
Deep Ensemble Uncertainty Fails as Network Width Increases:
Why, and How to Fix It

Lisa Schut 1 Edward Hu 2 Greg Yang * 2 Yarin Gal * 1

Abstract

Deep ensembles can be seen as an empirical ap-
proximation of the distribution over trained neural
networks, and deep ensemble uncertainty can be
seen as approximating the variance of the distri-
bution. This variance can be estimated analyti-
cally in the infinite width limit as the variance
of a Gaussian process. Yang & Hu (2021) show
that this limit does not allow for feature learning,
throwing away the advantages of deep learning,
and suggest instead a new parametrization that
allows for feature learning. This new parametriza-
tion trades uncertainty quality for feature learning,
rendering it unsuitable for uncertainty quantifica-
tion as models become wider. In this work, we
propose a modification to the parametrization and
the training procedure that allows for both feature
learning and uncertainty quantification via ensem-
bling. Our preliminary results on MNIST suggest
that our findings hold empirically.

1. Introduction
The neural tangent kernel (NTK) is a useful analytical tool
for understanding the training dynamics of neural networks.
Several works have considered the impact of the initializa-
tion of neural networks or learning rate on training (He et al.,
2020; Chizat & Bach, 2018; Woodworth et al., 2020; Yang
& Hu, 2021). Recently, Yang & Hu (2021) have shown that
standard NTK parametrization does not allow for feature
learning.

Feature learning is crucial for obtaining a strong perfor-
mance and task-specific uncertainty. Yang & Hu (2021) in-
troduce a new parametrization, known as µ-parametrization
(µP), that does allow for feature learning. Informally, the
parametrization changes the effective learning rate of each

*Equal contribution 1OATML, University of Oxford, United
Kingdom 2Microsoft Research. Correspondence to: Lisa Schut
<schut@robots.ox.ac.uk>.

Presented at the ICML 2021 Workshop on Uncertainty and Robust-
ness in Deep Learning., Copyright 2021 by the author(s).

layer in the neural network, such that the features (pre-
activation layer outputs) can be updated maximally. How-
ever, a consequence is that the learnt function f has zero
variance in the infinite width limit. In this case, we can-
not use deep ensembles (Lakshminarayanan et al., 2017) to
obtain uncertainty estimates in the infinite width limit.

In this work, we propose a novel parametrization that allows
for learning features and a non-zero variance function f in
the infinite limit. While we derive these results for the infi-
nite limit case, we demonstrate the same results empirically
for neural networks with finite widths. Therefore, our deriva-
tions may also be of interest for practitioners interested in
the scaling behavior of models.

2. Background Work
Before diving into the different parametrizations, we first
recapitulate abc-parametrization (Yang & Hu, 2021), which
we use to define the network parametrization. An abc-
parametrization is characterized by three constant hyper-
parameters: al, bl and cl. Let W l be a weight matrix
in a L-layer network. Then, W l := n−alwl, where
wl ∼ N(0, n−2bl) is a trainable parameter. The third param-
eter cl is the learning rate, defined as γn−cl , where γ is a
constant. We make a minor change to the original definition
of abc-parametrization introduced in (Yang & Hu, 2021)
and define a layer-specific learning rate cl, rather than c. It
will become evident why in Section 3.

Through abc-parametrization, we can create an effective per-
layer learning rate.1 This allows us to ensure that we can
maximally update both features as well as the function f .
Using the abc-parametrization, the standard neural tangent
kernel parametrization (SP) and µ-parametrization (µP) are
summarized in Table 1. SP corresponds to the standard
Kaiming normal initialization (He et al., 2015) in Pytorch.

The initial parametrization affects the function training dy-
namics. Specifically, it influences the norm of the updates
in the weights and thereby the norm of the updates in the

1Note that setting W l := n−alwl, where wl ∼ N(0, n−2bl),
is not the same as usingW l := wl, where wl ∼ N(0, n−2bl−2al).
This will become more evident in the derivations, but we also
encourage the reader to look into Yang & Hu (2021).

Deep Ensemble Uncertainty Fails as Network Width Increases: Why, and How to Fix It

Table 1. abc-parametrization of SP, µP and our parametriza-
tion. Formally, the parametrization we introduce is not an abc-
parametrization as we modify the backward pass in SGD (as shown
in Algorithm 1) but we slightly abuse the definition here.

al bl cl

SP 0

{
0,l = 1
1
2
,l ≥ 2

1

µP

 −
1
2
,l = 1,

0,2 ≤ l ≤ L,
1
2
,l = L+ 1

1
2

0

OURS

{
− 1

2
,l = 1

0,l ≥ 2
1
2

{
0,l ≤ L,
1,l = L+ 1

features, and the variance over the features and functions for
a given input (due to the stochasticity in the initial weights).
In this paper, we will focus on two key aspects: feature
learning and whether the learnt function is deterministic.

We start by defining both terms. Following Yang & Hu
(2021), we define feature learning as follows:

Definition 1 Let xl be the network features, i.e. pre-
activation layer outputs. Then, feature learning occurs
if xl have an update of Θ(1),

where the big-O notation denotes the scaling with respect to
the network width n. Further, following Yang & Hu (2021),
we define the big-O notation as

Definition 2 A vector v is O(na) iff
√
||v||2/n fluctuates

on the order of O(na), where n is the number of units in a
hidden layer.

We state that a function f is deterministic iff

Definition 3 limn→∞ var(ft)→ 0, where n is the number
of units in a hidden layer.

Given these definitions, we can discuss how different
parametrizations affect feature learning and whether the
learnt function f is deterministic. In SP, the learning rate
must scale with Θ(1/n) (i.e., cl = 1), or else training will
blow up in a wide network. With such a learning rate, we
enter the kernel training regime and are not able to obtain
feature learning in the infinite width limit. However, the
learnt function f is not deterministic, and therefore gener-
ally permits uncertainty estimation via ensembling.2

µP permits feature learning by re-scaling the layers. How-

2The SP modification introduced by He et al. (2020), so that
deep ensembles have a GP posterior equivalent, has the same
shortcoming as SP – it does not allow for not feature learning in
the infinite limit.

Table 2. Do the parametrizations allow for feature learning and
uncertainty (via ensembling) in the infinite width limit?

FEATURE LEARNING UNCERTAINTY

SP ×
√

µP
√

×
OURS

√ √

ever, due to the down-scaling of the final layer (i.e., aL+1 =
1/2), f has a variance on the order of Θ(1/n). A network
initialized with µP results in a deterministic function in the
infinite limit. Consequentially,

Corollary 1 Assuming a fixed data ordering during train-
ing, an infinite width network with µP does not permit un-
certainty quantification using ensembling.

This corollary follows directly from the fact that f is deter-
ministic, and therefore in the infinite width limit, there is no
variance in the function predictions.

3. Modified µP
In the previous section, we determined that SP and µP are
able to either permit feature learning or result in a deter-
ministic function f . Our goal is to propose an initialization
scheme such that we maintain maximal updates (Θ(1) up-
dates in the features and trained function) while avoiding
learning a deterministic function f , as in µP (Yang & Hu,
2021).

As such, we propose:

• in general, use µP to ensure that we obtain maximal
feature and function updates during training.

• contrary to µP, do not downscale the weights in the
final layer (i.e., use aL+1 = 1/2), to avoid learning a
deterministic function.

• modify the backward pass, as described in the pseu-
docode in Algorithm 1. The main difference with nor-
mal SGD is that we set Wt by ∆Wt = Wt −W0.

• use a learning rate of γn−1 for the final layer, and γ
for other layers.

The last two alterations prevent the network from blowing
up during training, while maintaining the benefits of µP.
In depth derivations can be found in Appendix A. Here,
we derive the first few steps of SGD, to provide insight to
how the modifications may enable learning features and a
non-deterministic function.

Deep Ensemble Uncertainty Fails as Network Width Increases: Why, and How to Fix It

Algorithm 1 Modified SGD
Input: data point (ξ, y), model f parametrized by
weights {W l}L+1

l=1

Initialize weights, i.e. sample W l
i

iid∼ N(0, n−1), ∀l.
Store a copy of the weights in the final layer WL+1

0

for t = 1 to T do
Compute the forward pass as normal, i.e. ŷ = f(ξ)
Set WL+1

t−1 ←WL+1
t−1 −W

L+1
0

for l = 1 to L+ 1 do
Update the weights, i.e. W l

t ←W l
t−1 − δt

df
dW l

t−1

end for
Set WL+1

t ←WL+1
t +WL+1

0

end for

3.1. Notation

We assume a single layer MLP network with a one-
dimensional input and output (ξ, y ∈ R) for simplicity. The
derivations can be easily extended for multi-dimensional
inputs and layers. The derivations for two layer networks
can be found in Appendix A.

Let us assume we have a neural network f(ξ) defined as

f(ξ) = V x(ξ)

x(ξ) = φ(h(ξ))

h(ξ) = Uξ

where V0 := v0 ∈ R1×n, (v0)i
iid∼ N(0, 1/n) and U0 :=

√
nu0 ∈ Rn×1, (u0)i

iid∼ N(0, 1/n) are weights. n denotes
the number of hidden units per layer, the subscript 0 denotes
the values at initialization, and the subscript i distinguishes
between different weights at a given time step. In general,
subscript t denotes the value at the t-th iteration (not to be
confused with the superscript ·t which denotes transpose).
Therefore Vt denotes all weights at time step t, and (Vt)i
denotes the i-th weight at time step t.

Our goal in the following derivations is to show that both
ft and ht have Θ(1) updates; therefore, neither explode nor
are unable to learn in the infinite width limit. Further, we
want to show that the variance of ft does not collapse in the
infinite width limit.

First forward pass The first forward pass for an input ξ1
proceeds as normal:

h1 =
√
nu0ξ1

x1 = φ(h1)

f1 = V0x1

By the central limit theorem, h1, x1 and f1 are approxi-
mately normally distributed with variance of Θ(1). This is a
key difference with µP, where f1 is Θ(1/n). This is impor-
tant as it allows for uncertainty estimation via ensembling.

First backward pass In the backward pass, we compute
the updates with ∆vt = vt − v0, where v0 is the value of v
at initialization. Therefore, the updates are:

v1 = v0 − n−1(d`/df) · (df/dv)

= v0 − n−1δ1xt1 (1)
u1 = u0 − (d`/df) · (df/du)

= u0 − δ1(
√
n∆V t

0 � φ′(h1)ξ1)

= u0 − δ1(
√
n� 0� φ′(h1)ξ1)

= u0, (2)

where δ1 := d`1/df is the derivative of the loss function at
time step 1. Here we observe a key difference with a normal
backpass: u0 is not updated because ∆v0 = 0.

Second forward pass

h2 =
√
nu1ξ2 =

√
nu0ξ2 by Eq. 2

x2 = φ(h2)

f2 = V1x2 = V0x2 − n−1δ1xt1x2 by Eq. 1

Here, the update in f is Θ(1) as δ1 and xi, i = 1, 2 are
Θ(1). In general, the variance of f2 is Θ(1) as f0 has a
Θ(1) variance. A trivial example of a dataset for when this
is the case is for ξi = 0,∀i. This is an important difference
with µP, where we would observe a Θ(1/n) variance.

Second backward pass This step differs from the first
backward pass as ∆vt is no longer zero, and therefore we
have a different update. Concretely,

V2 = V1 − n−1(d`/df) · (df/dV)

= V1 − n−1δ2xt2 (3)
u2 = u1 − δ2df/du

= u1 − δ2(−
√
n∆V t

1 � φ′(h2)ξ2)

= u1 + n−1/2δ1δ2x1 � φ′(h2)ξ2 (4)

The update in u0 is Θ(n−1/2).

Third forward pass

h3 =
√
nu2ξ3

=
√
nu1ξ3 + δ1δ2x1 � φ′(h2)ξ2ξ3 by Eq. 4

x3 = φ(h3)

f3 = V2x3

= V1x3 − n−1δ2xt2x3 by Eq. 3

As uwas updated in the last backward pass, the distributions
of h and x have changed. Importantly, we have feature
learning. δ1, δ2, x1, φ′(h2), ξ1, and ξ2 are Θ(1). Therefore,
the update in h3 is Θ(1). As before, the update in f is Θ(1).

Deep Ensemble Uncertainty Fails as Network Width Increases: Why, and How to Fix It

Figure 1. Feature learning: logistic regression performance using
the top 15 principal components of features. The average over
10 seeds is reported. The shaded areas show the 95% confidence
intervals.

The above derivations provide some insight into the SGD
updates in training a MLP. We have seen that [1] generally,
var(ft) is Θ(1) and [2] the updates in the function f and
features h are Θ(1). A more formal proof of this result can
be derived by conditioning f on the initialization values,
following the derivations Appendix D.1. in Yang & Littwin
(2021).

4. Experiments
We verify our findings empirically on MNIST by evaluating
the performance of MLPs of increasing widths on feature
learning and uncertainty estimation. More extensive experi-
ment details can be found in Appendix B.

To demonstrate feature learning, we extract the features
(from the penultimate layer) and apply principal component
analysis. We extract the top 15 principal components (where
15 was chosen using a scree plot) and use them as the input
for a logistic classifier. We benchmark the performance of
our parametrization against SP and µP.

Figure 1 shows the average accuracy of the logistic regres-
sion classification using the features extracted from neural
networks of varying widths and parametrizations. Our find-
ings for SP and µP for feature learning are in line with
Yang & Hu (2021). We observe that as width increases,
the performance of SP drops; this is expected as feature
learning theoretically disappears in the infinite width limit.
The performance of µP stays comparatively constant during
training, which is expected as µP maintains feature learn-
ing in the infinite width limit. Our parametrization has
a comparable (although for some widths, slightly worse)
performance to µP. It performs significantly better than SP.

Figure 2. Average difference in predictive entropy for out-of-
distribution data (FashionMNIST) versus in-distribution data
(MNIST) as width increases for ensembles of neural networks
with different parametrizations; higher is better. The average dif-
ference over 10, 000 examples is reported. The shaded areas show
the 95% confidence intervals.

To evaluate uncertainty estimation performance, we estimate
the average difference in predictive entropy between out-of-
distribution data (FashionMNIST) and in-distribution data
(MNIST). We estimate entropy by using an ensemble of 10
models.

Figure 2 shows the average difference in predictive entropy
for in- and out-of-distribution data. A higher value is better.
We observe that our parametrization is able to obtain better
uncertainty estimation than the other parametrizations. As
width increases, µP performs less well at distinguishing in-
distribution versus out-of-distribution data using predictive
entropy from ensembles. This is because the variance of
f disappears as width increases. SP does relatively better,
although we still observe a drop in performance.

5. Conclusion
We introduce a new neural network parametrization and
training scheme, that allows for both feature learning and
avoids function variance collapse in the infinite width limit.
Our preliminary experiments show that the parametriza-
tion indeed improves uncertainty quantification for out-of-
distribution detection. In future work, we hope to expand our
analysis, including a more rigorous experimental evaluation
to include different datasets and ablation studies. Further,
we plan to further investigate some results, such as the ob-
served dip in the performance of standard parametrization
on uncertainty estimation as width increases.

Deep Ensemble Uncertainty Fails as Network Width Increases: Why, and How to Fix It

6. Acknowledgements
L.S. is supported by EPSRC and DeepMind.

References
Chizat, L. and Bach, F. On the global convergence of gradi-

ent descent for over-parameterized models using optimal
transport. In Advances in neural information processing
systems, pp. 3036–3046, 2018.

He, B., Lakshminarayanan, B., and Teh, Y. W. Bayesian
deep ensembles via the neural tangent kernel. arXiv
preprint arXiv:2007.05864, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles, 2017.

Woodworth, B., Gunasekar, S., Lee, J. D., Moroshko, E.,
Savarese, P., Golan, I., Soudry, D., and Srebro, N. Ker-
nel and rich regimes in overparametrized models. arXiv
preprint arXiv:2002.09277, 2020.

Yang, G. and Hu, E. J. Feature learning in infinite-width
neural networks, 2021.

Yang, G. and Littwin, E. Tensor programs iib: Architectural
universality of neural tangent kernel training dynamics.
arXiv preprint arXiv:2105.03703, 2021.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

A. Derivations
In the following section, we derive the first couple of steps for SGD. The main idea is to provide some intuition on how the
parametrization scheme affects the network training dynamics.

A.1. Preliminary Notes

Before diving into the derivations, we state two useful properties, which we will use in the derivations.

Activations For the identity, relu and sigmoid activations, the size of φ′(h) is dictated by the size of the weight matrices.
The activations themselves have a Θ(1) derivative.

Loss functions The derivative of the MSE loss, ` = (y − f)2, is −2(y − f). Therefore the derivative is Θ(k) iff f is Θ(k).

A.2. One-layer Network

Let us assume we have a neural network f(ξ) defined as

f(ξ) = V x(ξ)

x(ξ) = φ(h(ξ))

h(ξ) = Uξ

where, V0 := v0 ∈ R1×n ∼ N(0, 1/n) and U0 :=
√
nu0 ∈ Rn×1, u0 ∼ N(0, 1/n) are weights. We assume n denotes the

number of hidden units per layer.

Initial Distributions By initialization, V0 has variance Θ(1/n) and U0 has variance Θ(1). Due to the independence of
(U0)i, h0(ξ) is normally distributed with a variance of Θ(1). Consequentially, x0(ξ) is Θ(1). Finally, as V0 and xi(ξ) are
independent, f =

∑n
i=1(V0)i(x0(ξ))i is approximately normally distributed with a variance of Θ(1) by the central limit

theorem.

A.2.1. PARTIAL DERIVATIVES

Below, we explicitly derive the partial derivatives as they will be of use later. In our derivations, we drop the explicit
dependence on (ξ) to lighten notation.

df/dx = V t

df/dV = xt

df/dh = df/dx� φ′(h) = V t � φ′(h)

df/du = df/dh
√
nξ =

√
nV t � φ′(h)ξ

df/dξ = df/dx
√
nu =

√
n(V t � φ′(h))tu

Above ·t denotes the transpose operation.

A.2.2. FORWARD AND BACKWARD PASSES

In the next sections, we derive the forward and backward passes (for SGD) for the first couple of iterations. We assume
that SGD with a learning rate of γ/ncz and a loss ` are used. For a general variable Z, the SGD update is given by
Zt = Zt−1γn

−czd`/df · df/dZ, where d`/df and df/dz are the partial derivatives of the loss ` with respect to the function
output f and function f with respect to the variable z. We assume a learning rate of γ = 1, n−cu for parameters u and n−cv
for parameters v. This is different from the main text, where we immediately assume cv = 1 and cu = 0. In the derivations
below, we will show why this is necessary.

After the forward passes, we will derive the distributions of f, x, h. Our goal is to show that both f and h have Θ(1) updates
(and that therefore neither explode or are unable to learn in the infinite limit).

After the backward passes, we compute the size of the updates in the parameters v, u. The backpasses allow us to see the
effect of the learning rate and initialization scheme on the parameter updates. We explicitly derive the computations until the
fourth iteration, as after this iteration the updates follow a generic form.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

First forward pass The forward pass (with input ξ1) proceeds as normal:

h1 =
√
nu0ξ1

x1 = φ(h1)

f1 = V0x1 =

n∑
i=0

(V0)i(x1)i

We obtain a loss of `(y1, f1), where ` is the loss function, f1 is the network output and y1 is the true value.

Distributions after first forward pass We can argue that both h1 and x1 have roughly Gaussian co-ordinates by the
central limit theorem. h1 has a variance of Θ(1) (for reasoning, see “Initial Distributions” paragraph), and x1 = φ(h1) is
Θ(1). As x1 is Θ(1), V0 is Θ(1/n), and x1 and V0 are independent, f1 is approximately normal with variance of Θ(1) by
the central limit theorem. This is a key difference with µP , where f1 is Θ(1/n)

First backward pass In the backward pass, we compute the updates with ∆v = v − v0, where v0 is the value of v at
initialization.

v1 = v0 − n−cv (d`/df) · (df/dv)

= v0 − n−cvδ1xt1 (1)

u1 = u0 − n−cu(d`/df) · (df/du)

= u0 − n−cuδ1(
√
n∆vt0 � φ′(h1)ξ1)

= u0, (2)

where δ1 := d`/df is the derivative of the loss function at time step 1. Here we observe a key difference with “normal” a
backpass: u0 is not updated because ∆V0 = 0.

Distribution after first backward pass Assuming we use MSE, δ1 is Θ(1) as f1 is Θ(1) (see “Useful Notes” in Section
A.1 for a more detailed explanation). Therefore, as x1 is Θ(1), V1 − V0 is Θ(n−cv).

Second forward pass

h2 =
√
nu1ξ2

=
√
nu0ξ2 by Equation 2

x2 = φ(h2)

f2 = V1x2

= V0x2 − n−cvδ1xt1x2 by Equation 1

=

n∑
i=1

(V0)i(x2)i − n−cvδ1(x1)i(x2)i

Distribution after second forward pass h2 follows almost the same distribution as h1, as u has not been updated.
Similarly, x2(ξ) ∼ φ(h2), which is Θ(1).

Next, let’s consider the f2. Note that f2 = f1 + (f2− f1). We know the distribution of f1, and therefore focus on the update
f2 − f1. Focusing on f2 − f1 also makes explicit how much the function can change (and thereby “learn”) at each step. As
shown in “first forward pass”, δ1 is Θ(1). x1 and x2 are not independent – they both rely on U0. Let’s assume that φ is a
linear activation. Then E(xt1x2) =

∑
iE((x1)i(x2)i) = n2ξ1ξ2E(u20) = n2ξ1ξ2(1/n+ 0) = nξ1ξ2.1 Therefore xt1x2 is

Θ(n). For other activations, such as ReLU, the same bound holds (see Section A.1 for further details). Therefore f2 − f1 is
Θ(n−cv+1). For Θ(1) updates, we need cv = 1. As f1 is Θ(1) and f2− f1 is Θ(n−cv+1), f2 is Θ(max(1, n−cv+1)). From
now onwards, we will use cv = 1 to lighten notation.

1We treat the inputs as constants and use u0 ∼ N(0, 1/n) in the derivation.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Second backward pass

v2 = v1 − n−1(d`/df) · (df/dV)

= v1 − n−1δ2xt2 (3)

u2 = u1 − n−cuδ2df/du
= u1 − n−cuδ2(−

√
n∆V t

1 � φ′(h2)ξ2)

= u1 − n−cuδ2(−
√
n(n−1δ1x1)� φ′(h2)ξ2)

= u1 + n−cu−1/2δ1δ2x1 � φ′(h2)ξ2 (4)

Distribution by second backward pass For v2, we can follow the same logic as in the first backward pass to show the
update in v2 := v2 − v1 is Θ(n−1/2).

The update for u0 is different from before. We know that δ1 is Θ(1). δ2 is Θ(1) as f2 is Θ(1), as shown in “Distribution
after second forward pass”. The input ξ2 is independent of n and therefore Θ(1). x1 is Θ(1). φ′(h) is Θ(1). Therefore, the
update is Θ(n−cu−1/2).

Third forward pass

h3 =
√
nu2ξ3

=
√
nu1ξ3 + n−cuδ1δ2x1 � φ′(h2)ξ2ξ3 by Equation 4

x3 = φ(h3)

f3 = V2x3

= V1x3 − n−1δ2xt2x3 by Equation 3

=
∑
i

(
(V1)i(x3)i − n−1δ2(x2)i(x3)i

)

Distribution after third forward pass δ1, δ2, x1, φ′(h2), ξ1, and ξ2 are Θ(1). Therefore, the update in h3 is Θ(n−cu).
cu = 0 is required for h3 to have an Θ(1) update.

Depending on the activation, φ(h3) is either Θ(1) (if φ is sigmoid/tanh) or Θ(n(−cu)) (if φ is linear/relu/identity). The
update h3 − h2 is Θ(1) (if φ is sigmoid/tanh) or Θ(n(−cu)) (if φ is linear/relu/identity). Again, if cv = 1, then cu = 0 is
required for x3 to have a Θ(1) update. From now onwards, we assume cu = 0.

The update in f , i.e. f3(ξ3)− f2(ξ3), is Θ(1). Let us decompose the updates in f . The left term in is
∑

i(V1)i(x3)i. Here,
we have updated x3, which creates a Θ(1) change. Therefore the change f3 − f2 due to the term

∑
i(V1)i(x3)i due to

x3 − x2 is Θ(1).

Next, let us focus on the right term −n−1
∑

i

∑2
j=1 δj(xj)i(x3)i. Specifically, consider xt2x3. Let us assume φ is linear.

Then,

xt2x3 =

n∑
i=1

n(u0)2i ξ2ξ3 + (
√
n(u0)iξ2)(δ1δ2φ

′(h2)ξ2ξ3) (5)

From the forward pass, we know that δ1, δ2, ξj for j = 1, 2, 3 are Θ(1). Therefore, both the first term in the sum,∑n
i=1 n(u0)2i ξ2ξ3, and the second term,

∑n
i=1(
√
n(u0)iξ2)(δ1δ2φ

′(h2)ξ2ξ3) are Θ(n). Therefore xt2x3 is Θ(n) and
n−1

∑n
i=1 δ2(x2)i(x3)i is Θ(1). In conclusion, the update in f is Θ(1) if cv = 1, cu = 0.

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Third backward pass

v3 = v2 − n−1δ3xt3

= v0 − n−1
3∑

j=1

δjx
t
j

= v0 − n−1
3∑

j=1

δjx
t
j

u3 = u2 − δ3df/du
= u2 − δ3

√
n∆V t

2 � φ′(h3)ξ3

= u2 + δ3
√
n(n−cv

2∑
j=2

δixi)� φ′(h3)ξ3

= u0 +

3∑
k=2

n−1/2δk(

k−1∑
j=1

δjxj)� φ′(hk)ξk

= u0 + n−1/2
3∑

k=2

δk(

k−1∑
j=1

δjxj)� φ′(hk)ξk

Distribution by third backward pass From the previous backward pass, we know the distribution of v2, which is
Θ(n−1). For linear activations, x3 is Θ(1) and δ3 is Θ(1). Therefore v3 − v2 is Θ(1). u3 − u2 is Θ(n−1/2).

Fourth forward pass

h4 =
√
nu3ξ4

=
√
nu2ξ4 +

√
n(u3 − u2)ξ4

=
√
nu2ξ4 + δ3(

2∑
j=2

δixi)� φ′(h3)ξ3ξ4

=
√
nu0ξ4 +

3∑
k=2

δk(

k−1∑
j=1

δjxj)φ
′(hk)ξkξ4

x4 = φ(h4)

f4 = V3x4

= V0x4 − n−1
3∑

i=1

δix
t
ix4

=
∑
i

(V0)i(x4)i + n−1
3∑

j=1

δj(xj)i(x4)i



Distribution after fourth forward pass

We focus on the effect of the update of u3−u2 to determine the order of the update h4−h3. We know u3−u2 is Θ(n−1/2).
Therefore

√
n(u3−u2)ξ4 is Θ(1). Consequentially, h4 and x4 are Θ(1). Next, we look at the update in f . V3−V2, x4−x3

and x4 are Θ(1). Therefore f4 − f3 = (V3 − V2)x4 =
∑

(V3 − V2)i(x4)i is Θ(1).

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Fourth backward pass

v4 = v3 − n−1d`/df · df/dV
= v3 − n−1δ4xt4

= v0 − n−1
4∑

j=1

δjx
t
j

u4 = u3 − d`/df · df/du
= u3 − δ4

√
n∆V3 � φ′(h4)ξ4

= u3 + δ4(n−1/2
3∑

j=1

δjxj)� φ′(h4)ξ4

= u0 + n−1/2
4∑

k=2

δk(

k−1∑
j=1

δjxj)� φ′(hk)ξk

Distribution after fourth backward pass v4 − v3 = n−1δ4x4. As δ4, x4 are Θ(1), the update is Θ(1/n). u4 − u3 is
δ4(n−1/2

∑3
j=1 δjxj)� φ′(h4)ξ4, which is Θ(n−1/2).

A.2.3. GENERAL FORWARD/BACKWARD PASS

t-th forward pass

ht =
√
nut−1ξt

=
√
nut−2ξt + δt−1(

t−2∑
j=1

δjxj)φ
′(ht−1)ξt−1ξt

=
√
nu0ξt +

t−1∑
k=2

δk(

k−1∑
j=1

δjxj)φ
′(hk)ξkξt

xt = φ(ht)

ft = Vt−1xt

= Vt−2xt − n−1δt−1xtt−1xt

= V0xt − n−1
t−1∑
i=1

δix
t
ixt

=
∑
i

(V0)i(xt)i + n−1
t−1∑
j=1

δj(xj)i(xt)i



Distribution after t-th forward pass From the t− 1th backward pass, we know ut−1 − ut−2 is Θ(n−1/2). Therefore√
n(ut−1 − ut−2)ξt is Θ(1). Therefore, ht, and consequentially xt, are Θ(1).

Next, we look at the update in f . Vt−1 − Vt−2, xt − xt−1 and xt are Θ(1). Therefore ft − ft−1 = Vt−1(xt − xt−1) +
(Vt−1xt − Vt−2xt−1) is Θ(1).

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

t-th backward pass

vt = vt−1 − n−1δtxt

= v0 − n−1
t∑

j=1

δtxt

ut = ut−1 − d`/df · df/du
= ut−1 − δt

√
n∆V t

t−1 � φ′(ht)ξt

= ut−1 + δt
√
n(n−1

t−1∑
j=1

δjxj)� φ′(ht)ξt

= u0 + n−1/2
t∑

k=2

δk(

k−1∑
j=1

δjxj)� φ′(hk)ξk

Distribution by t-th backward pass In general, vt − vt−1 = n−1δtxt. As δt, xt are Θ(1), the update is Θ(1/n).
ut − ut−1 is δt

√
n(n−1

∑t−1
j=1 δjxj)� φ′(ht)ξt, which is Θ(n−1/2).

A.2.4. PROOF GENERAL UPDATES

Proof: We can prove the form of the t-th update step and update sizes by induction.

Base case: We’ve shown that these updates hold for t = 3, 4.

Inductive step: We assume that the claims hold for the t-th forward and backward pass. We need to show that, the claims
hold for the t+ 1-th step.

t+1-th forward pass

ht+1 =
√
nutξt+1 by network definition

=
√
nut−1ξt + δt(

t−1∑
j=1

δjxj)φ
′(ht)ξtξt+1 by t-th backward pass

=
√
nu0ξt+1 +

t−1∑
k=2

δk(

k−1∑
j=1

δjxj)φ
′(hk)ξkξt+1 by t-th backward pass

xt+1 = φ(ht+1) by network definition
ft+1 = Vtxt+1 by network definition

= Vt−1xt+1 − n−1δtxttxt+1 by t-th backward pass

= V0xt+1 − n−1
t∑

i=1

δix
t
ixt+1 by t-th backward pass

=
∑
i

(V0)i(xt+1)i + n−1
t∑

j=1

δj(xj)i(xt+1)i

 re-writing the above equation

Distribution after t+1-th forward pass From the tth backward pass, we know ut−1 − ut−2 is Θ(n−1/2). Therefore√
n(ut − ut−1)ξt is Θ(1). Therefore, ht+1, and consequentially xt+1, are Θ(1). Next, we look at the update in f .

Vt − Vt−1, xt+1 − xt and xt+1 are Θ(1). Therefore ft+1 − ft is Θ(1).

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

t+1-th backward pass

vt+1 = vt − n−1δt+1xt+1 by the definition of the network and SGD update rule

= v0 − n−1
t+1∑
j=1

δtxtby the induction step

ut+1 = ut − d`/df · df/du by the definition of the SGD update rule

= ut − δt+1

√
n∆V t

t � φ′(ht+1)ξt+1 by the update rule and the network definition

= ut + δt+1

√
n(n−1

t∑
j=1

δjxj)� φ′(ht+1)ξt+1by the induction step

= u0 + n−1/2
t+1∑
k=2

δk(

k−1∑
j=1

δjxj)� φ′(hk)ξkby the induction step

Distribution by t-th backward pass In general, vt+1 − vt = n−1δt+1xt+1. As δt+1, xt+1 are Θ(1) (as shown in the
forward pass), the update is Θ(1/n). ut+1 − ut is δt(n−1/2

∑t
j=1 δjxj)� φ′(ht+1)ξt+1, which is Θ(n−1/2).

A.3. Two-layer Network

A.3.1. NETWORK AND INTIALIZATION

Setup We assume we have inputs ξ, y ∈ R (i.e., the input and output are of one-dimensional). We define our network as

f(ξ) = V x̄(ξ)

x̄(ξ) = φ(h̄(ξ))

h̄ = Wx

x(ξ) = φ(h(ξ))

h(ξ) = Uξ

where

• V0 ∈ R1×n, (V0)i ∼ N(0, 1/n), W ∈ Rn, (W0)i ∼ N(0, 1/n)

• U0 :=
√
nu0 ∈ Rn×1, (u0)i ∼ N(0, 1/n). (u0)i are updated during training.

The subscript 0 denote the values at initialization, and the subscript i distinguishes between different weights at a given time
step. In general, subscript t denotes the value at the t-th iteration. Therefore Vt denotes all weights at time step t, and (Vt)i
denotes the i-th weight at time step t.

Initial Distributions By initialization, V0 has variance Θ(1/n), W0 has has variance Θ(1/n), and U0 has variance Θ(1).
Due to the independence of (U0)i, h0(ξ) is normally distributed with a variance of Θ(1). Consequentially, x0(ξ) is Θ(1).

Similarly, due to the independence of (W0)i, h̄i = W t
i x, where Wi is the i-th row of W , is normally distributed.

Consequentially, x̄0(ξ) is Θ(1).

Finally, as V0 and x̄i(ξ) are independent, f =
∑n

i=1(V0)ix̄0(ξ))i is approximately normally distributed with a variance of
Θ(1) by the central limit theorem.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

A.3.2. PARTIAL DERIVATIVES

Below, we explicitly derive the partial derivatives as they will be of use later. In our derivations, we drop the explicit
dependence on (ξ) to lighten notation.

df/dx̄ = V t

df/dV = x̄t

df/dh̄ = df/d x̄�φ′(h̄) = V t � φ′(h̄)

df/dx = df/d h̄ ·df/d x̄ = V t � φ′(h̄)W

df/dW = df/d h̄ ·df/dW = V t � φ′(h̄) x̄t

df/du = df/d h̄ ·df/d x̄ ·d x̄ /du =
√
nV t � φ′(h̄)Wξ

df/dξ = df/d h̄ ·df/d x̄ ·d x̄ /dξ =
√
nV t � φ′(h̄)Wu

Above ·t denotes the transpose operation.

A.3.3. FORWARD AND BACKWARD PASSES

First forward pass The forward pass (with input ξ1) proceeds as normal:

f1 = V0 x̄1

x̄1 = φ(h̄1)

h̄1 = W0x1

x1 = φ(h1)

h1 = U0ξ1

Further, we obtain a loss of `(y1, f1), where ` is the loss function, f1 is the network output and y1 is the true value.

Distributions after first forward pass Using similar arguments as for the single hidden layer setting, we can argue that
h1, x1, h̄1, x̄1 and f1 have roughly Gaussian co-ordinates by the central limit theorem with variance Θ(1).

First backward pass In the backward pass, we compute the updates with ∆V = V − V0, where V0 is the value of V at
initialization.

V1 = V0 − n−cv (d`/df) · (df/dV)

= V0 − n−cvδ1 x̄t
1 (6)

w1 = w0 − n−cw(d`/df) · (df/dW)

= w0 − n−cwδ1∆V t
0 � φ′(h̄1)xt1

= w0 (7)

u1 = u0 − n−cu(d`/df) · (df/du)

= u0 − n−cuδ1
√
n∆V t

0 � φ′(h̄1)W0ξ1

= u0, (8)

where δ1 := d`/df is the derivative of the loss function at time step 1. Here we observe a key difference with ”normal” a
backpass: w0 and u0 are not updated because ∆V0 = 0.

Distribution after first backward pass By the same reasoning as in the single layer case, V1 − V0 is Θ(n−cv).

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Second forward pass

h2 =
√
nu1ξ2

=
√
nu0ξ2 by Equation 8

x2 = φ(h2)

h̄2 = W1x2

= W0x2 by Equation 7
x̄2 = φ(h̄2)

f2 = V1x2

= V0 x̄2−n−cvδ1 x̄t
1 x̄2 by Equation 6

=

n∑
i=1

(V0)i(x̄2)i − n−cvδ1(x̄1)i(x̄2)i

Distribution after second forward pass h2, x2, h̄2, and x̄2 all have similar distributions to the first forward pass as the
weights have not been updated. Consequentially, they have a variance of Θ(1).

Next, we consider f2. V0x2 has roughly the same distribution as before as the distribution of x2 has not changed. Therefore
we focus on n−cvδ1 x̄t

1 x̄2. δ1 is Θ(1) because f1 is Θ(1). For simplicity, let us assume a linear activation φ. Then

E(x̄t
1 x̄2) =

∑
i

E((x̄1)i(x̄2)i)

=
∑
i

E((
∑
j

(W0)jU0ξ1)i(
∑
j

(W0)jU0ξ2)i)

= ξ1x2
∑
i

∑
j

E((W0)2j,i(U0)2i,j)

= ξ1x2
∑
i

∑
j

E((W0)2j,i)E((U0)2i,j) by independence

= ξ1x2
∑
i

∑
j

(1/n)(1) by intialization

= nξ1x2

Therefore the update in f is Θ(n−cv+1). Therefore, for f to be updated maximally (without blowing up), it must hold that
cv = 1. From now onwards, we will use cv = 1 to lighten notation.

Second backward pass

v2 = v1 − n−1(d`/df) · (df/dv)

= v1 − n−1δ2 x̄t
2 (9)

w2 = w1 − (d`/df) · (df/dw)

= w1 − n−cwδ2∆V t
1 � φ′(h̄2)xt2

= w1 + n−cwδ2(n−1δ1 x̄1)� φ′(h̄2)xt2

= w1 + n−cw−1δ1δ2 x̄1�φ′(h̄2)xt2 (10)

u2 = u1 − n−cu(d`/df) · df/du
= u1 − n−cuδ2

√
n∆V t

1 � φ′(h̄2)W0ξ2

= u1 − n−cuδ2
√
n(n−1δ1 x̄1)� φ′(h̄2)W0ξ2

= u1 + n−cu−1/2δ1δ2 x̄1�φ′(h2)W0ξ2 (11)

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Distribution by second backward pass For v2, we can follow the same logic as in the first backward pass to show the
update in v2 := v2 − v1 is Θ(n−1). Next, let us consider the update of w. Previously, we have shown that δ1, δ2 and φ′(h2)
are Θ(1). Therefore we focus on x̄t

1 x2. x̄1 and x2 are Θ(1), therefore the sum is Θ(n). The update in W is Θ(n−cw).

Lastly, we consider the update of u. As before, we know that δ1, δ2, φ′(h2), and ξ3 are Θ(1). Therefore, we focus on x̄1W0,
which is approximately Θ(1). Therefore the update in u is Θ(n−cu−1/2).

Third forward pass

h3 =
√
nu2ξ3

=
√
nu0ξ3 + n−cuδ1δ2 x̄1�φ′(h2)W0ξ2ξ3 by Equation 11

x3 = φ(h3)

h̄3 = W2x3

= W0x3 + n−cw−1δ1δ2 x̄1�φ′(h̄2)xt2 by Equation 10
x̄3 = φ(h̄3)

f3 = V2 x̄3

= V0 x̄3−
2∑

j=1

n−cvδj x̄t
j x̄3 by Equation 9

=

n∑
i=1

(V0)i(x̄3)i −
2∑

j=1

n−cvδj(x̄j)i(x̄3)i

The update in h3 is Θ(n−cu) (as the update in u is Θ(n−cu−1/2) and ξ3 is Θ(1). Therefore, for maximal feature learning we
need cu = 0. Consequentially, x3 is Θ(1). The update in h̄3 is Θ(n−cw). Therefore, for maximal feature learning (without
allowing the features to blow up) we need cw = 0. Consequentially, x̄3 is Θ(1).

Excluding pathological cases (where the covariance of the updates is strongly negatively correlated, leading to variance
collapse) the update in f3 and f3 are Θ(1)

Third backward pass

v3 = v2 − n−1(d`/df) · (df/dV)

= v2 − n−1δ3 x̄t
3

w3 = w2 − (d`/df) · (df/dW)

= w2 − n−cwδ3∆V t
2 � φ′(h̄3)xt3

= w2 + n−cwδ3(

2∑
k=1

n−1δk x̄k)� φ′(h̄3)xt3

u3 = u2 − n−cu(d`/df) · df/du
= u2 − n−cuδ3

√
n∆V t

2 � φ′(h̄3)W2ξ3

= u2 − n−cu−1/2δ3(

2∑
k=1

δk x̄k)� φ′(h̄3)W3ξ3

Distribution by third backward pass From the previous backward pass, we know the distribution of v2, which is
Θ(n−1). The update in W is approximately Θ(1). The update in u is approximately Θ(1). The fourth passes follow a
similar trend to the third passes. We can therefore move onto the general case.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

t-th forward pass

ht =
√
nut−1ξt =

√
nut−2ξk + δt−1(

t−2∑
k=1

n−1δk x̄k)� φ′(h̄t−1)Wt−1ξt−1ξt

xt = φ(ht)

h̄t = Wt−1xt = Wt−1xt + δt−1(

t−2∑
k=1

n−1δk x̄k)� φ′(h̄t−1)xtt−1xt

x̄t = φ(h̄t)

ft = Vt−1 x̄t = V0 x̄t−
t−1∑
j=1

n−cvδj x̄t
j x̄t =

n∑
i=1

(V0)i(x̄t)i −
−1∑
j=1

n−1δj(x̄j)i(x̄t)i

t-th backward pass

vt = vt−1 − n−1(d`/df) · (df/dV)

= vt − n−1δt x̄t
t

wt = wt−1 − (d`/df) · (df/dW)

= wt−1 − δt∆V t
t−1 � φ′(h̄t)x

t
t

= wt−1 + δt(

t−1∑
k=1

n−1δk x̄k)� φ′(h̄t)x
t
t

ut = ut−1 − (d`/df) · df/du
= ut−1 − δt

√
n∆V t

t−1 � φ′(h̄t−1)Wt−1ξt

= ut−1 − n−1/2δt(
t−1∑
k=1

n−1δk x̄k)� φ′(h̄t−1)Wt−1ξt

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

B. Experiment Details
We train MLP classifiers on MNIST, with three layers of widths (n, n, 10), with activations (relu, relu, softmax). We train
the models using SGD (with batch size 64) and cross-entropy loss. We use early stopping and train for at most 300 epochs.
For ensembles, we use seeds 0− 9.

We perform a grid search over models of width 64 for the hyper-parameters γ, the learning rates (one general learning
rate, and one specifically for the last layer), and α = [α1, α2], constants which we multiply the first and last layer by (as in
Yang & Hu (2021)). We consider γ in 2[−5,−4...,−1,0,1...5] and α in 2[−6,−3,0,3,6,12]. We split the training set into a 80− 20
partition (with seed 0 in Pytorch) to create a validation set. We train all validations set models for 25 epochs. The final
hyper-parameters are given in Table 1. Due to computational constraints, we use the hyper-parameters found for width 64
for larger width models.

Table 1. Hyper-parameters for different initializations

HYPERPARAMETER SP µP OURS

γ [2.0, 2.0] [0.03125, 0.03125] [0.25, 0.03125]
α [0.03125, 32] [8.0, 64.0] [512, 0.125]

Figure 1 shows the average accuracy of the models. The training of our parametrization is unstable as can be seen by the
high variance, and we plan to further investigate this. Nevertheless, for most larger widths, the performances do not differ
significantly.

Figure 1. Average test accuracy of the networks of varying widths and parametrizations.

Feature Learning For the feature learning experiments, we apply principal component analysis (with whitening) to the
features (i.e., outputs of the penultimate layer). Next, we embed the features using the top 15 features and use them as inputs
to a logistic regression. For both, we use scikit-learn with default settings. We created a 4500/500 train/test split on the test
dataset for the logistic regression.

Uncertainty For the uncertainty experiments, we estimate the predictive entropy as in Smith & Gal (2018). We measure the
average in-distribution (i.e. on the MNIST test set) predictive entropy and the average out-of-distribution entropy (i.e., on
FashionMNIST test set) and plot the difference across various different widths.

References
Smith, L. and Gal, Y. Understanding measures of uncertainty for adversarial example detection, 2018.

Yang, G. and Hu, E. J. Feature learning in infinite-width neural networks, 2021.

