
BETH Dataset: Real Cybersecurity Data for Anomaly Detection Research

Kate Highnam * 1 Kai Arulkumaran * 2 1 Zachary Hanif * 3 Nicholas R. Jennings 1

Abstract

We present the BETH cybersecurity dataset for
anomaly detection and out-of-distribution analy-
sis. With real “anomalies” collected using a novel
tracking system, our dataset contains over eight
million data points tracking 23 hosts. Each host
has captured benign activity and, at most, a single
attack, enabling cleaner behavioural analysis. In
addition to being one of the most modern and ex-
tensive cybersecurity datasets available, BETH en-
ables the development of anomaly detection algo-
rithms on heterogeneously-structured real-world
data, with clear downstream applications. We
give details on the data collection, suggestions on
pre-processing, and analysis with initial anomaly
detection benchmarks on a subset of the data.

1. Introduction
When deploying machine learning (ML) models in the real
world, anomalous data points and shifts in the data distri-
bution are inevitable. From a cyber security perspective,
these anomalies and dataset shifts are driven by both defen-
sive and adversarial advancement. To withstand the cost of
critical system failure, the development of robust models is
therefore key to the performance, protection, and longevity
of deployed defensive systems.

Current research into the robustness of ML models tends
to be based on existing datasets that are widely used within
ML for other purposes. For out-of-distribution (OoD) esti-
mation, researchers combine pairs of existing datasets, such
as MNIST-FashionMNIST, CIFAR10-CelebA, or CIFAR10-
ImageNet32 (Morningstar et al., 2021). Other data for eval-
uating robustness involve modified datasets; for example,
corrupted, perturbed, and shifted images (Hendrycks & Di-
etterich, 2019; Ovadia et al., 2019). These are primarily
image datasets (LeCun et al., 1998; Cohen et al., 2017; Xiao

*Equal contribution 1Imperial College London, London, United
Kingdom 2ARAYA Inc., Tokyo, Japan 3University of Maryland,
College Park, Maryland, USA. Correspondence to: Kate Highnam
<k.highnam19@imperial.ac.uk>.

Presented at the ICML 2021 Workshop on Uncertainty and Robust-
ness in Deep Learning., Copyright 2021 by the author(s).

et al., 2017; Krizhevsky et al.; Russakovsky et al., 2015;
Liu et al., 2015), and sometimes text datasets (Lewis, 1997;
Lang, 1995; Hendrycks et al., 2020). As a result, it is un-
known how well new methods—in particular, those centred
around deep learning (DL)—may generalise beyond these
input modalities.

In this paper, we present the BPF-extended tracking hon-
eypot (BETH) dataset1 as the first cybersecurity dataset for
uncertainty and robustness benchmarking. Collected using
a novel honeypot tracking system, our dataset has the fol-
lowing properties that make it attractive for the development
of robust ML methods: 1) at over eight million data points,
this is one of the largest cyber security datasets available;
2) it contains modern host activity and attacks; 3) it is fully
labelled; 4) it contains highly structured but heterogeneous
features; and 5) each host contains benign activity and at
most a single attack, which is ideal for behavioural analysis
and other research tasks. In addition to the described dataset,
further data is currently being collected and analysed to add
alternative attack vectors to the dataset.

There are several existing cyber security datasets used in ML
research, including the KDD Cup 1999 Data (Hettich & Bay,
1999), the 1998 DARPA Intrusion Detection Evaluation
Dataset (Labs, 1998; Lippmann et al., 2000), the ISCX
IDS 2012 dataset (Shiravi et al., 2012), and NSL-KDD
(Tavallaee et al., 2009), which primarily removes duplicates
from the KDD Cup 1999 Data. Each includes millions of
records of realistic activity for enterprise applications, with
labels for attacks or benign activity. The KDD1999, NSL-
KDD, and ISCX datasets contain network traffic, while
the DARPA1998 dataset also includes limited process calls.
However, these datasets are at best almost a decade old,
and are collected on in-premise servers. In contrast, BETH
contains modern host activity and activity collected from
cloud services, making it relevant for current real-world
deployments. In addition, some datasets include artificial
user activity (Shiravi et al., 2012) while BETH contains
only real activity. BETH is also one of the few datasets to
include both kernel-process and network logs, providing a
holistic view of malicious behaviour.

This paper begins with a description of the data collection

1https://www.kaggle.com/katehighnam/
beth-dataset

https://www.kaggle.com/katehighnam/beth-dataset 
https://www.kaggle.com/katehighnam/beth-dataset 


BETH Dataset: Real Cybersecurity Data for Anomaly Detection Research

process and the relevance of the available features. We
then perform an analysis of the first set of kernel-level pro-
cess logs collected, including anomaly detection bench-
marks2. Our benchmarks include both traditional baselines
(Rousseeuw, 1984; Schölkopf et al., 2001; Liu et al., 2008),
as well as a state-of-the-art DL-based method (Morningstar
et al., 2021). In summary, the isolation forest (iForest) (Liu
et al., 2008) achives the highest AUROC on the initial, la-
belled subset of our data. We believe the scale and range of
attacks available in our full dataset will pose a challenge for
all current anomaly detection methods.

2. The BETH Dataset
The BETH dataset currently represents 8,004,918 events
collected over 23 honeypots, running for about five non-
contiguous hours on a major cloud provider. For bench-
marking and discussion, we selected the initial subset of
the process logs. This subset was further divided into train-
ing, validation, and testing sets with a rough 60/20/20 split
based on host, quantity of logs generated, and the activity
logged—only the test set includes an attack. Table 1 pro-
vides a summary of the dataset, while Table 2 and Table
5 provide a description of the kernel-process and DNS log
features, respectively.

In this section, we first detail the log collection methodology,
followed by a description of the overall dataset. The final
subsection discusses potential research questions that could
be investigated using our dataset.

Table 1. General characteristics of the kernel-process logs, includ-
ing our initial benchmark subset.

DATASET LENGTH % OF SUBSET # OF HOSTS

TRAINING 763,144 66.88% 8
VALIDATION 188,967 16.56% 4

TESTING 188,967 16.56% 1

SUBSET TOTAL 1,141,078 100% 13
TOTAL 8,004,918 - 23

2.1. Collection Methodology

The challenge of crafting a honeypot is two-fold: make
it tempting enough to infiltrate, and track activity without
being detected. The former is typically done by providing
“free” resources to an attacker, i.e., easily accessible com-
puter power. Our implementation currently runs hosts with
a single ssh vulnerability: any password will be accepted
to login. This is protected enough that it could contain valu-

2https://github.com/jinxmirror13/BETH_
Dataset_Analysis

able information or resources within it, but implies that the
user simply has a poor password choice. In the future we
plan to deploy hosts with other vulnerabilities, with which
we hope to observe other attack vectors.

To subtly log activity in real time, each host runs a Docker
container (Merkel, 2014) to encapsulate our two-sensor
monitoring system utilising the (extended) Berkeley Packet
Filter (BPF) (Gregg, 2019). The first sensor is embedded at
the kernel level of the Linux OS to listen to and exfiltrate
relevant data packets. In particular, this sensor tracks all OS
calls to create, clone, and kill processes. The second sensor
logs network traffic, specifically DNS queries and responses
from all processes on the host machine, including those pro-
cesses running within the hosted Docker containers. When
the desired packet appears, it is parsed out to pre-defined
fields and then transmitted to a collection server.

2.2. Dataset Characteristics

The dataset is composed of two sensor logs: kernel-level
process calls and network traffic. As the initial benchmark
subset only includes process logs, this section only covers
these; a description of the network logs can be found in
Appendix B.

Each process call consists of 14 raw features and 2 labels,
described in Table 2. These largely contain categorical
covariates with some containing large integers, necessitat-
ing further processing. Thus, for our benchmarking, we
converted several fields to binary variables based on field
expertise, as described in Appendix A.

Each record was manually labelled suspicious (sus) or
evil to assist analysis. Logs marked suspicious indicate
unusual activity or outliers in the data distribution, such as
an external userId with a systemd process3, infrequent
daemon process calls (e.g., “acpid” or “accounts-daemon”),
or calls to close processes that we did not observe as being
started. Evil4 indicates a malicious external presence not
inherent to the system, such as a bash execution call to list
the computer’s memory information, remove other users’
ssh access, or un-tar an added file. Events marked evil are
considered “out of distribution,” as they are generated from
a data distribution not seen during training.

The kernel process logs were divided into a typical 60/20/20
split for training, validation, and testing, based on the ob-
served activity and labels. Our initial training and validation
sets each contain logs generated from multiple hosts, con-
taining only activity from the OS and cloud infrastructure
management. Activity in each of these hosts was benign

3In the scope of our honeypot any external user traffic is suspi-
cious, but some of these events were initiated by the cloud provider.

4We note that presence in this dataset does not constitute a
“conviction”, as no real damage was done.

https://github.com/jinxmirror13/BETH_Dataset_Analysis
https://github.com/jinxmirror13/BETH_Dataset_Analysis


BETH Dataset: Real Cybersecurity Data for Anomaly Detection Research

Table 2. The description and type of each feature within the kernel-level process logs, tracking every create, clone, and kill process call.
Starred features were included in the model baselines and converted as described in Appendix A.

FEATURE TYPE DESCRIPTION

TIMESTAMP FLOAT SECONDS SINCE SYSTEM BOOT
PROCESSID* INT INTEGER LABEL FOR THE PROCESS SPAWNING THIS LOG
THREADID INT INTEGER LABEL FOR THE THREAD SPAWNING THIS LOG
PARENTPROCESSID* INT PARENT’S INTEGER LABEL FOR THE PROCESS SPAWNING THIS LOG
USERID* INT LOGIN INTEGER ID OF USER SPAWNING THIS LOG
MOUNTNAMESPACE* INT (LONG) SET MOUNTING RESTRICTIONS THIS PROCESS LOG WORKS WITHIN
PROCESSNAME STRING STRING COMMAND EXECUTED
HOSTNAME STRING NAME OF HOST SERVER
EVENTID* INT ID FOR THE EVENT GENERATING THIS LOG
EVENTNAME STRING NAME OF THE EVENT GENERATING THIS LOG
ARGSNUM* INT LENGTH OF ARGS

RETURNVALUE* INT VALUE RETURNED FROM THIS EVENT LOG (USUALLY 0)
STACKADDRESSES LIST OF INT MEMORY VALUES RELEVANT TO THE PROCESS
ARGS LIST OF DICTIONARIES LIST OF ARGUMENTS PASSED TO THIS PROCESS
SUS INT (0 OR 1) BINARY LABEL AS A SUSPICIOUS EVENT (1 IS SUSPICIOUS, 0 IS NOT)
EVIL INT (0 OR 1) BINARY AS A KNOWN MALICIOUS EVENT (0 IS BENIGN, 1 IS NOT)

for the entire duration of their existence, and, as such, we
consider these events to be “in-distribution”.

Our initial testing dataset contains all activity on a single
exploited host, including its OS and cloud infrastructure
management. The first attack we logged is an attempt to
setup a botnet. More details on this attack can be found
in Appendix C. The full dataset contains other malicious
activity performed within our honeypots, including cryp-
tomining and lateral movement (between servers). These
various attacks may also be compared to answer alternative
research questions with our data, as discussed in Subsection
2.3. As each exploited host only contains a single staged
attack, with no artificial noise in the benign activity, BETH
is one of the cleanest cyber security datasets available to
distinguish malicious from benign.

As an initial investigation of the data, we visualised the
(pre-processed) training and testing datasets with uniform
manifold approximation and projection (UMAP) (McInnes
et al., 2018). UMAP was first fitted to the training set before
being used to project the testing set into the same space. As
can be seen in Figure 1, the data from both sets forms several
large clusters in the centre, surrounded by many smaller
clusters, with both benign and malicious activity spread
across the entire space. The first image shows significant
overlap between the training and testing sets. The second
image shows that evil events appear in distinct areas. This
indicates that unsupervised methods could potentially detect
a large portion of the “anomalous” events.

2.3. Research Questions

The BETH dataset could answer other cyber security ques-
tions than just OoD analysis. Unlike logs within real de-

ployed systems that contain no labels for malicious events,
our BETH dataset contains (recently recorded) real data
with labels. One use for this dataset would be to profile the
attacker or malware’s behaviour (Chen et al., 2019). For
instance, the known evil events could form a unique fin-
gerprint, a method of uniquely identifying the tactic used
by the attacker, to link an attack to its family or appropri-
ate resolution strategy (Brumley et al., 2007). One could
also use graph analysis of process relationships to find
malicious cliques (Elhadi et al., 2012), or use time series
analysis of execution sequences to profile process names
(processName) on a modern OS. This latter topic is par-
ticularly interesting as some attackers rename malicious
processes to benign process names to trick systems into
running malicious code. The logs would present a benign
process name, even if the arguments or events were incon-
sistent with normal activity.

3. Anomaly Detection Baselines
In this section, we provide anomaly detection benchmarks
on our initial subset of logs. We chose both standard
anomaly detection baselines (Pedregosa et al., 2011; Yahaya
et al., 2021), which includes robust covariance (Rousseeuw,
1984), one-class support vector machine (SVM) (Schölkopf
et al., 2001) and iForest (Liu et al., 2008), as well as den-
sity of states estimation (DoSE) (Morningstar et al., 2021),
which is based on deep generative models. As per Morn-
ingstar et al. (2021), we report area under the receiver op-
erating characteristic (AUROC), using an ensemble of 5
models for each method.

Robust covariance (Rousseeuw, 1984) fits an “ellipsoid with
the smallest volume or with the smallest covariance determi-



BETH Dataset: Real Cybersecurity Data for Anomaly Detection Research

(a) Fitted on Training and transformed Testing (b) Same as (a), coloured with evil labels

Figure 1. UMAP visualisations of the training and testing dataset using the pre-processed features (see Appendix A). Figure (a) shows the
overlap between the training and testing dataset; Figure (b) highlights the trails of evil events.

nant” (Peña & Prieto, 2001) around the central data points;
the tightness is controlled assuming a given level of con-
tamination with anomalies (which we set to 0.05). The
anomalies are then scored using the Mahalanobis distance.
Similarly, the one-class SVM fits a hyperplane to discrim-
inate between the support of the in-distribution data and
OoD data (Schölkopf et al., 2001). As kernelised SVMs
scale with O(N2), we instead utilised scikit-learn’s
linear SVM with stochastic gradient descent, after whiten-
ing the data. In contrast, the iForest (Liu et al., 2008) tries to
characterise anomalous points in the data distribution using
an ensemble of “isolation trees”.

Given the scale of the dataset, we also considered DL-based
OoD detection methods. In particular, DoSE uses summary
statistics (such as the log-likelihood or posterior entropy)
calculated over the training set by a trained generative model
in order to characterise the “typical set”. In our work we
train a variational autoencoder (VAE) (Kingma & Welling,
2013), modelling the observations as a product of categori-
cal distributions, but otherwise use largely the same setup
as the original paper (Morningstar et al., 2021)5. However,
given the size of the training set, we were only able to use
DoSE with a linear one-class SVM trained using SGD.

Table 3. OoD AUROC results.

METHOD AUROC

ROBUST COVARIANCE 0.519
ONE-CLASS SVM 0.605

IFOREST 0.850
VAE + DOSE (SVM) 0.698

5Model and training details are given in Appendix D.

As seen in Table 3, the iForest performs best at differentiat-
ing sus events from the benign in our testing dataset. We
attribute this to the small set of discrete features available
and the conspicuous nature of the attack. DL-based models
are less competitive on these sets of features, but have the po-
tential to deal with more raw categorical and even text-based
features, which we hope to explore in future work. Finally,
we note that imbalanced labelling, summarised in Table 4,
necessitates further investigation of what each model pre-
dicts is benign or not.

4. Conclusions
In this paper, we present our BETH cybersecurity dataset
for anomaly detection and OoD analysis. The data was
sourced from our novel honeypot tracking system recording
both kernel-level process events and DNS network traffic. It
contains real-world attacks in the presence of benign modern
OS and cloud provider traffic, without the added complexity
of noisy artificial user activity. This cleanliness is ideal
for OoD analysis, such that each host in the dataset only
contains one or two data-generating distributions. We also
include baselines for anomaly detection trained on a subset
of the BETH dataset: robust covariance, one-class SVM,
iForest, and DoSE-SVM (with a VAE).

For future work, we plan to collect and publish more at-
tacks for alternative testing datasets. This will also allow
investigations in comparing attacks or perhaps testing in a
continual learning setting.



BETH Dataset: Real Cybersecurity Data for Anomaly Detection Research

Acknowledgements
We thank Dr. Arinbjörn Kolbeinsson for inspiring the in-
cluded UMAP visualisations and the reviewers for the posi-
tive feedback.

References
Brumley, D., Caballero, J., Liang, Z., Newsome, J., and

Song, D. Towards automatic discovery of deviations
in binary implementations with applications to error de-
tection and fingerprint generation. In USENIX Security
Symposium, pp. 15, 2007.

Chen, Q., Islam, S. R., Haswell, H., and Bridges, R. A.
Automated ransomware behavior analysis: Pattern extrac-
tion and early detection. In International Conference on
Science of Cyber Security, pp. 199–214. Springer, 2019.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. Em-
nist: Extending mnist to handwritten letters. In 2017 Inter-
national Joint Conference on Neural Networks (IJCNN),
pp. 2921–2926. IEEE, 2017.

Elhadi, A. A., Maarof, M. A., and Osman, A. H. Malware
detection based on hybrid signature behaviour application
programming interface call graph. American Journal of
Applied Sciences, 9(3):283, 2012.

Gregg, B. BPF Performance Tools: Linux System and
Application Observability. Addison-Wesley Professional,
1st edition, 2019. ISBN 0136554822.

Hendrycks, D. and Dietterich, T. Benchmarking neural
network robustness to common corruptions and pertur-
bations. Proceedings of the International Conference on
Learning Representations, 2019.

Hendrycks, D., Liu, X., Wallace, E., Dziedzic, A., Krishnan,
R., and Song, D. Pretrained transformers improve out-of-
distribution robustness. arXiv preprint arXiv:2004.06100,
2020.

Hettich, S. and Bay, S. The uci kdd archive [http://kdd. ics.
uci. edu]. irvine, ca: University of california. Department
of Information and Computer Science, 152, 1999.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian
institute for advanced research). URL http://www.
cs.toronto.edu/˜kriz/cifar.html.

Labs, M. L. 1998 darpa intrusion detection
evaluation dataset, 1998. URL https:
//www.ll.mit.edu/r-d/datasets/
1998-darpa-intrusion-detection-evaluation-dataset.

Lang, K. Newsweeder: Learning to filter netnews. In Ma-
chine Learning Proceedings 1995, pp. 331–339. Elsevier,
1995.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lewis, D. D. Reuters-21578 text categorization collection
data set, 1997.

Lippmann, R. P., Fried, D. J., Graf, I., Haines, J. W.,
Kendall, K. R., McClung, D., Weber, D., Webster, S. E.,
Wyschogrod, D., Cunningham, R. K., et al. Evaluat-
ing intrusion detection systems: The 1998 darpa off-line
intrusion detection evaluation. In Proceedings DARPA In-
formation Survivability Conference and Exposition. DIS-
CEX’00, volume 2, pp. 12–26. IEEE, 2000.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. Isolation forest. In
2008 eighth ieee international conference on data mining,
pp. 413–422. IEEE, 2008.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

Loshchilov, I. and Hutter, F. Fixing weight decay regular-
ization in adam. 2018.

McInnes, L., Healy, J., and Melville, J. Umap:
Uniform manifold approximation and projec-
tion for dimension reduction, 2018. URL
http://arxiv.org/abs/1802.03426. cite
arxiv:1802.03426Comment: Reference implementation
available at http://github.com/lmcinnes/umap.

Merkel, D. Docker: lightweight linux containers for consis-
tent development and deployment. Linux journal, 2014
(239):2, 2014.

Morningstar, W., Ham, C., Gallagher, A., Lakshmi-
narayanan, B., Alemi, A., and Dillon, J. Density of states
estimation for out of distribution detection. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 3232–3240. PMLR, 2021.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D.,
Nowozin, S., Dillon, J. V., Lakshminarayanan, B., and
Snoek, J. Can you trust your model’s uncertainty? eval-
uating predictive uncertainty under dataset shift. arXiv
preprint arXiv:1906.02530, 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
http://arxiv.org/abs/1802.03426


BETH Dataset: Real Cybersecurity Data for Anomaly Detection Research

Peña, D. and Prieto, F. J. Multivariate outlier detection and
robust covariance matrix estimation. Technometrics, 43
(3):286–310, 2001.

Rousseeuw, P. J. Least median of squares regression. Jour-
nal of the American statistical association, 79(388):871–
880, 1984.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J.,
and Williamson, R. C. Estimating the support of a high-
dimensional distribution. Neural computation, 13(7):
1443–1471, 2001.

Shiravi, A., Shiravi, H., Tavallaee, M., and Ghorbani,
A. A. Toward developing a systematic approach to
generate benchmark datasets for intrusion detection.
Computers & Security, 31(3):357–374, 2012. ISSN
0167-4048. doi: https://doi.org/10.1016/j.cose.2011.12.
012. URL https://www.sciencedirect.com/
science/article/pii/S0167404811001672.

Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A. A
detailed analysis of the kdd cup 99 data set. In 2009 IEEE
symposium on computational intelligence for security and
defense applications, pp. 1–6. IEEE, 2009.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

Yahaya, S. W., Lotfi, A., and Mahmud, M. To-
wards a data-driven adaptive anomaly detection
system for human activity. Pattern Recogni-
tion Letters, 145:200–207, 2021. ISSN 0167-
8655. doi: https://doi.org/10.1016/j.patrec.2021.02.
006. URL https://www.sciencedirect.com/
science/article/pii/S0167865521000611.

A. Pre-Processing
In this section, we provide more details on the raw features
in the dataset, as well as pre-processing suggestions, which
we used in our baselines:

timestamp: We left this field out to consider the dataset
as a sample from a distribution rather than time series. We
recommend using the values as they are or also leave them
out, depending on the method chosen.

processId: Process IDs 0, 1, and 2 are meaningful since
these are always values used by the OS, but otherwise a
random number is assigned to the process upon creation. We
recommend replacing processId with a binary variable
indicating whether or not processID is 0, 1, or 2.

threadId: While this value did not appear useful in our
analysis, it might suggest how to link process calls if obfus-
cated in the system. No conversion is recommended at this
time.

parentProcessId: Same as processId, the same
mapping to a binary variable should suffice.

userId: The default in Linux systems is to assign OS
activity to some number below 1000 (typically 0). As users
login, they are assigned IDs starting at 1000, incrementally.
This can be altered by a user, but none of the current logs
gave evidence an attacker did this. We used a binary variable
to indicate userId < 1000 or userId ≥ 1000. Alterna-
tively, one could use an ordinal mapping that buckets all
userId < 1000 at zero and then increment upwards for
each new user. Also, no more than four logins were viewed
per host in our current datasets.

mountNamespace: This field is somewhat consistent
across our hosts and determines the access a certain pro-
cess has to various mount points. The most common value
for this feature is 4026531840 or 0xF0000000, which is
for the mnt/ directory where all manually mounted points
are linked. It is noted that all logs with userId ≥ 1000
had a mountNamespace of 4026531840, while some OS
userId traffic used different mountNamespace values.
We converted this feature into a binary mapping for whether
or not mountNamespace = 4026531840.

processName: This is a string field of variable length
(ranging from one to fifteen characters). When manually
analysing the data, this was a critical field in conjunction
with the eventName. For our baselines, we refrained
from utilising this, although the model should be given an
encoding of this using a hash or ability to learn a useful
encoding on its own. It is noted that attackers can easily
change the processName to override a benign one so
their traffic looks regular. This was not observed within the
current dataset.

hostName: This field is useful for grouping the dataset
into related subsets of data generated from the same honey-
pot. The name of the host name does not transfer between
the model development subsets described in this paper.

eventId: Linux systems assign an integer corresponding
to the eventName. We include this field as is for our
benchmarks.

eventName: Event names uniquely map to eventId, so
we drop it from training.

https://www.sciencedirect.com/science/article/pii/S0167404811001672
https://www.sciencedirect.com/science/article/pii/S0167404811001672
https://www.sciencedirect.com/science/article/pii/S0167865521000611
https://www.sciencedirect.com/science/article/pii/S0167865521000611


BETH Dataset: Real Cybersecurity Data for Anomaly Detection Research

argsNum: This raw feature is included as-is, since, at
this time, adequately parsing args requires either more
sophisticated pre-processing or a more complex ML model.

returnValue: This is also called the exit status and can
be used to determine whether a call completed successfully
or not. Mappings for this can vary, as this value is de-
cided between the parent and child process. We mapped
returnValue into three values based on the common
usage of the field: -1 when negative (bad errors), 0 when
zero (success), and 1 when positive (success and signalling
something to the parent process).

stackAddresses: It is difficult to clearly relate this
feature during manual analysis and the large values within
a variable size list make processing automatically difficult
without encoding or learning an extra embedding. Thus this
field was dropped from training our baselines.

args: There are many options in this variable list of dictio-
naries. For simplicity, we refrain from utilising any of these
values. However, more features can and should be created
for future work.

Finally, BETH contains two binary, manually-labelled flags:
sus and evil. Examples and the explanation of how these
labels were created are detailed in Section 2.2. A breakdown
of these labels within the subsets for model development is
given in Table 4.

Table 4. Breakdown of sus and evil labels by training, valida-
tion, and testing subsets.

DATASET SUS=0, SUS=1, SUS=1,
EVIL=0 EVIL=0 EVIL=1

TRAINING 761875 1269 0
(99.8%) (0.02%) (0.00%)

VALIDATION 188181 786 0
(99.6%) (0.04%) (0.00%)

TESTING 17508 13027 158432
(9.27%) (6.89%) (83.84%)

B. Network Logs
Our BETH dataset is enriched with the availability of corre-
sponding (DNS) network traffic, the frequent starting point
when searching for evidence of an intrusion. However, as
mentioned, this only covers the activity going into and out
of the node, not the events executing within the server. A
summary of the network log features is given in Table 5.

C. Testing Dataset Details
This testing dataset was extracted from a single honeypot.
The overall attack appears to be instantiating a botnet node.
The timeline of the events recorded is provided in Figure
2; this is the typical attack pattern. The server is initially
accessed, it may run a few setup operations in the environ-
ment to send some details to its Command and Control (C2)
for a customised attack, it sleeps for a while, intermittently
checks in with the C2 or a clock, and then launches its attack
until complete.

In this case, the honeypot is first accessed at around 411 sec-
onds from booting. Several thousand lines are then recorded
in the process logs denoting the setup of the new user pro-
file. This happens within milliseconds; these are detailed
logs of everything the OS does during the short pause be-
fore the terminal opens for user entry when ssh-ing into a
server. This user then sleeps, pausing all user activity for
some number of seconds. This appears to happen at ran-
dom intervals—a more sophisticated technique than using
consistent intervals—of which the latter would give a clear
signature of automated activity.

After a few minutes, it sets up an SFTP server to download
a file called dota3.tar.gz (known botnet malware) and
scopes out the system using common commands such as
whoami, ls, and cat /proc/cpuinfo. After about
7.5 minutes, it unpacks the dota3.tar.gz and runs over
a hundred threads, all attempting to connect with different
servers.

D. Model & Training Details
Our VAE architecture consists of two 2-layer neural net-
works with 64 hidden units and ReLU activation functions
for the encoder and decoder. The first layer of the encoder
concatenates learned embeddings of all input features. The
final layer of the decoder outputs a set of logits for cate-
gorical distributions for all features. We use a 2D latent
representation. Each VAE is trained using the AdamW opti-
miser (Loshchilov & Hutter, 2018) with learning rate 0.003
and a weight decay of 0.1; early stopping was used with the
validation loss. We picked the hidden size ∈ {64, 128, 256},
learning rate ∈ {0.003, 0.0003, 0.00003}, and weight decay
∈ {0, 0.01, 0.1}, using a grid search on the validation loss.



BETH Dataset: Real Cybersecurity Data for Anomaly Detection Research

Table 5. The description and type of each feature within the DNS logs.

FEATURE TYPE DESCRIPTION

TIMESTAMP STRING DATE AND TIME IN THE FORMAT “YYYY-MM-DDTHH:MM:SSZ” FOR
WHEN THE PACKET WAS SENT OR RECEIVED

SOURCEIP STRING SOURCE IP ADDRESS OF THE PACKET
DESTINATIONIP STRING DESTINATION IP ADDRESS OF THE PACKET
DNSQUERY STRING THE SENT DNS QUERY (E.G. THE URL SUBMITTED - ”GOOGLE.COM”)
DNSANSWER LIST OF STRINGS DNS RESPONSE; CAN BE NULL

DNSANSWERTTL LIST OF STRINGS (INT) LIST OF INTEGERS SENT AS STRINGS, CAN BE NULL; THE TIME TO LIVE OF
THE DNS ANSWER

DNSQUERYNAMES LIST OF STRINGS NAME OF THE REQUESTED RESOURCE
DNSQUERYCLASS LIST OF STRINGS CLASS CODE FOR THE RESOURCE QUERY
DNSQUERYTYPE LIST OF STRINGS TYPE OF RESOURCE RECORD (A, AAAA, MX, TXT, ETC.)
NUMBEROFANSWERS STRING (INT) NUMBER OF ANSWER HEADERS IN THE PACKET
DNSOPCODE STRING (INT) HEADER INFORMATION REGARDING WHICH OPERATION THIS PACKET WAS

SENT (E.G. STANDARD QUERY IS 0)
SENSORID STRING SAME AS THE HOSTNAME IN THE PROCESS RECORDS; NAME OF HOST SERVER
SUS INT (0 OR 1) BINARY LABEL AS A SUSPICIOUS EVENT (1 IS SUSPICIOUS, 0 IS NOT)
EVIL INT (0 OR 1) BINARY AS A KNOWN MALICIOUS EVENT (0 IS BENIGN, 1 IS NOT)

Figure 2. The timeline of the attack captured in the testing dataset is displayed as a histogram based on the number of events and seconds
from the “boot” or starting up of the machine.


