Deep Ensemble Uncertainty Fails as Network Width Increases:
Why, and How to Fix It

Lisa Schut! Edward Hu’? Greg Yang “?> Yarin Gal *!

Abstract

Deep ensembles can be seen as an empirical ap-
proximation of the distribution over trained neural
networks, and deep ensemble uncertainty can be
seen as approximating the variance of the distri-
bution. This variance can be estimated analyti-
cally in the infinite width limit as the variance
of a Gaussian process. Yang & Hu (2021) show
that this limit does not allow for feature learning,
throwing away the advantages of deep learning,
and suggest instead a new parametrization that
allows for feature learning. This new parametriza-
tion trades uncertainty quality for feature learning,
rendering it unsuitable for uncertainty quantifica-
tion as models become wider. In this work, we
propose a modification to the parametrization and
the training procedure that allows for both feature
learning and uncertainty quantification via ensem-
bling. Our preliminary results on MNIST suggest
that our findings hold empirically.

1. Introduction

The neural tangent kernel (NTK) is a useful analytical tool
for understanding the training dynamics of neural networks.
Several works have considered the impact of the initializa-
tion of neural networks or learning rate on training (He et al.,
2020; Chizat & Bach, 2018; Woodworth et al., 2020; Yang
& Hu, 2021). Recently, Yang & Hu (2021) have shown that
standard NTK parametrization does not allow for feature
learning.

Feature learning is crucial for obtaining a strong perfor-
mance and task-specific uncertainty. Yang & Hu (2021) in-
troduce a new parametrization, known as p-parametrization
(uP), that does allow for feature learning. Informally, the
parametrization changes the effective learning rate of each

“Equal contribution 'OATML, University of Oxford, United
Kingdom *Microsoft Research. Correspondence to: Lisa Schut
<schut@robots.ox.ac.uk>.

Presented at the ICML 2021 Workshop on Uncertainty and Robust-
ness in Deep Learning., Copyright 2021 by the author(s).

layer in the neural network, such that the features (pre-
activation layer outputs) can be updated maximally. How-
ever, a consequence is that the learnt function f has zero
variance in the infinite width limit. In this case, we can-
not use deep ensembles (Lakshminarayanan et al., 2017) to
obtain uncertainty estimates in the infinite width limit.

In this work, we propose a novel parametrization that allows
for learning features and a non-zero variance function f in
the infinite limit. While we derive these results for the infi-
nite limit case, we demonstrate the same results empirically
for neural networks with finite widths. Therefore, our deriva-
tions may also be of interest for practitioners interested in
the scaling behavior of models.

2. Background Work

Before diving into the different parametrizations, we first
recapitulate abc-parametrization (Yang & Hu, 2021), which
we use to define the network parametrization. An abc-
parametrization is characterized by three constant hyper-
parameters: a;,b; and ¢;. Let W' be a weight matrix
in a L-layer network. Then, wt o= n~%w;, where
wy ~ N(0,n~2b1) is a trainable parameter. The third param-
eter ¢; is the learning rate, defined as yn~“, where 7 is a
constant. We make a minor change to the original definition
of abc-parametrization introduced in (Yang & Hu, 2021)
and define a layer-specific learning rate c;, rather than c. It
will become evident why in Section 3.

Through abc-parametrization, we can create an effective per-
layer learning rate.! This allows us to ensure that we can
maximally update both features as well as the function f.
Using the abc-parametrization, the standard neural tangent
kernel parametrization (SP) and p-parametrization (uP) are
summarized in Table 1. SP corresponds to the standard
Kaiming normal initialization (He et al., 2015) in Pytorch.

The initial parametrization affects the function training dy-
namics. Specifically, it influences the norm of the updates

in the weights and thereby the norm of the updates in the

'Note that setting W' := n~%w;, where w; ~ N(0,n~2%),
is not the same as using W' := w;, where w; ~ N(0, n 22w).
This will become more evident in the derivations, but we also
encourage the reader to look into Yang & Hu (2021).

Deep Ensemble Uncertainty Fails as Network Width Increases: Why, and How to Fix It

Table 1. abc-parametrization of SP, yP and our parametriza-
tion. Formally, the parametrization we introduce is not an abc-
parametrization as we modify the backward pass in SGD (as shown
in Algorithm 1) but we slightly abuse the definition here.

ap by Ci
0,l=1
SP 0 { 11>2 1
7%al: 15
p 02<I1<IL, 1 0
a ll=L+1
—1l=1 1 0l<L,
OURS 0,0 >2 2 1l=L+1

features, and the variance over the features and functions for
a given input (due to the stochasticity in the initial weights).
In this paper, we will focus on two key aspects: feature
learning and whether the learnt function is deterministic.

We start by defining both terms. Following Yang & Hu
(2021), we define feature learning as follows:

Definition 1 Let x; be the network features, i.e. pre-
activation layer outputs. Then, feature learning occurs
if x; have an update of ©(1),

where the big-O notation denotes the scaling with respect to
the network width n. Further, following Yang & Hu (2021),
we define the big-O notation as

Definition 2 A vector v is O(n®) iff v/||v||?/n fluctuates
on the order of O(n®), where n is the number of units in a
hidden layer.

We state that a function f is deterministic iff

Definition 3 lim,,_, ., var(f:) — 0, where n is the number
of units in a hidden layer.

Given these definitions, we can discuss how different
parametrizations affect feature learning and whether the
learnt function f is deterministic. In SP, the learning rate
must scale with ©(1/n) (i.e., ¢; = 1), or else training will
blow up in a wide network. With such a learning rate, we
enter the kernel training regime and are not able to obtain
feature learning in the infinite width limit. However, the
learnt function f is not deterministic, and therefore gener-
ally permits uncertainty estimation via ensembling.”

1P permits feature learning by re-scaling the layers. How-

2The SP modification introduced by He et al. (2020), so that
deep ensembles have a GP posterior equivalent, has the same
shortcoming as SP — it does not allow for not feature learning in
the infinite limit.

Table 2. Do the parametrizations allow for feature learning and
uncertainty (via ensembling) in the infinite width limit?

FEATURE LEARNING UNCERTAINTY
SP X N4
uP Vv X
OURS V4 Vv

ever, due to the down-scaling of the final layer (i.e., ar 411 =
1/2), f has a variance on the order of ©(1/n). A network
initialized with uP results in a deterministic function in the
infinite limit. Consequentially,

Corollary 1 Assuming a fixed data ordering during train-
ing, an infinite width network with uP does not permit un-
certainty quantification using ensembling.

This corollary follows directly from the fact that f is deter-
ministic, and therefore in the infinite width limit, there is no
variance in the function predictions.

3. Modified ;P

In the previous section, we determined that SP and pP are
able to either permit feature learning or result in a deter-
ministic function f. Our goal is to propose an initialization
scheme such that we maintain maximal updates (9(1) up-
dates in the features and trained function) while avoiding
learning a deterministic function f, as in xP (Yang & Hu,
2021).

As such, we propose:

* in general, use uP to ensure that we obtain maximal
feature and function updates during training.

 contrary to uP, do not downscale the weights in the
final layer (i.e., use az,+1 = 1/2), to avoid learning a
deterministic function.

* modify the backward pass, as described in the pseu-
docode in Algorithm 1. The main difference with nor-
mal SGD is that we set W, by AW, = W; — W,

* use a learning rate of yn ! for the final layer, and
for other layers.

The last two alterations prevent the network from blowing
up during training, while maintaining the benefits of uP.
In depth derivations can be found in Appendix A. Here,
we derive the first few steps of SGD, to provide insight to
how the modifications may enable learning features and a
non-deterministic function.

Deep Ensemble Uncertainty Fails as Network Width Increases: Why, and How to Fix It

Algorithm 1 Modified SGD
Input: data point (¢,y), model f parametrized by
weights {W!} /!
Initialize weights, i.e. sample W} i N(0,n~1), Vi.
Store a copy of the weights in the final layer WOLJrl
fort =1to T do
Compute the forward pass as normal, i.e. § = f(&)
Set WEH! « WL — W]
forl=1to L+ 1do

Update the weights, i.e. W} < W}, — 64—
end for
Set W/t « Wi+ Wt
end for
3.1. Notation

We assume a single layer MLP network with a one-
dimensional input and output (£, y € R) for simplicity. The
derivations can be easily extended for multi-dimensional
inputs and layers. The derivations for two layer networks
can be found in Appendix A.

Let us assume we have a neural network f(¢) defined as

f(&) = V(&)
z(§) = ¢(h(§))
h(&) =U¢

where Vy == vy € R (vg); * N(0,1/n) and Uy :=
Vg € R (ug); 2 N(0,1/n) are weights. n denotes
the number of hidden units per layer, the subscript 0 denotes
the values at initialization, and the subscript ¢ distinguishes
between different weights at a given time step. In general,
subscript ¢ denotes the value at the ¢-th iteration (not to be
confused with the superscript - which denotes transpose).
Therefore V; denotes all weights at time step ¢, and (V;);

denotes the ¢-th weight at time step ¢.

Our goal in the following derivations is to show that both
f+ and h; have ©(1) updates; therefore, neither explode nor
are unable to learn in the infinite width limit. Further, we
want to show that the variance of f; does not collapse in the
infinite width limit.

First forward pass
proceeds as normal:

The first forward pass for an input &;

hy = vnup&y
T = ¢(h1)
fi=Vor1

By the central limit theorem, ki, 1 and f; are approxi-
mately normally distributed with variance of ©(1). This is a
key difference with P, where f; is ©(1/n). This is impor-
tant as it allows for uncertainty estimation via ensembling.

First backward pass In the backward pass, we compute
the updates with Av; = vy — vg, where vy is the value of v
at initialization. Therefore, the updates are:

vy =vg —n~H(de/df) - (df /dv)
=g — n_lélx'i (1)
w1 = ug — (d/df) - (df /du)
=up — 61 (VRAVE © ¢'(h1)&1)
=ug — 01(vVn©0© ¢'(h1)&1)
= U, 2)
where d; := d¢; /df is the derivative of the loss function at

time step 1. Here we observe a key difference with a normal
backpass: ug is not updated because Avy = 0.

Second forward pass

hy = Vnu & = Vnuoés
T3 = ¢(h2)
fo=Vizg = Voao — n_lélm'ixg by Eq. 1

by Eq. 2

Here, the update in f is ©(1) as §; and z;,7i = 1,2 are
©(1). In general, the variance of f5 is ©(1) as fy has a
©(1) variance. A trivial example of a dataset for when this
is the case is for & = 0, Vi. This is an important difference
with uP, where we would observe a ©(1/n) variance.

Second backward pass This step differs from the first
backward pass as Awv, is no longer zero, and therefore we
have a different update. Concretely,
Vo = Vi —n7 ' (de/df) - (df /dV)
=V - n_légxé 3)
Ug = U1 — 52df/du
= u1 = Ga(—vVnAV} © ¢/ (h2)&2)
=uy + 1 ?510521 © ¢ (ha) o “4)

The update in ug is O(n~1/2).

Third forward pass

hs = /nuaés

= Vnui&s + 61021 © ¢ (he)&2€3 by Eq. 4
r3 = ¢(h3)
f3 = Vax3

=Vixs — n_152$t2$3 by Eq. 3

As u was updated in the last backward pass, the distributions
of h and z have changed. Importantly, we have feature
learning. 81, d2, 21, @' (h2), &1, and & are ©(1). Therefore,
the update in hg is ©(1). As before, the update in f is ©(1).

Deep Ensemble Uncertainty Fails as Network Width Increases: Why, and How to Fix It

= Ours

=
=]
~

— P
-_— 5P

st Accuracy
= = = =
=] [=:] [=:] [=:]
) 'S w @

=]
=]
]

6 7 B 3 10 1 12
Width {logz(n))

Figure 1. Feature learning: logistic regression performance using
the top 15 principal components of features. The average over
10 seeds is reported. The shaded areas show the 95% confidence
intervals.

The above derivations provide some insight into the SGD
updates in training a MLP. We have seen that [1] generally,
var(f;) is ©(1) and [2] the updates in the function f and
features h are ©(1). A more formal proof of this result can
be derived by conditioning f on the initialization values,
following the derivations Appendix D.1. in Yang & Littwin
(2021).

4. Experiments

We verify our findings empirically on MNIST by evaluating
the performance of MLPs of increasing widths on feature
learning and uncertainty estimation. More extensive experi-
ment details can be found in Appendix B.

To demonstrate feature learning, we extract the features
(from the penultimate layer) and apply principal component
analysis. We extract the top 15 principal components (where
15 was chosen using a scree plot) and use them as the input
for a logistic classifier. We benchmark the performance of
our parametrization against SP and pP.

Figure 1 shows the average accuracy of the logistic regres-
sion classification using the features extracted from neural
networks of varying widths and parametrizations. Our find-
ings for SP and uP for feature learning are in line with
Yang & Hu (2021). We observe that as width increases,
the performance of SP drops; this is expected as feature
learning theoretically disappears in the infinite width limit.
The performance of pP stays comparatively constant during
training, which is expected as pP maintains feature learn-
ing in the infinite width limit. Our parametrization has
a comparable (although for some widths, slightly worse)
performance to pP. It performs significantly better than SP.

12 = Ours

11 — P
—
10
09
0.8
07

06

Awerage Difference in PE {ID vs O0D)

05

3 10 1 12
Width {logz(n))

=
]
m

Figure 2. Average difference in predictive entropy for out-of-
distribution data (FashionMNIST) versus in-distribution data
(MNIST) as width increases for ensembles of neural networks
with different parametrizations; higher is better. The average dif-
ference over 10, 000 examples is reported. The shaded areas show
the 95% confidence intervals.

To evaluate uncertainty estimation performance, we estimate
the average difference in predictive entropy between out-of-
distribution data (FashionMNIST) and in-distribution data
(MNIST). We estimate entropy by using an ensemble of 10
models.

Figure 2 shows the average difference in predictive entropy
for in- and out-of-distribution data. A higher value is better.
We observe that our parametrization is able to obtain better
uncertainty estimation than the other parametrizations. As
width increases, ©P performs less well at distinguishing in-
distribution versus out-of-distribution data using predictive
entropy from ensembles. This is because the variance of
f disappears as width increases. SP does relatively better,
although we still observe a drop in performance.

5. Conclusion

We introduce a new neural network parametrization and
training scheme, that allows for both feature learning and
avoids function variance collapse in the infinite width limit.
Our preliminary experiments show that the parametriza-
tion indeed improves uncertainty quantification for out-of-
distribution detection. In future work, we hope to expand our
analysis, including a more rigorous experimental evaluation
to include different datasets and ablation studies. Further,
we plan to further investigate some results, such as the ob-
served dip in the performance of standard parametrization
on uncertainty estimation as width increases.

Deep Ensemble Uncertainty Fails as Network Width Increases: Why, and How to Fix It

6. Acknowledgements

L.S. is supported by EPSRC and DeepMind.

References

Chizat, L. and Bach, F. On the global convergence of gradi-
ent descent for over-parameterized models using optimal
transport. In Advances in neural information processing
systems, pp. 3036-3046, 2018.

He, B., Lakshminarayanan, B., and Teh, Y. W. Bayesian
deep ensembles via the neural tangent kernel. arXiv
preprint arXiv:2007.05864, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026-1034,

2015.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles, 2017.

Woodworth, B., Gunasekar, S., Lee, J. D., Moroshko, E.,
Savarese, P., Golan, 1., Soudry, D., and Srebro, N. Ker-
nel and rich regimes in overparametrized models. arXiv
preprint arXiv:2002.09277, 2020.

Yang, G. and Hu, E. J. Feature learning in infinite-width
neural networks, 2021.

Yang, G. and Littwin, E. Tensor programs iib: Architectural
universality of neural tangent kernel training dynamics.
arXiv preprint arXiv:2105.03703, 2021.

A. Derivations

In the following section, we derive the first couple of steps for SGD. The main idea is to provide some intuition on how the
parametrization scheme affects the network training dynamics.

A.1. Preliminary Notes

Before diving into the derivations, we state two useful properties, which we will use in the derivations.

Activations For the identity, relu and sigmoid activations, the size of ¢’(h) is dictated by the size of the weight matrices.
The activations themselves have a ©(1) derivative.

Loss functions The derivative of the MSE loss, £ = (y — f)2,is —2(y — f). Therefore the derivative is O (k) iff f is O (k).

A.2. One-layer Network

Let us assume we have a neural network f(§) defined as

f(&) =Va(§)
z(§) = ¢(h(§))
h(&) = U¢

where, Vy 1= vg € R*"™ ~ N(0,1/n) and Uy := /nug € R"*! ug ~ N(0,1/n) are weights. We assume n denotes the
number of hidden units per layer.

Initial Distributions By initialization, Vj has variance ©(1/n) and Uy has variance ©(1). Due to the independence of
(Uo)i» ho(€) is normally distributed with a variance of ©(1). Consequentially, 2o(&) is ©(1). Finally, as V; and x; (&) are
independent, f = """ | (Vo)i(xo(£)); is approximately normally distributed with a variance of ©(1) by the central limit
theorem.

A.2.1. PARTIAL DERIVATIVES

Below, we explicitly derive the partial derivatives as they will be of use later. In our derivations, we drop the explicit
dependence on (&) to lighten notation.

df Jdx = V*

df /dV = '

df /dh = df Jdz © ¢'(h) = V' © ¢/ (h)

df Jdu = df Jdha/n€ = /nVt @ ¢ (h)€

df /d¢ = df /dx/nu = /n(V' © ¢'(h))'u

Above -t denotes the transpose operation.

A.2.2. FORWARD AND BACKWARD PASSES

In the next sections, we derive the forward and backward passes (for SGD) for the first couple of iterations. We assume
that SGD with a learning rate of 7/n° and a loss ¢ are used. For a general variable Z, the SGD update is given by
Zy = Zy_1yn~=dl/df - df /dZ, where d¢/df and df /dz are the partial derivatives of the loss ¢ with respect to the function
output f and function f with respect to the variable z. We assume a learning rate of v = 1, n~° for parameters u and n~
for parameters v. This is different from the main text, where we immediately assume ¢, = 1 and ¢,, = 0. In the derivations
below, we will show why this is necessary.

After the forward passes, we will derive the distributions of f, x, h. Our goal is to show that both f and h have ©(1) updates
(and that therefore neither explode or are unable to learn in the infinite limit).

After the backward passes, we compute the size of the updates in the parameters v, u. The backpasses allow us to see the
effect of the learning rate and initialization scheme on the parameter updates. We explicitly derive the computations until the
fourth iteration, as after this iteration the updates follow a generic form.

First forward pass The forward pass (with input ;) proceeds as normal:

hy = \/Euofl
Ty = ¢(h1)
fi=Vor1 = Z(Vo)i(l"l)i

i=0
We obtain a loss of ¢(y1, f1), where ¢ is the loss function, f; is the network output and y; is the true value.

Distributions after first forward pass We can argue that both h; and z; have roughly Gaussian co-ordinates by the
central limit theorem. h; has a variance of ©(1) (for reasoning, see “Initial Distributions” paragraph), and 1 = ¢(h;) is
O(1). Asz1is ©(1), Vy is ©(1/n), and x; and V}, are independent, f; is approximately normal with variance of ©(1) by
the central limit theorem. This is a key difference with uP , where f; is ©(1/n)

First backward pass In the backward pass, we compute the updates with Av = v — vy, where vy is the value of v at
initialization.
vy = vo —n”“(de/df) - (df /dv)
R e Y (D
up =wug —n~(dl/df) - (df /du)
=ug —n~ 01 (VnAvy © ¢'(h1)é1)
= uo, 2

where §; := d/¢/df is the derivative of the loss function at time step 1. Here we observe a key difference with “normal” a
backpass: ug is not updated because AV, = 0.

Distribution after first backward pass Assuming we use MSE, §; is ©(1) as f; is ©(1) (see “Useful Notes” in Section
A.1 for a more detailed explanation). Therefore, as 1 is (1), V; — V is ©(n~).

Second forward pass

hy = V/nuiés

= /nupé&, by Equation 2
T2 = ¢(h2)
Jo = Vixo

= Voxy —n~ “Sxixzs by Equation 1

- Z(Vo)i($2)i —n= 0y (w1)i(2):

Distribution after second forward pass hy follows almost the same distribution as hj, as u has not been updated.
Similarly, z2(§) ~ ¢(hz), which is ©(1).

Next, let’s consider the f>. Note that fo = f1 + (f2 — f1). We know the distribution of f;, and therefore focus on the update
f2 — f1. Focusing on f; — f; also makes explicit how much the function can change (and thereby “learn”) at each step. As
shown in “first forward pass”, 91 is O(1). z1 and x5 are not independent — they both rely on Uy. Let’s assume that ¢ is a
linear activation. Then E(zf{z2) = >, E((x1):i(22);) = n?61&E(ud) = n?&&(1/n+ 0) = né &' Therefore iz is
©(n). For other activations, such as ReLU, the same bound holds (see Section A.1 for further details). Therefore fo — f; is
O(n=c*1). For ©(1) updates, we need ¢, = 1. As f1 is O(1) and fo — f1 is O(n= 1), fois O(max(1,n=**1)). From
now onwards, we will use ¢, = 1 to lighten notation.

"We treat the inputs as constants and use uo ~ N (0, 1/n) in the derivation.

Second backward pass

vp = w1 —n”H(dl/df) - (df /dV)

=] — nilégxé 3)
ug = ug —n” ““dodf /du

=uy —n~“o(—vnAV, © ¢ (h2)&2)

=uy —n~h(—vn(n"6121) © ¢ (ha)&2)

=u +n 261601 © ¢/ (ha)éo “4)

Distribution by second backward pass For vy, we can follow the same logic as in the first backward pass to show the
update in vy 1= vy — vy iS G(n’l/z).

The update for u is different from before. We know that &1 is ©(1). d2 is O(1) as f» is ©(1), as shown in “Distribution
after second forward pass”. The input &5 is independent of n and therefore ©(1). 1 is ©(1). ¢'(h) is O(1). Therefore, the
update is ©(n—c~1/2).

Third forward pass

hs = \/nusés

= Vnui€s +n" 6102w © ¢'(h2)€26s by Equation 4
z3 = ¢(hs)
f3 = Vaxs

=Vizz —n *dyxbas by Equation 3

- Z (V1)i(x3)i — n™10a(a)(23):)

Distribution after third forward pass 01, d2, 21, &' (h2), &1, and & are ©(1). Therefore, the update in hg is ©(n ™).
¢y, = 0is required for h3 to have an ©(1) update.

Depending on the activation, ¢(hs) is either ©(1) (if ¢ is sigmoid/tanh) or ©(n{~+)) (if ¢ is linear/relu/identity). The
update hs — hy is O(1) (if ¢ is sigmoid/tanh) or ©(n (=) (if ¢ is linear/relu/identity). Again, if ¢, = 1, then ¢, = 0 is
required for x3 to have a ©(1) update. From now onwards, we assume c,, = 0.

The update in f,i.e. f3(£3) — f2(&3), is O(1). Let us decompose the updates in f. The left term inis), (V4);(x3);. Here,
we have updated 3, which creates a ©(1) change. Therefore the change f3 — f> due to the term), (V1);(23); due to
r3 — Ty is @(1)

Next, let us focus on the right term —n~' Y, 25:1 8;(z;)i(z3);. Specifically, consider zz3. Let us assume ¢ is linear.
Then,

n

whay = Y n(uo);éals + (Vn(uo)i€a) (5162 (ha)ats) ®)

i=1

From the forward pass, we know that d1, do, & for j = 1,2,3 are O(1). Therefore, both the first term in the sum,
S n(ug)?€als, and the second term, Y 7, (v/1(uo)i&2) (01029 (h2)&a€s) are ©(n). Therefore zhzs is ©(n) and
n~t YT 8a(z2)i(23); is ©(1). In conclusion, the update in f is O(1) if ¢, = 1,¢, = 0.

Third backward pass

V3 = Vg — n_légxg

3
= U9 — TL_l Z (5JCL'§
j=1
3
=y —n"t Z@-xﬁ-
j=1

Uz = ug — 53df/du
=up — 03v/nAVy © ¢’(h3)€

_u2+63f 251‘ @(b(hg,)f

j=2

k—1
7u0+Zn Y266 " 0525) © ¢ (b)
J

k=2 j=1

k—
=ug+n" 1/225k d;25) © &' (hi)&
J

1
k=2 =1

Distribution by third backward pass From the previous backward pass, we know the distribution of vo, which is
©(n~1). For linear activations, 3 is ©(1) and d3 is ©(1). Therefore vg — vy is O(1). ug — ug is O(n~/2).

Fourth forward pass

hy = V/nuséy
= Vnuz&y + vnlug — uz)éy

2
= Vnus&s + 53(2 0ix;) © ¢/(h3)€3§4

j=2
= fuo§4+25k Za 27)¢' (hi)€ra
Jj=
r4 = ¢(hg)
Ja=Vzzy

3
= Voxg —n~t E 5ix§x4
i=1
3

= Z (Vo)i(za)i +n7 > 65(x;)i(2a);

=1

Distribution after fourth forward pass

We focus on the effect of the update of uz — us to determine the order of the update hy — hs. We know us — us is @(nil/ 2.
Therefore v/n(us — uz)&, is ©(1). Consequentially, hy and x4 are ©(1). Next, we look at the update in f. V3 — Vo, 24 — x5
and x4 are O(1). Therefore fy — f5 = (V3 — Va)zy =D (V5 — Va);(x4); is O(1).

Fourth backward pass

vy = vz —n"tde/df - df /dV
=g —n Loyt
4
v —n "t Zéjxé
j=1

us — de/df - df /du
ug — 04/nAV3 © ¢’ (hy)y

Ug

ZU3+§4 —1/2 Z(S.’L'J @¢(h4)€

j=1
4 k—1

=g +n" I/QZak > 6i15) © ¢ (hie)éx

Jj=1

Distribution after fourth backward pass vy — v3 = n='8474. As 04,14 are O(1), the update is O(1/n). uy — ug is
Sa(n=Y2 320 6;25) © ¢/ (ha)és, which is ©(n~1/2).

A.2.3. GENERAL FORWARD/BACKWARD PASS

t-th forward pass

hy = \/ﬁut—lgt
-2
= vnu— 2ft+5t12 & (hi—1)&—1&
=1
t—1 —1
= v/nuoés + de Z &' (hi) &k
k=2 j=1
Tt = ¢(ht)
fi =Vicixe

—1 t
=Vi_owy —n" 0171y
t—1

-1 t
=Voxy —n E 0;x; Ty

S [LONEA R SEAERRER)

Distribution after t-th forward pass From the ¢ — 1th backward pass, we know u;_1 — us_o is @(n‘l/ 2). Therefore
Vn(ug—1 — ug—2)& is ©(1). Therefore, h;, and consequentially z;, are ©(1).

Next, we look at the update in f. V;_1 — Vi_o, 4 — 24—1 and x; are ©(1). Therefore f; — fi1 = Vi—1(zy — x4-1) +
(Vicizy — Vi_oxy—1) is ©(1).

t-th backward pass
Vg = Vg—1 — n715t:ct

t
-1
V9 — N E 02t
=1

ug = ug—1 — de/df - df /du
= ui—1 — 0 /nAV) | © ¢ (he)&s

= w1 +6p/n Zaxj) © ¢’ (he)&
_]—1
t k—
=ug+n""2> " 5 Z i) © ¢ (hi,) &,
k=2 J=1

Distribution by t-th backward pass In general, v; — vs_; = n~ 0wy As &,y are O(1), the update is O(1/n).
wy — ug—y is dg/n(n! 27 16;75) © ¢ (hy)&, which is ©(n~1/2).

A.2.4. PROOF GENERAL UPDATES
Proof: We can prove the form of the ¢-th update step and update sizes by induction.
Base case: We’ve shown that these updates hold for ¢ = 3, 4.

Inductive step: We assume that the claims hold for the ¢-th forward and backward pass. We need to show that, the claims
hold for the ¢ 4 1-th step.

t+1-th forward pass

hiy1 = V/nu€s o1 by network definition

= Vnug_1& + 64(Z 8§;x;)¢ (ht)€:&ry1 by t-th backward pass

t—1 k-1
= Vnuo&ep1 + Z O (Z §;25)¢ (hi)Ek€it1 by t-th backward pass
k=2 7j=1

Zi+1 = P(hiy1) by network definition
fi+1 = Vixy41 by network definition

= Vi 1w —n '6swias,) by t-th backward pass

t
= Voxi41 — nt Z 5ix§xt+1 by t-th backward pass
i=1

¢
= Z i(@eg1)i +nt Z d;(xj)i(x441); | re-writing the above equation
j=1

Distribution after t+1-th forward pass From the tth backward pass, we know u;_1 — uy_o is ©(n~'/2). Therefore
Vn(ug — up—1)& is ©(1). Therefore, hyyq, and consequentially x4, 1, are ©(1). Next, we look at the update in f.
— Vi1, @41 — @y and x4 are O(1). Therefore fr1 — fiis O(1).

t+1-th backward pass

Vip1 = vy — n" 184412441 by the definition of the network and SGD update rule
t+1
=vg—n"" Z d+x¢by the induction step
j=1
U1 = ug — dl/df - df /du by the definition of the SGD update rule
= U — Op1 \/ﬁAVtt ® ¢'(hi+1)&+1 by the update rule and the network definition

¢
= + 6 1v/n(nt Z §;2;) @ @' (hey1)Er+1by the induction step

j=1
t+1 k-l

= up +n"/? Z ék(z §;z;5) @ ¢’ (hy)Exby the induction step
k=2 j=1

Distribution by t-th backward pass In general, v; 411 — vy = n~= 0, 12441. As 811,741 are O(1) (as shown in the
forward pass), the update is ©(1/n). u; 11 — uy is 8¢ (n~'/? Z§:1 §;2j) © ¢'(hiy1)&s1, which is ©(n=1/2).

A.3. Two-layer Network

A.3.1. NETWORK AND INTIALIZATION

Setup We assume we have inputs &,y € R (i.e., the input and output are of one-dimensional). We define our network as

f(&) =V
2(€) = ¢(h(€))
h=Wz
z(§) = ¢(h(§))

h(§) =U¢

where

e V€ Rlxn’ (Vv())z ~ N(O, 1/71), W e R"”, (WO)i ~ N(O, 1/7’L)

e Up := /nug € R, (ug); ~ N(0,1/n). (ug); are updated during training.

The subscript 0 denote the values at initialization, and the subscript ¢ distinguishes between different weights at a given time
step. In general, subscript ¢ denotes the value at the ¢-th iteration. Therefore V; denotes all weights at time step ¢, and (V%);
denotes the ¢-th weight at time step ¢.

Initial Distributions By initialization, Vj has variance ©(1/n), Wy has has variance ©(1/n), and Uj has variance O(1).
Due to the independence of (Uy);, ho(§) is normally distributed with a variance of ©(1). Consequentially, 2:¢() is ©(1).

Similarly, due to the independence of (Wy);, h; = fo, where W; is the i-th row of W, is normally distributed.
Consequentially, T (&) is ©(1).

Finally, as Vj and z;(£) are independent, f = Y7, (V):Zo(€)); is approximately normally distributed with a variance of
©(1) by the central limit theorem.

A.3.2. PARTIAL DERIVATIVES

Below, we explicitly derive the partial derivatives as they will be of use later. In our derivations, we drop the explicit
dependence on (&) to lighten notation.

df /dz = V*

df JdV =z

df /dh = df /dx®¢'(h) = V' © ¢'(h)

df Jde = df /dh-df /dx = V' ® ¢'(R)W

df JdW = df /dh-df JdW = V' ® ¢'(h) !

df Jdu = df Jdh-df /d%-d% [du = /nV' © ¢/ (h)WE
df /d¢ = df Jdh-df Jdx-dx Jd¢é = /nVE© ¢ (h)Wu

Above -t denotes the transpose operation.

A.3.3. FORWARD AND BACKWARD PASSES

First forward pass

Further, we obtain a loss of ¢(y1, f1), where £ is the loss function, f; is the network output and y; is the true value.

The forward pass (with input £;) proceeds as normal:

1=Wx
%1 = ¢(hy)
}_11 = Woxy
Ty = ¢(h1)
hy = Uy

Distributions after first forward pass Using similar arguments as for the single hidden layer setting, we can argue that

hi, 1, hy, X1 and f1 have roughly Gaussian co-ordinates by the central limit theorem with variance O(1).

First backward pass In the backward pass, we compute the updates with AV =V — Vj;, where V} is the value of V at

initialization.

Vi =Vo —n=%(dt/df) - (df /dV)
=Vo—n"6 %,

wy =wo —n”“(de/df) - (df /dW)
= wy —n" 8 AVE © ¢/ (hn)a!

Wo

uy = ug —n”“(de/df) - (df /du)
=g —n “51vV/nAVE © ¢ (h)Woéy

= Uo,

(6)

(7

®)

where §; := d¢/df is the derivative of the loss function at time step 1. Here we observe a key difference with ”normal” a
backpass: wq and ug are not updated because AVy = 0.

Distribution after first backward pass

By the same reasoning as in the single layer case, Vi — Vj is ©(n ™).

Second forward pass

hy = V/nui &,

= v/nup&s by Equation 8
zy = ¢(hs)
hy = Wiz,

= Wyze by Equation 7
X = ¢(hy)
fo=Vixo

=VoXog—n" th X2 by Equation 6

- Z(Vo)i(iz)i —n= 0 (x1)i(Xe)s

Distribution after second forward pass hs, x5, ho, and X5 all have similar distributions to the first forward pass as the
weights have not been updated. Consequentially, they have a variance of ©(1).

Next, we consider f>. Vo has roughly the same distribution as before as the distribution of x5 has not changed. Therefore

we focus on n =% §; X} %5. 61 is O(1) because f; is ©(1). For simplicity, let us assume a linear activation ¢. Then

E(x] %) = ZE((il)i(iz)i)

= > B (Wo);To)i (3 (W);Uoka):)

7 J J
=& Z Z E(Wo)3.:(Uo) ;)
i g

=&122 Z Z E((Wo)?.)E((Uo)7;) by independence
i g

=&z) Y (1/n)(1) by intialization
i g

=n&1wo

Therefore the update in f is ©(n~*T1). Therefore, for f to be updated maximally (without blowing up), it must hold that
¢, = 1. From now onwards, we will use ¢, = 1 to lighten notation.

Second backward pass

V2

U2

= vy —nY(de/df) - (df /dv)

v —n 1o, ié

wy — (de/df) - (df /dw)

wi —n"wEHAVE @ ¢ (hy)ah

wy +n" 8 (n" 161 %) © ¢ (hy)ah

wy +n" w1816, % O (ha) 7l

up —n=(dl/df) - df /du

uy — n 6o /nAVE @ ¢ (he) Woks

up — " 0a/n(n"101 %) © ¢ (he) Woks
ur + 0”7 2616, %1 OF (ha) Wola

©))

(10)

(an

Distribution by second backward pass For vy, we can follow the same logic as in the first backward pass to show the
update in vy := vy — v1 is O(n~1). Next, let us consider the update of w. Previously, we have shown that 61, d5 and ¢’ (hz)
are O(1). Therefore we focus on X} x5. X1 and x5 are O(1), therefore the sum is ©(n). The update in W is ©(n~°»).

Lastly, we consider the update of u. As before, we know that 01, 2, ¢ (ha), and &3 are ©(1). Therefore, we focus on X1 Wy,
which is approximately ©(1). Therefore the update in u is ©(n =+ ~1/2).

Third forward pass
hs = Vnugts
= Vnuo&s +n" 8102 %) ©¢ (he)Woéa€s by Equation 11
r3 = ¢(h3)
hg = Wazs
= Woxs +n~ 16,0, % ®¢'(ho)x by Equation 10
X3 = ¢(hs)
f3="Vax3

2
=Vyx3— Z n- o,)‘(3— X3 by Equation 9
j=1
2

= Z(Vo)i(f%)i =) (%g)il%s)i

Jj=1

The update in A3 is ©(n ™) (as the update in u is ©(n =" —1/2) and &3 is ©(1). Therefore, for maximal feature learning we
need ¢,, = 0. Consequentially, z3 is ©(1). The update in hg is ©(n). Therefore, for maximal feature learning (without
allowing the features to blow up) we need ¢,, = 0. Consequentially, X3 is ©(1).

Excluding pathological cases (where the covariance of the updates is strongly negatively correlated, leading to variance
collapse) the update in f5 and f3 are ©(1)

Third backward pass

vs = vy —n” ' (dl/df) - (df /dV)
=y —n 103)’(g

w3 = wp — (dt/df) - (df /dW')
=wy —n~ 5AVY © ¢’ (hg)xh

2
=wy +n" % 53(2 n~ 10k %) © ¢ (hs)a
k=1

uz = ug —n~(de/df) - df /du
= Uy — N~ “63v/nAVy ® ¢’ (hs)Waks

2
=y — 0250 Smi) © ¢ (hg) Wik
k=1

Distribution by third backward pass From the previous backward pass, we know the distribution of vo, which is
©(n~1). The update in W is approximately ©(1). The update in u is approximately ©(1). The fourth passes follow a
similar trend to the third passes. We can therefore move onto the general case.

t-th forward pass

t—2
he = V/nuy—1& = /nug— o€, + 6t—1(z n 10k %y) © ¢ (hem1)Wio1&—1&
k=1
Ty = ¢(ht)
t—2)
hy = W12y = Wiy + 5t—1(z n 0 %) © ¢ (hy—1)wf_q
k=1
X = ¢(hy)
t—1 n —1
fe=VicaXe = Vox, — ancv(;j >_(§ Xt = Z(‘/O)i()_(t)i - Zn715j(>_(j)i(>_<t)i
j=1 i=1 j=1

t-th backward pass

v = vy —n” (de/df) - (df /dV')
= —n Lo X
wy = w1 — (d/df) - (df /dW)
= w1 — G AV, © ¢ (b))
t—1

= w1 + (5t(z n'0p %) © ¢ (he)wl
k=1
up = ug—1 — (de/df) - df /du
= w1 — 6/nAVL L © ¢ (hy—1) W1 &y
t—1
= U1 — n_1/2(5t(z n ' 0p k) © ¢ (he—1)Wis1&
k=1

B. Experiment Details

We train MLP classifiers on MNIST, with three layers of widths (n, n, 10), with activations (relu, relu, softmax). We train
the models using SGD (with batch size 64) and cross-entropy loss. We use early stopping and train for at most 300 epochs.
For ensembles, we use seeds 0 — 9.

We perform a grid search over models of width 64 for the hyper-parameters -y, the learning rates (one general learning
rate, and one specifically for the last layer), and o = 1, ap], constants which we multiply the first and last layer by (as in
Yang & Hu (2021)). We consider «y in 2[=5=4-»=1.0.1.-5] and ¢ in 21-6,73,0,3,6.12] 'We split the training set into a 80 — 20
partition (with seed 0 in Pytorch) to create a validation set. We train all validations set models for 25 epochs. The final
hyper-parameters are given in Table 1. Due to computational constraints, we use the hyper-parameters found for width 64
for larger width models.

Table 1. Hyper-parameters for different initializations

HYPERPARAMETER SP uP OURS
v [2.0,2.0] [0.03125,0.03125] [0.25,0.03125]
o [0.03125,32] 8.0, 64.0] [512,0.125]

Figure 1 shows the average accuracy of the models. The training of our parametrization is unstable as can be seen by the
high variance, and we plan to further investigate this. Nevertheless, for most larger widths, the performances do not differ
significantly.

Test Accuracy

— Ours
—_— P

& 7 8 3 10 1 12
Width (logzin))

Figure 1. Average test accuracy of the networks of varying widths and parametrizations.

Feature Learning For the feature learning experiments, we apply principal component analysis (with whitening) to the
features (i.e., outputs of the penultimate layer). Next, we embed the features using the top 15 features and use them as inputs
to a logistic regression. For both, we use scikit-learn with default settings. We created a 4500,/500 train/test split on the test
dataset for the logistic regression.

Uncertainty For the uncertainty experiments, we estimate the predictive entropy as in Smith & Gal (2018). We measure the
average in-distribution (i.e. on the MNIST test set) predictive entropy and the average out-of-distribution entropy (i.e., on
FashionMNIST test set) and plot the difference across various different widths.

References

Smith, L. and Gal, Y. Understanding measures of uncertainty for adversarial example detection, 2018.

Yang, G. and Hu, E. J. Feature learning in infinite-width neural networks, 2021.

