5. Results
We evaluate the performance of all three models – DQN,
UADQN, and DQNRP – on three environment types and
analyze the impact of estimated uncertainty (if any) on the
performance of each model. For all models, we run 3 trials
of 10000 timesteps and report results as average over these
trials; if a trial failed due to unstable/exploding loss, we did
not include it in this average. Additionally, final rewards are
computed as averages over the last 5% of episodes.

The use of aleatoric uncertainty by UADQN allows it
to explore more safely than the other models in the
presence of appropriate reward penalties for negative
events. Specifically, in the stochastic fall environment with
fall reward = -15, UADQN has several parameter settings
that experience less than 100 falls during training and still
achieve fairly successful positive rewards (Figure 2, Fig-
ure 3), while the other models are unable to match this
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performance: the smallest average number of falls for a
successful positive reward instance is 296.7 for DQN and
172.7 DQNRP, and both of these instances also achieve sig-
nificantly smaller final rewards than instances of UADQN
that are both safe and have high rewards.

However, UADQN’s safety advantage can disappear if
negative events are not penalized effectively. For exam-
ple, in Figure 3, it can be seen that UADQN’s safety capa-
bilities are less effective on the stochastic fall environment
when fall reward = 0 than when fall reward = -15. We con-
clude that this occurs because assigning a -15 reward to falls
allows the differences between low and high aleatoric un-
certainties over Q values to be larger, letting UADQN take
advantage of its explicit penalization of high aleatoric un-
certainty actions to find a safer solution to the environment.
Additionally, in the stochastic reward = -5 environment, we
see that UADQN is actually less safe on average in suc-
cessful scenarios than the other models are (Table 2). We
hypothesize that this is because the environment has a small
negative event penalty and agents are not forced to restart
when a negative event occurs (and therefore can still re-
ceive a success reward after this). So, UADQN is unable
to compute significantly greater aleatoric uncertainty esti-
mates for actions that lead to states with a nonzero negative
event probability than other states (Figure 4), and the use
of these undesirable aleatoric uncertainty estimates during
action selection likely harms agent performance. Overall,
these results emphasize the importance of useful reward
assignments – and not just robust models, algorithms, and
uncertainty estimators – when utilizing aleatoric uncertainty
estimates over Q-values to encourage agent safety.

Additionally, UADQN’s ability to effectively estimate
aleatoric uncertainty for safety appears to be dependent
upon its use of epistemic uncertainty for exploration. In
the stochastic fall environment with reward = -15, UADQN
agents with high epistemic factors (1.0-2.0) are able to ob-
tain more desirable uncertainty estimates due to better ability
to explore the state-action space, leading to safer perfor-
mance. However, these agents are only able to combine
this safe performance with high reward performance if they
also have low to moderate aleatoric factors (0.0-0.5). Other-
wise, they appear to be unable to learn a high-reward policy
because they take actions too conservatively. These perfor-
mance differences can be seen by observing the heatmaps
of final rewards and total falls during training (Figure 2, Fig-
ure 3). Additionally, the graph of uncertainties in Figure 8
for UADQN with β = 0.0 and λ = 0.5 is an example of a
lack of exploration preventing an agent from learning use-
ful aleatoric uncertainty estimates: the aleatoric uncertainty
estimate for (1, 0), right has not converged due to lack of
exploration and is greater than the estimate for (1, 1), right.
However, it is desirable for the former (which corresponds
to an action that moves the agent to a tile with no fall proba-

bility) to be smaller than the latter (which corresponds to an
action that moves the agent to a tile with a 0.05 fall probabil-
ity). In contrast, UADQN with β = 1.0 and λ = 0.2 (which
does explore) has desirable uncertainty estimates and also
experiences less falls during training (Figure 6).

Finally, the exploratory power of DQNRP appears bet-
ter than the other models for solving environments
with rare solution action sequences and sparse rewards.
DQNRP easily has the best average reward on the chain
environment (Table 3), and it is the only model to have in-
stances that solve the environment by consistently reaching
the goal at the end of training. This indicates that despite the
fact that UADQN’s use of uncertainty is effective for safety,
DQRNP’s ensemble-based approach to using uncertainty
appears to be more effective for exploration in a difficult
environment.

6. Conclusion
There are multiple model types that have similarly high
performing instances for all scenarios except two: DQNRP
significantly outperforms the other models on the chain en-
vironment (it is the only model that is able to consistently
solve this environment), and UADQN slightly outperforms
the other models in terms of reward and significantly outper-
forms them in terms of safety on the stochastic fall reward
= -15 environment. We conclude that the former occurs
because the exploratory power of DQNRP is better than
that of the other models for solving environments with very
rare solution action sequences and sparse rewards. We con-
clude that the latter occurs because assigning a -15 reward
to falls allows differences between low and high aleatoric
uncertainties over Q values to be large (and therefore allows
UADQN to take advantage of its explicit penalization of
high aleatoric uncertainty actions to find a safe solution to
the environment). However, UADQN is less safe when fall
reward = 0 and on the stochastic reward = -5 environment,
indicating that its safety advantages are dependent upon
effective specification of rewards for unsafe events.

Finally, we determined that in stochastic fall environments,
UADQN agents with high epistemic factors (1.0-2.0) can
obtain ideal aleatoric uncertainty estimates because of effec-
tive exploration of the state-action space, leading to safer
performance. However, these agents are only able to also
achieve high rewards by using low to moderate aleatoric
factors (in order to not act too conservatively).

In the future, it would be interesting to experiment with
creating a model that combines DQNRP’s exploratory power
with UADQN’s ability to avoid risky actions and evaluate
this model on environments that both have high stochasticity
and rare solutions/sparse rewards.
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Hüllermeier, E. and Waegeman, W. Aleatoric and epis-
temic uncertainty in machine learning: An introduction
to concepts and methods, 2020.

Kalweit, G., Huegle, M., Werling, M., and Boedecker, J.
Deep constrained q-learning. arXiv e-prints, pp. arXiv–
2003, 2020.

Lütjens, B., Everett, M., and How, J. P. Safe reinforcement
learning with model uncertainty estimates. In 2019 Inter-
national Conference on Robotics and Automation (ICRA),
pp. 8662–8668. IEEE, 2019.

McFarlane, R. A survey of exploration strategies in rein-
forcement learning. McGill University, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,
Wierstra, D., Legg, S., and Hassabis, D. Human-level
control through deep reinforcement learning. Nature, 518
(7540):529–533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/nature14236.

Osband, I., Blundell, C., Pritzel, A., and Roy, B. V. Deep
exploration via bootstrapped dqn, 2016.

Osband, I., Aslanides, J., and Cassirer, A. Randomized prior
functions for deep reinforcement learning, 2018.

Ray, A., Achiam, J., and Amodei, D. Benchmarking safe ex-
ploration in deep reinforcement learning. arXiv preprint
arXiv:1910.01708, 2019.

Schmidhuber, J. A possibility for implementing curiosity
and boredom in model-building neural controllers, 1991.

Srinivasan, K., Eysenbach, B., Ha, S., Tan, J., and Finn, C.
Learning to be safe: Deep rl with a safety critic. arXiv
preprint arXiv:2010.14603, 2020.

Stooke, A., Achiam, J., and Abbeel, P. Responsive safety
in reinforcement learning by pid lagrangian methods. In
International Conference on Machine Learning, pp. 9133–
9143. PMLR, 2020.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

Thrun, S. B. The role of exploration in learning control.
1992.

http://dx.doi.org/10.1038/nature14236
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html


Uncertainty in Reinforcement Learning

A. Model-Specific Results
A.1. DQN

We use an ε-greedy exploration policy with a starting ex-
ploration rate of 1 and final exploration rate of 0.02. The
hyperparameter we search over is the final exploration step
(1000, 2500, 5000, and 10000): the exploration rate decays
from its initial to final value at a constant rate until this
step. In general, the final exploration step does not appear to
have a significant impact on the agent’s performance (with
the exception of when it is deployed on the gridworld with
stochastic reward of -5, as it has a reward for final explo-
ration step = 10000 of −1.169045 and around 6.3 for all
other values of this parameter).

For the gridworlds with stochastic rewards, the DQN
achieves similarly good asymptotic average rewards com-
pared to all UADQN agents and Randomized Prior agents
with prior scale less than 10. Additionally, the DQN agent
with the best performance on the stochastic falls environ-
ment with no fall penalty is 4.58 (final exploration step
= 2500), which not much worse than the best performing
UADQN (5.14 reward, λ = 1.0, β = 0.0) and Randomized
Prior agents (5.17 reward, 20 ensembles, prior scale of 3.0)
on this environment.

However, DQN does not perform similarly to the best agents
for the stochastic fall reward = -15 environment (its best
performing agent achieves a reward of 2.73). We hypothe-
size that this is because multiple factors contribute to high
aleatoric uncertainty along the upper edge of this environ-
ment (both a negative reward as well as a reset of the envi-
ronment occur stochastically), making it difficult for a non-
uncertainty aware model to achieve optimal performance in
this environment.

DQN is also unable to solve the chain environment, as it
never achieves a reward close to 0.99 (which is optimal)
when deployed on this environment, likely because it is
unable to utilize epistemic uncertainty to efficiently explore
an environment with a very rare optimal sequence of actions.

In terms of safety, DQN’s lowest number of falls/injuries for
the stochastic fall reward = 0 and the stochastic reward = -5
environments are comparable to the best performing models.
However, it has more falls for the stochastic fall reward =
-15 environment on average across all parameter settings
(347.4) than both UADQN (146.44) and Randomized Prior
agents (184.5), again demonstrating poorer performance on
this particular environment.

A.2. UADQN

We searched over values 0, 0.2, 0.5, 1.0, 2.0 for both β and
λ. On all environments except the Chain environment, the
best possible parameter setting of a UADQN agent is com-

Stochastic Fall, 0 Stochastic Fall, -15 Stochastic Reward, -5
DQN 4.58/403.00 2.73/339.00 6.33/293.00
UADQN 5.14/351.67 4.00/106.33 6.59/315.33
DQNRP 5.17/394.33 3.51/231.33 6.54/258.33

Table 1. Best final rewards and corresponding negative event
counts over environments and models

parable to the best agents across all models 1. However,
UADQN stands out from the pack from a safety standpoint
in the stochastic fall reward = -15 environment. We hypoth-
esize that this is because the additional aleatoric variance
caused by adding an additional penalty to random falls off
of the environment allowed UADQN to penalize actions
that led to the stochastic regions of the environment even
more than in the other environments, causing safer behavior
during training. This phenomenon is explored in more detail
in subsection B.1.

A.3. DQNRP

We search over two primary hyperparameters for random-
ized priors: prior scale and number ensembles. Figure 1
illustrates the impacts: a larger number of ensembles
contributes to better performance for chain environments
whereas a prior scale of 1 tends to have maximum benefits.
For the latter, DQNRP in general performs better for tougher
environments where a larger number of different ensembles
encourages exploration. For the prior scale, too small values
of prior prematurely and sub-optimally converge while too
large priors become too difficult to wash away.

Ultimately, DQNRP performs much better in the chain en-
vironment than all other models do. In other environments,
a lower prior scale and number of ensembles is generally
better (and achieves comparable performance to DQN and
UADQN, especially when prior scale is ≤ 3.0). This means
that when stochastic risk in the environment is large, too
many ensembles may push the agent into high aleatoric
regions often, causing the accumulation of negative results.

B. Environment-Specific Results
B.1. Stochastic Fall Environment

The main question that we wanted to test with this environ-
ment was if explicitly penalizing stochastic falls can perform
the same function as penalizing actions that lead to these
falls based on aleatoric uncertainty, which would mean that
estimating aleatoric uncertainty may not be necessary in
order to optimize safety. Our results show that this is not
the case, and in fact explicitly penalizing these falls allows
aleatoric uncertainty to be even more useful in keeping the
agent safe.

In figures 2 and 3, we see that in both environments, the
highest rewards occur when aleatoric factor is between 0 and
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Figure 1. (Top:) Final reward for various numbers of ensembles
per environment (Bottom:) Final reward for various prior scales
per environment.

0.5. In this region of high rewards, for both environments,
UADQN is the safest (lowest number of total falls) for
higher epistemic factors (1.0-2.0). This may seem counter-
intuitive at first because exploration can often be in tension
with safety. However, we hypothesize that this trend occurs
because significant exploration is needed in order to explore
the high aleatoric uncertainty region of the environment
enough to estimate this uncertainty well. Additionally, the
total fall counts in this high reward, low fall count parameter
region are much lower for fall reward = -15 environment
than fall reward = 0 environment. We hypothesize that this
is because the negative fall reward adds an additional source
of variance to high aleatoric uncertainty regions, allowing
aleatoric uncertainty estimates to be larger and thus have a
larger impact on decreasing the effective Q-values of these
regions. While one may argue that this same effect could
be achieved by simply increasing the aleatoric factor and
keeping fall reward at 0, the data shows that this does not
have the same effect as setting fall reward to = -15. For
the fall reward = 0 environment, almost all models with
aleatoric factor ≥ 1.0 have both negative final reward (poor

Figure 2. Final Reward for various UADQN parameter settings on
stochastic fall environments

Figure 3. Total Number of Falls for various UADQN parameter
settings on stochastic fall environments
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performance) and still have a relatively large number of
falls.

Overall, these environments both demonstrated the effective-
ness of UADQN’s aleatoric uncertainty use as well as the
fact that reward engineering/selection, not just agent models,
algorithms, and uncertainty estimators, can be extremely
useful in ensuring the safety of a UADQN agent.

B.2. Stochastic Reward Environment

Final Reward Total Negative Events
DQN 6.278646 272.888889
UADQN 6.399632 321.984127
DQNRP 6.464193 277.333333

Table 2. Final Rewards and Total Negative Events for Stochastic
Reward = -5 environment averaged across trials with final reward
at least 5

Figure 4. Environment is Stochastic Reward with Reward = -5
(Top:) UADQN Aleatoric Uncertainty vs. Action Frequency for
state 2,1 with β = 2.0 and λ = 1.0 (Bottom:) UADQN Aleatoric
Uncertainty vs. Action Frequency for state 2,2 with β = 2.0 and
λ = 1.0

Interestingly, for the stochastic reward = -5 environment,
UADQN is actually less safe on average than the other
models for successful instances. We note that this is a 3x4
environment with the top row (y-coordinate 2) as the row
with stochastic rewards. Therefore, the path directly through
this dangerous row achieves a total reward of 10-3 = 7 if no
stochastic negative rewards are obtained, and the shortest
path that avoids this region achieves a total reward of 10-5

= 5. If we define a reward of 5 or greater as success on
this environment, the average number of falls for successful
UADQN agents is greater than that for successful agents of
the other models (Table 2). If we further inspect aleatoric
uncertainties vs frequency for a UADQN model in this envi-
ronment at a state along the dangerous path, 2,2, and a state
along the shortest non dangerous path, 2,1, we can obtain
insights into the negative performance of UADQN on this
environment ((?)). Namely, the aleatoric uncertainties for
the action right for 2,1 and 2,2 are very similar, which is
undesirable because this action sends the agent to a state
with no stochastic reward for the former and a state with a
stochastic reward for the latter. Additionally, at state 2,1, the
action down sends the agent to a stochastic reward tile while
the action right sends the agent to a tile along the shortest
non-dangerous path. However, the aleatoric uncertainty for
down appears to be similar to (and sometimes less than)
that for the action right, indicating that noisy aleatoric un-
certainty estimates may even encourage dangerous behavior.
Overall, we hypothesize that a less explicit Q-value differ-
ence between states with and without stochastic rewards
(both due to the small -5 stochastic reward instead of -15 as
well as a lack of falls, which ensure that an agent can still
reach the goal and achieve a success reward even if it incurs
a stochastic -5 reward) causes UADQN to be unable to learn
useful aleatoric uncertainty estimates. These estimates do
not allow avoidance of unsafe behavior and even appear to
encourage it because they are noisy.

B.3. Chain Environment

Final Reward Variance of Reward
DQN 0.218650 0.022146
UADQN 0.044379 0.004779
DQNRP 0.489235 0.050075

Table 3. Final Reward and Variance of Reward at end of training
for Chain Environment (Averaged Across Trials)

As seen in table 3, ultimately the Randomized Prior En-
semble approach performs significantly better than all other
agents in the chain environment as measured by final reward.
While DQNRP has the highest final reward on average, it
also has the highest final reward variance on average. This
behavior is in line with what we would expect from the ben-
efit of DQNRP: deep exploration. The existence of multiple
ensembles and moreover multiple prior functions means that
agents (or specifically at least one model in the ensemble)
will explore data-low regions without incentive. Indeed,
this in line with our hyperparameter analysis that a higher
number of ensembles was only better for DQNRP in the
chain environment.

Interestingly, DQN does much better than the uncertainty-
based approaches of UADQN. The intuition can be seen



Uncertainty in Reinforcement Learning

in hyperparameter trends for the chain environment. For
UADQN, the “chain” environment is the only environment
where a lower (or 0) epistemic scale is the best while a higher
aleatoric scale leads to higher rewards. This is the opposite
of what we would expect for the chain environment where
more exploration needs to be encouraged. Thus, UADQN
is able to avoid major risks, but in cases that are akin to
“needles in a haystack,” the safety mechanism seems to
overpower the epistemic-based exploration.

C. General Guiding Questions and Analysis
C.1. Guiding Questions

1. Do aleatoric and epistemic uncertainty estimates of
the models align with what we would expect? For exam-
ple, does epistemic uncertainty of (S,A) pairs decrease as
they are visited more often? Does aleatoric uncertainty re-
main small for infrequently visited (S,A) pairs and stabilize
to higher values for pairs that lead to stochastic rewards than
pairs that do not?

2. How do agent safety and performance vary as
aleatoric and epistemic factors of models vary? Are any
settings of these parameters for a model particularly good at
optimizing both of these properties? Are there any tradeoffs
that exist between these properties for the tested environ-
ments?

C.2. Quality of Aleatoric and Epistemic Uncertainty
Estimates

We see several informative differences of uncertainty esti-
mates for (S,A) pairs across model types and parameters,
and we highlight several examples of these differences here
(all examples are for the fall reward = -15 stochastic fall
environment)

Epistemic uncertainty estimates for (S,A) pairs for
UADQN qualitatively tend to make sense, as they converge
to zero as the number of actions increases, as seen in the
example in Figure 5.

Additionally, the quality of UADQN aleatoric uncertainty
estimates appears to be impacted by the epistemic factor of
the model. In the next section, we explain how this effect of
the epistemic factor on aleatoric estimates impacts model
performance.

In Figure 6 and Figure 7, we see that aleatoric uncertainty
estimates for the action of going right from states 1,0 and 1,1
converge to a particular value as that (S,A) pair is visited
more often, which is desirable because aleatoric uncertainty
should be learnable from data (in this case, Q(s, a) values)
once we collect a certain amount of this data. Additionally,
the value converged to for the pair (1, 0), right is lower
than the value converged to for the pair (1, 1), right, which

is also desirable because (1, 1), rightmoves onto a tile with
fall probability of 0.05 and (1, 0), right moves to a tile with
fall probability of 0.

However, in Figure 8, we see that while the aleatoric un-
certainty estimate for Q((1, 1), right) converges to a value,
this estimate for Q((1, 0), right) does not converge to a
value. This is particularly undesirable because (1, 0), right)
is an (S,A) pair on the optimal path from the start to the
goal that does not cross any tiles with positive fall proba-
bility, and therefore the agent likely avoids this (S,A) pair
despite the fact that it is favorable from both a performance
and safety standpoint.

We then note that Figure 6 and Figure 7 correspond to
UADQN agents with parameters β = 1.0 and λ = 0.2
and β = 2.0 and λ = 2.0, final average rewards of 3.81
and -6.08, and average total fall counts of 51.67 and 97.33,
respectively (which are both relatively low). We conclude
that since both of these agents had high epistemic factors,
they were able to explore enough to learn desirable aleatoric
uncertainties for relevant actions and therefore use these
uncertainties to somewhat avoid traveling over tiles with a
positive fall probability (however, this safety didn’t translate
into reward-based success for both agents, and this phe-
nomenon is explained in more detail in the next section).
In contrast, Figure 8 corresponds to a UADQN agent with
parameters β = 0.0 and λ = 0.5, and we conclude that
the lack of exploration for this agent did not allow it to
explore the (S,A) pair (1, 0), right enough, leading to an
undesirable aleatoric uncertainty estimate for this action
that is along a safe and reasonably performant path. This
likely contributed to the agent’s lack of safety despite good
final reward (244.00 average total falls, 3.50 final average
reward).

Figure 5. Environment is Stochastic Fall with Reward = -15.
UADQN Epistemic Uncertainty vs. Action Frequency for state 1,0
with β = 1.0 and λ = 0.2
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Figure 6. Environment is Stochastic Fall with Reward = -15 (Top:)
UADQN Aleatoric Uncertainty vs. Action Frequency for state
1,0 with β = 1.0 and λ = 0.2 (Bottom:) UADQN Aleatoric
Uncertainty vs. Action Frequency for state 1,1 with β = 1.0 and
λ = 0.2

C.3. Impact of Aleatoric and Epistemic Factors

We also analyze the impact of the weights that are placed on
aleatoric and epistemic uncertainty in UADQN. For these
weights, we see certain trends emerge in both instances of
the high-aleatoric uncertainty stochastic fall environments.

As seen in Figure 2 and Figure 3, as epistemic factor (β)
increases and aleatoric factor (λ) stays fixed, when aleatoric
factor is small (0-0.5), we see reward increase and then
decrease/stay the same. In this case, we also see the total
number of falls decrease. However, as epistemic factor in-
creases and aleatoric factor stays the same when aleatoric
factor is large (1.0-2.0), we see the reward decrease and the
total number of falls stay roughly the same. We hypothe-
size that this behavior generally occurs because increasing
epistemic factor allows the model to explore the environ-
ment enough to compute aleatoric uncertainty estimates
that make sense (this phenomenon is seen in the previous
section for agents with high β values), and the impact of

Figure 7. Environment is Stochastic Fall with Reward = -15 (Top:)
UADQN Aleatoric Uncertainty vs. Action Frequency for state
1,0 with β = 2.0 and λ = 2.0 (Bottom:) UADQN Aleatoric
Uncertainty vs. Action Frequency for state 1,1 with β = 2.0 and
λ = 2.0

these estimates on performance is dependent upon λ. For
smaller λ, we hypothesize that when epistemic factor begins
to increase, the agent is able to effectively use the more
accurate aleatoric uncertainty estimates that it computes to
both successfully solve the environment task and not fall
often. However, for larger λ, we hypothesize that the more
accurate aleatoric uncertainty estimates end up making the
agent too conservative, yielding a lower number of falls but
also a smaller final average reward due to an inability to
solve the task. Thus, there is a “sweet spot” of high β (1.0-
2.0) and low-medium λ (0.0-0.5) that allows for enough
exploration to obtain useful aleatoric uncertainty estimates
and also does not place too much weight on these estimates
such that the agent is overly conservative. It would be in-
teresting to later explore if these patterns are different in a
larger environment in which the agent likely has more of a
need for exploration in order to learn Q-values (and not just
uncertainties of Q-values) effectively.
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Figure 8. Environment is Stochastic Fall with Reward = -15 (Top:)
UADQN Aleatoric Uncertainty vs. Action Frequency for state
1,0 with β = 0.0 and λ = 0.5 (Bottom:) UADQN Aleatoric
Uncertainty vs. Action Frequency for state 1,1 with β = 0.0 and
λ = 0.5

–


