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Abstract
Out-of-distribution (OOD) detection, i.e., identi-
fying whether a given test sample is drawn from
outside the training distribution, is essential for
a deep classifier to be deployed in a real-world
application. The existing state-of-the-art methods
of OOD detection tackle this issue by utilizing
the internal feature of the classification network.
However, we found that such detection methods
inherently struggle to detect hard OOD images,
i.e., drawn near from the training distribution: a
naive softmax-based baseline even outperforms
them. Motivated by this, we propose a simple yet
effective training scheme for further calibrating
the softmax probability of a classifier to achieve
high OOD detection performance under both hard
and easy scenarios. In particular, we suggest to
optimize a consistency regularization loss dur-
ing training, which injects a strong inductive bias
by forcing the network prediction to be consis-
tent over data augmentations. Our experiments
demonstrate the superiority of our simple method
under various OOD detection scenarios.

1. Introduction
Deep neural networks (DNNs) have demonstrated remark-
able performance on many classification tasks such as image
classification (Girshick, 2015), medical diagnosis (Caruana
et al., 2015), and video prediction (Villegas et al., 2017).
However, it is widely known that well trained deep classi-
fiers are often overconfident even for novel examples, un-
seen during training (Guo et al., 2017). This can become
a serious problem when deployed in real-world systems
(Yampolskiy and Spellchecker, 2016).

Given a DNN classifier, the conventional way for out-of-
distribution (OOD) detection is to detect sample with a low
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prediction confidence, i.e., the maximum softmax proba-
bility among classes (Hendrycks and Gimpel, 2017; Liang
et al., 2018). Recently, more advanced OOD detection
methods (Lee et al., 2018; Sastry and Oore, 2020) design a
detection score using the information of internal layers and
claim that can achieve near-optimal detection rates.

Contribution. We first found that the existing state-of-the-
art methods utilizing internal layers perform poorly on hard
OOD datasets, i.e., drawn near from the in-distribution: they
perform even worse than the conventional method that uses
the softmax probability. This is because such hard OOD
samples are not clearly separable in the internal layers as
they use similar (low-level) features with the in-distribution
samples. Instead, the softmax probability is rather more
informative to detect them, as it captures the most discrimi-
native structural (high-level) information. This motivates us
to revisit the question, how to calibrate the softmax proba-
bility of a deep classifier for improved OOD detection.

In this paper, we suggest to optimize a simple auxiliary
consistency regularization term during training for a better
calibrated softmax probability for OOD detection. To be
specific, the regularization scheme forces the network to
predict the consistent softmax probability over data aug-
mentations. Intuitively, such regularization injects a strong
inductive bias to the model itself, hence, learns a more in-
formative softmax probability. We show that such inductive
bias lead to a improved calibration for OOD detection. To
further utilize the effect of our training scheme, we also
consider a test-time augmentation scheme for the inference.
Finally, we show that our method can be further enhanced
using a broader class of augmentations, e.g., rotation, whose
predictions are not necessarily consistent.

We verify the efficacy of our method under various envi-
ronments of detecting OOD on CIFAR-10/100 (Krizhevsky
et al., 2009) and CUB-200 (Wah et al., 2011). Overall, our
method achieves high performance for all tested datasets
and especially shows robust results in hard OOD detection
scenarios. In particular, our method improves the AUROC,
compared to the baseline: 86.36% to 92.97% on CIFAR-10,
when CIFAR-100 is considered as OOD. We also demon-
strate that our method improves the expected calibration er-
ror (ECE) (Guo et al., 2017), compared to the cross-entropy
training by 20.35% to 6.78% on CUB-200.
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(a) Internal: easy OOD (b) Internal: hard OOD (c) Penultimate: easy OOD (d) Penultimate: hard OOD

Figure 1. The t-SNE visualization of the internal (residual block 2) and penultimate feature of ResNet-34 pre-trained on CIFAR-10.
SVHN, resized LSUN and ImageNet are used as easy OODs, and CIFAR-100, fixed version of LSUN and ImageNet are used as hard
OODs. ∗ denotes the fixed version dataset.

Table 1. AUROC (%) of ResNet-18 trained on one-class remove CIFAR-10: samples from the given class are considered as OOD, while
the remaining samples of the nine classes are considered for training (in-distribution). "Inter." denotes the methods that utilize the internal
feature of the network. "Ours" indicates the network trained on our objective (5), and tested with the proposed inference method (6). The
final column indicates the mean AUROC across all the classes and the bold denotes results within 1% from the highest result.

Method Inter. Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean

Baseline (Hendrycks and Gimpel, 2017) - 86.53 74.67 87.70 85.76 89.01 77.60 88.30 85.92 78.18 82.86 83.65
Mahalanobis (Lee et al., 2018) 3 72.00 58.13 65.19 61.24 51.99 57.57 54.50 57.78 49.54 43.60 57.15
Gram matrix (Sastry and Oore, 2020) 3 78.28 62.63 73.04 65.77 72.31 57.68 69.27 62.39 63.06 55.65 66.01

Ours - 91.57 75.10 94.09 90.68 93.94 85.16 94.15 87.67 89.40 82.24 88.40

2. Towards better OOD benchmarks
In this section, we point out that existing state-of-the-art
methods (Lee et al., 2018; Sastry and Oore, 2020) in out-
of-distribution (OOD) detection do not generalize well on
detecting hard OOD datasets and show that the cause lies in
their usages of the internal layer of the network.

2.1. Easy and hard OOD datasets

At a high level, we denote easy OOD as a sufficiently far
away distribution from the training distribution, while hard
OOD is not1.We remark that detecting hard OOD is an
important and essential component for a real-world deploy-
ment. To this end, we propose a new hard OOD detection
scenario coined "one-class remove CIFAR-10" which has
never explored in the literature. In this setup, a given class
labeled samples of CIFAR-10 (Krizhevsky et al., 2009) be-
comes the OOD dataset, and samples with the remaining
nine classes are used as training or in-distribution.

As shown in the Table 1, one can observe that the state-of-
the-art methods (Lee et al., 2018; Sastry and Oore, 2020)
show poor performance in all cases, while the simple base-
line with maximum softmax probability (Hendrycks and
Gimpel, 2017) significantly and consistently outperforms
the others. This motivates us take a closer look at the issue:
the recent methods commonly utilize the ensembles of the
internal layer feature for OOD detection.

1Tack et al. (2020) demonstrated that such easy OOD can be
detected with simple statistics, i.e., without deep networks.

2.2. Analysis of the internal representation

To analyze the internal layer of the network, we visualize
the data representation with t-SNE. We select CIFAR-10 as
in-distribution and train ResNet-34 (He et al., 2016) with
standard cross-entropy loss. Then we choose SVHN (Netzer
et al., 2011), resized LSUN, and ImageNet (Liang et al.,
2018) as easy OOD where such datasets are known to be
easily detected with simple statistics (Tack et al., 2020). For
hard OOD, we use CIFAR-100 (Krizhevsky et al., 2009),
fixed versions of LSUN, and ImageNet (Tack et al., 2020).

One can observe that easy OOD datasets are clearly sepa-
rated with in-distribution datasets while hard OOD are still
entangled in the internal layer (see Figure 1a, 1b). This
observation aligns with our claim that the internal layer
cannot capture the difference between hard OOD and in-
distribution, as they are naturally expected to have similar
low-level features. Meanwhile, both easy and hard OOD are
separated well from the in-distribution in the penultimate
layer of the network (see Figure 1c, 1d), as it captures the
most discriminative structural (high-level) information. We
also support the claim with quantitative measurement of
in-and-out distribution separation (see Appendix C).

3. Consistency regularization for training
confidence-calibrated classifiers

We consider a classification task with K classes dataset
D = {(xm, ym)}Mm=1 ⊆ X × Y where x ∈ Rd represents
an input sampled from a certain data-generating distribution
P in an i.i.d. manner, and Y := {1, . . . ,K} represents a set
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of possible class labels. Let pθ : Rd → ∆K−1 be a neural
network modeled to output a probability simplex ∆K−1 ∈
RK , e.g., via a softmax layer. The goal of our work is to train
a classifier with better calibrated softmax probability for
out-of-distribution (OOD) detection i.e., for a given OOD
sample xout, the classifier shows high entropy than the in-
distribution sample xin ∼ P , H(pθ(xout)) > H(pθ(xin))
where H is the entropy of the probability; H(pθ(x)) :=

−
∑K
i=1 p

(i)(x) log(p(i)(x)) where p(i)(x) is the prediction
probability for class i.

3.1. Training: consistency regularization

We suggest to optimize a simple auxiliary consistency reg-
ularization during training to improve the calibration of a
deep classifier for a better OOD detection. Specifically, the
proposed term forces the predictive distributions of data
augmentations to be consistent. While such regularization
is commonly used in other different domains, e.g., training
GANs (Zhang et al., 2020) or semi-supervised learning (Xie
et al., 2020), it is still unknown whether such regularization
will be is useful for OOD detection, which we essentially
investigate in this paper. Our intuition is that the model
learns more informative softmax probability, hence, leads
to improved calibration for OOD detection.

We simply adapt one of the most commonly used consis-
tency regularization scheme (Xie et al., 2020) which utilizes
a weak and strong augmentation set, i.e., Tweak and Tstrong,
where strong augmentation are likely to shift the input distri-
bution. For a given labeled input (x, y) ∼ D, and randomly
sampled augmentation Tw ∼ Tweak, Ts ∼ Tstrong, the regu-
larization loss is as follows:

Lcon(x) := KL
(
pθ̃
(
Tw(x)

)
‖ pθ

(
Ts(x)

))
, (1)

where KL denotes the Kullback-Leibler (KL) divergence,
and θ̃ is a fixed copy of parameter θ. Note that we do not
consider advanced techniques from (Xie et al., 2020), e.g.,
loss scheduling, for the simplicity.

3.2. Inference: Augment-Entropy

We find one can further the softmax probability calibration
of the network by ensembling it over random augmentation
T (x) where T ∼ T ; we denote such technique as Augment-
Entropy. Concretely, for a given test input x and a pre-
trained classifier θ, we calculate the following score:

saug−ent(x) := H
(
ET∼T

[
pθ
(
T (x)

)])
, (2)

where T is a pre-defined augmentation family, and H is
the entropy function. We approximate the proposed score
(2) via Monte Carlo integration with n randomly sampled
augmentations from T . See the details of augmentation
policy and sampling number in Appendix A.

3.3. Extension: distribution augment

One can further enhance the model calibration by adapting
broader class of data augmentations, e.g., rotation, whose
predictions are not necessarily consistent. We denote such
augmentation as distribution augment (Jun et al., 2020)
which consist of S different transformation including iden-
ity I , i.e., Tdist := {T 0

d = I, T 1
d , . . . , T

S−1
d }. We sug-

gest to use distribution augment in two aspects, (a) for self-
supervised learning (Hendrycks et al., 2019) and (b) as an
unlabeled training sample. While self-supervised learning
is previously investigated as an effective approach for im-
proving OOD detection, we believe rethinking distribution
augment as an unlabeled sample is an interesting direction:
it is known to be harmful when the distribution augmented
sample is forced as the original label (Lee et al., 2020).

For a given input (x, y) ∼ D, and a distribution augment
Tdist, the goal of self-supervised loss is to classify the ap-
plied augmentation Td ∈ Tdist of the given sample. For the
auxiliary loss of unlabeled distribution augment (i.e., the
unlabeled loss), we utilize Lcon (1). Namely, for a distribu-
tion augment prediction classifier pd: which shares the same
penultimate feature with pθ, and standard cross-entropy LCE,
the self-supervised loss and unlabeled loss as follow:

Lself(x) :=
1

S

∑
Td∈Tdist

LCE
(
pd
(
Td(x)

)
, Td

)
, (3)

Lunlabel(x) :=
1

S − 1

∑
Td∈Tdist\{I}

Lcon
(
Td(x)

)
. (4)

Overall objective. Finally, the final objective of the ex-
tended version of our proposed method can be defined by
simply combining the defined objectives (1), (3), (4) with
the standard cross-entropy loss:

Lfinal(x, y) :=LCE(x, y) + Lcon(x)

+ Lself(x) + Lunlabel(x)
(5)

Overall inference score. We simply adapt the self super-
vised loss (3) as an additional detection score along with the
Augment-Entropy (2). Namely, the new inference score is:

sfinal(x) := saug−ent(x) + Lself(x). (6)

4. Experiments
We verify the efficacy of our method under various envi-
ronments of detecting out-of-distribution (OOD) on CUB-
200 (Wah et al., 2011) (see Appendix D for CIFAR-10/100
(Krizhevsky et al., 2009) results). For the evaluation, we
mainly report the area under the receiver operating character-
istic curve (AUROC) as a threshold-free evaluation metric
for a detection score, and the expected calibration error
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Table 2. AUROC (%) of ResNet-18 trained on CUB-200. Here, we consider various hard OOD detection scenarios. "CE" denote the
cross-entropy. The final column indicates the mean AUROC across all the OOD datasets and the bold denotes the best results.

CUB-200→
Train Inference Food-101 Caltech-256 MIT-67 Places-365 Dogs Mean

CE Baseline (Hendrycks and Gimpel, 2017) 72.71 73.41 75.16 75.03 75.09 74.28
CE ODIN (Liang et al., 2018) 79.80 79.95 82.47 81.99 79.58 80.76
CE Mahalanobis (Lee et al., 2018) 84.20 81.24 78.70 76.36 62.32 76.56
CE Gram matrix (Sastry and Oore, 2020) 81.04 81.74 74.64 74.00 72.15 76.71

CSI (Tack et al., 2020) Baseline (Hendrycks and Gimpel, 2017) 75.99 76.81 84.45 81.22 69.09 77.51
CSI (Tack et al., 2020) CSI-ens (Tack et al., 2020) 82.33 82.84 92.97 89.64 76.34 84.82

Ours, Lfinal (5) Ours, sfinal (6) 97.12 96.45 97.98 97.01 97.38 97.19

Table 3. ECE (%) of ResNet-18/34 trained on CIFAR-10 and CUB-
200, respectively. Parentheses indicate the relative rate of ECE
from the cross-entropy (CE), and bold denotes the best results.

Train method\ dataset CIFAR-10 CUB-200

CE 3.64 20.35
CE + Self-sup (3) 2.65 17.49
CSI (Tack et al., 2020) 2.37 26.21

Ours, Lfinal (5) 1.51 (-58.51%) 6.78 (-66.68%)

(ECE) (Naeini et al., 2015). Here, ECE estimates whether a
classifier can indicate when they are likely to be incorrect
for test samples (from in-distribution) by measuring the dif-
ference between prediction confidence and accuracy. The
formal description of the metrics can be found in Appendix
A. Overall, our results clearly demonstrate that consistency
regularization for classifiers improves the performance of
detecting hard OOD samples and shows significant improve-
ment of the confidence calibration in all tested datasets. We
also perform an ablation study in Appendix E.

We consider inference baselines, including, baseline
(Hendrycks and Gimpel, 2017), ODIN (Liang et al., 2018),
Mahalnobis (Lee et al., 2018), and Gram-matrix (Sastry
and Oore, 2020). For training baselines, we consider self-
supervised learning (Hendrycks et al., 2019), and CSI (Tack
et al., 2020). See Appendix B for detailed descriptions.

For augmentation policy, we use Inception crop (Szegedy
et al., 2015), horizontal flip for the weak augmentation
Tweak and RandAugment (Cubuk et al., 2019) for the strong
augmentation Tstrong by following (Xie et al., 2020). For
distribution augment Tdist, we use random rotation of
0°, 90°, 180°, 270°, by following (Hendrycks et al., 2019).
See Appendix A for details of training and evaluation.

4.1. Main results

Fine-grained classification. We consider CUB-200 (Wah
et al., 2011) as in-distribution while the following datasets
are used as out-of-distribution: Food-101 (Bossard et al.,
2014), Caltech-256 (Griffin et al., 2007), MIT-67 (Quattoni
and Torralba, 2009), and Dogs (Khosla et al., 2011). Overall,

our proposed method significantly outperforms prior meth-
ods in all datasets tested as shown in Table 2. We remark
that consistency regularization significantly and consistently
improves the performance of OOD detection. Interestingly,
one can observe that the state-of-the-art method CSI is not
effective in this scenario. We conjecture that the contrastive
learning performance is sensitive to the data augmentation
policy and should use the suitable policy for each dataset:
the proposed policy from CSI fails to generalize in the cur-
rent setup. On the other hand, our method performs well,
even in the fine-grained datasets. We also observed that our
method shows comparable performance with CSI on CIFAR
datasets while it has significantly low training cost campare
to CSI (see Appendix D).

Calibration. We demonstrate the effectiveness of our
method on the calibration performance under various image
classification datasets: CIFAR-10, and CUB-200 (see Ap-
pendix D for CIFAR-100 results). As shown in Table 3, the
proposed consistency regularization significantly and con-
sistently improves the confidence calibration. We note that
the proposed method is specialized for calibration compared
to other baselines. Moreover, we observed that our method
also increase the classification accuracy which is somewhat
interesting (see Appendix D). In the ablation study, we find
that consistency regularization loss (1) and self-supervised
loss (3) is effective for improving both classification accu-
racy and calibration, while unlabeled loss (4) is specialized
for improving the calibration (see Appendix E).

5. Conclusion
In this paper, we show that the existing OOD detection
methods that are using the internal feature of the network
perform poorly for hard OOD images. Motivated by this,
we propose a simple yet effective training scheme for better
OOD detection and network calibration. We evaluate our
methods under various scenarios and show that our proposed
method is robust for easy and hard OOD datasets. Due to the
simplicity of our method, we think it could enjoy a broader
usage under various applications in the future.
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Appendix
Consistency Regularization for Training Confidence-Calibrated Classifiers

A. Experimental details
Models and data augmentations. We use ResNet-18 and ResNet-34 (He et al., 2016) architecture for all experiments in
our paper. For weak augmentation, we use random crop with padding, horizontal flip in standard classification, and Inception
crop (Szegedy et al., 2015), horizontal flip in fine-grained classification. For all datasets, we use RandAugment (Cubuk et al.,
2019) and Cutout (DeVries and Taylor, 2017) additionally for a strong augmentation by following (Berthelot et al., 2020).

Training detail. For CIFAR-10 and CIFAR-100 image classification, we train the model for 200 epochs with batch size
128, using stochastic gradient descent with momentum 0.9 and weight decay with 0.0001. The learning rate starts at 0.1 and
is dropped by a factor of 10 at 50%, and 75%, of the training progress. For the fine-grained dataset, we follow the same
training process expect with a batch size of 32, due to the smaller number of training samples.

Inference detail. Unless otherwise noted, we set the sampling number n = 4 for the Augment-Entropy approximation. For
the data augmentation family T for equation (2), we choose random crop with horizontal flip.

Dataset details. For in-distribution datasets, we consider CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky
et al., 2009), and CUB-200 (Wah et al., 2011). CIFAR-10 and CIFAR-100 consist of 50,000 training and 10,000 test images
with 10 and 100 image classes, respectively. CUB-200 contains 200 species (classes) of birds, each with roughly 30 training
images (total 5,994) and 30 testing images (total 5,794).

For CIFAR datasets, the out-of-distribution (OOD) datasets are as follows: SVHN (Netzer et al., 2011) consists of 26,032
test images with 10 digits, resized LSUN (Liang et al., 2018) consists of 10,000 test images of 10 different scenes, resized
ImageNet (Liang et al., 2018) consists of 10,000 test images with 200 images classes from a subset of full ImageNet
dataset, fixed version of LSUN∗ (Tack et al., 2020)2 consists of 10,000 test images of 10 different scenes, fixed version
of ImageNet∗(Tack et al., 2020) consists of 10,000 test images with 30 images classes from a subset of full ImageNet
dataset, Food-101 (Bossard et al., 2014) consists of 101 food categories with 101,000 images, Caltech-256 (Griffin et al.,
2007) consists of object categories containing a total of 30,607 images, and MIT-67 (Quattoni and Torralba, 2009) consists
of 67 Indoor categories, and a total of 15,620 images. We resized the high images into 32 by 32 resolution by using the
correct resizing operation torchvision.transforms.Resize() by following (Tack et al., 2020), and center crop;
Food-101, Caltech-256, and MIT-67 are high-resolution datasets.

For CUB-200 dataset, the considered out-of-distribution datasets are as follows: Food-101, Caltech-256, MIT-67, Places-365
(Zhou et al., 2017) with small images (256 * 256) validation set contains 36,500 images of scene categories, and Stanford
Dogs (Khosla et al., 2011) which consists 120 classes, and a total of 20,580 images.

Evaluation metrics. For evaluation, we measure the two metrics that each measures (a) the effectiveness of the proposed
score in distinguishing in- and out-of-distribution images, (b) the confidence calibration of softmax classifier.

• Area under the receiver operating characteristic curve (AUROC). Let TP, TN, FP, and FN denote true positive,
true negative, false positive and false negative, respectively. The ROC curve is a graph plotting true positive rate = TP /
(TP+FN) against the false positive rate = FP / (FP+TN) by varying a threshold.

• Expected calibration error (ECE). For a given test data {(xn, yn)}Nn=1, we group the predictions into M interval
bins (each of size 1/M ). Let Bm be the set of indices of samples whose prediction confidence falls into the interval
(m−1M , mM ]. Then, the expected calibration error (ECE) (Naeini et al., 2015; Guo et al., 2017) is follows:

ECE =

M∑
m=1

|Bm|
N
|acc(Bm)− conf(Bm)|, (7)

where acc(Bm) is accuracy of Bm: acc(Bm) = 1
|Bm|

∑
i∈Bm

1{yi=argmaxj p(j)(xi)} where 1 is indicator function and
conf(Bm) is confidence of Bm: conf(Bm) = 1

|Bm|
∑
i∈Bm

q(xi) where q(xi) is the confidence of data xi. For all
experiments, we set the number of bins to 20 i.e., M = 20.

2use PyTorch torchvision.transforms.Resize() operation for correct resizing.
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B. Baselines
Inference methods. we review the baseline inference methods of the out-of-distribution (OOD) detection, i.e., baseline
(Hendrycks and Gimpel, 2017), ODIN (Liang et al., 2018), Mahalanobis (Lee et al., 2018) and Gram matrix (Sastry and
Oore, 2020). Then we show that the detection through the Gram matrix is sensitive to hyperparameter choices in some cases.

The goal of the inference method is to design a score function s upon the pre-trained classifier pθ, so that the score of the
in-distribution sample xin is higher than the score of the OOD sample xout, i.e.s(xin) > s(xout). Some of the inference
methods require an OOD validation set for the hyperparameter selection; however, we do not assume an OOD validation
set is available at test-time. We note that such assumption is not a realistic detection scenario (see Appendix F for a more
comprehensive discussion). The following is the definition of each score function and how to select hyperparameters without
any OOD validation set.

• Baseline (Hendrycks and Gimpel, 2017). They use a maximum value of softmax probablity as a score function. For
a given input x the score s is as follows: s(x) := maxi p

(i)
θ (x) where p(i)θ (x) := exp(gi(x))∑

j exp(gj(x)))
is the prediction

probability of the class i of a pre-trained classifier pθ, and gi is the logit value of the class i.

• ODIN (Liang et al., 2018). They first utilize temperature scaling (at the softmax layer) and input perturbations,
then use the baseline score. For a given input x, temperature T , and input perturbation scale ε, the score s is as
follows: s(x) := maxi p̂

(i)
θ (x̂) where p̂(i)θ (x) := exp(gi(x)/T )∑

j exp(gj(x)/T )) , and x̂ = x− εsign(−∇x log maxi p̂
(i)
θ (x)). For all

experiments, we fix the hyperparameter values; T = 1000, and ε = 0.0012 by following the author’s suggestion.

• Mahalanobis (Lee et al., 2018). They compute the Mahalanobis distance between test sample’s feature representations
and the class-conditional Gaussian distribution at each layer, then they represent each sample as a vector of the
Mahalanobis distances. Here, we assume to have weights of each layer’s contribution αl, and the mean and covariance
of the Gaussian distribution µ̂l,i, Σ̂l where l, i denotes the index of the layer and the class, respectively (assume
that the covariance is the same for all classes). Then the detection score is as follows: s(x) :=

∑
l αlMl where

Ml = maxi−(fl(x) − µ̂l,i)T Σ̂−1l (fl(x) − µ̂l,i), and fl is the internal layer activation of index l. In this paper, we
assume uniform ensemble of each layer, i.e., the contribution of the layers are equal ∀l, αl = 1.

• Gram matrix (Sastry and Oore, 2020). The high-level idea of Gram matrices is to identify inconsistency between
activity patterns and predicted class. They detect anomalies in the Gram matrices by comparing each value with
its respective range observed over the training data. In the paper, they introduce p-th order Gram matrix: Gpl =(
fpl f

p
l
>
)1/p

where fl denotes the l-th layer activation for given input x (see the paper for the details). To achieve
the final detection score, they compute the p-th order detection score over all p ∈ P . Following the paper, we set
P = {1, . . . , 10} for CIFAR datasets. For CUB-200 dataset, we set the hyperparameter as P = {1}.

Hyperparameter sensitivity of the Gram matrix. We observed that the Gram matrix also requires hyperparameter
selection, which is highly sensitive in some cases3. As shown in Table 4, the Gram matrix fails to detect OOD samples (i.e.,
AUROC lower than 50, which is a random guess) with the recommended hyperparameter (i.e., P = {1, . . . , 10}), when
CUB-200 is in-distribution. Note that it is an opposite observation from (Sastry and Oore, 2020) which have shown better
performance on P = {1, . . . , 10}. We therefore simply fix P = {1}, for CUB-200 experiments.

Table 4. AUROC (%) based on the hyperparameter selection of the Gram matrix. We use ResNet-18 trained on CUB-200 with standard
cross-entropy loss. The final column indicates the mean AUROC across all OOD datasets.

CUB-200 →
Hyperparameter Food-101 Caltech-256 MIT-67 Places-365 Dogs Mean

P = {1} 81.04 81.74 74.64 74.00 72.15 76.71
P = {1, . . . , 9} 32.27 32.42 30.55 30.47 31.00 31.34
P = {1, . . . , 10} 0.00 0.00 0.00 0.00 0.00 0.00

Training methods. We consider two recent advanced training methods, including self-supervised learning (Hendrycks
et al., 2019), and CSI (Tack et al., 2020). Self-supervised learning method train to classify the applied augmentation of a
given input (3), then use the same objective as a detection score. CSI further utilize the self-supervision for OOD detection
by adapting the recent advanced self-supervised contrastive learning (Chen et al., 2020).

3We use the official implementation from https://github.com/VectorInstitute/gram-ood-detection

https://github.com/VectorInstitute/gram-ood-detection
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C. More discussion on out-of-distribution benchmarks

(a) Easy OOD detection result (b) Hard OOD detection result

Figure 2. AUROC (%) of the logistic regression trained upon each residual block (i.e., internal representation) of the ResNet-34. ResNet-34
is pre-trained on CIFAR-10, and for logistic regression training, we use in-and-out distribution validation sets. ∗ denotes the fixed version
dataset (i.e., hard OOD dataset), and "Res-Block i" indicates the i-th residual block of the ResNet.

(a) Easy OOD: Res-Block 1 (b) Easy OOD: Res-Block 2 (c) Easy OOD: Res-Block 3 (d) Easy OOD: Res-Block 4

(e) Hard OOD: Res-Block 1 (f) Hard OOD: Res-Block 2 (g) Hard OOD: Res-Block 3 (h) Hard OOD: Res-Block 4

Figure 3. The t-SNE visualization at each residual block (i.e., internal representation) of the ResNet-34, which is pre-trained on CIFAR-10.
SVHN, resized LSUN and ImageNet are used as easy OOD, while CIFAR-100, fixed version of LSUN and ImageNet are used as hard
OOD. ∗ denotes the fixed version dataset (i.e., hard OOD dataset), and "Res-Block i" indicates the i-th residual block of the ResNet.

In this section, we provide quantitative results and more visualization that supports our hypothesis in Section 2; easy
out-of-distribution (OOD) datasets are well separated in the internal layer, while hard OOD datasets are not. To this end, we
suggest to measure the separation of the in-and-out distributions by training a logistic regression to classify two distributions,
on the internal represention of the classifier. Intuitively, if two distributions are well separated, then the logistic regression
will achieves high classification performance. To train the regression model, we use 1,000 in-and-out distribution validation
samples and evaluate on the remaining test set as a measurement of separation (we use AUROC).

For a given validation set Xin,Xout, we extract the feature map of the i-th residual block fi as follows: Diinter :=
{(fi(xin), 1)|xin ∈ Xin}

⋃
{(fi(xout), 0)|xout ∈ Xout}. Then for a given (fi(x), y) ∼ Diinter, we train the logistic

regression pφ with the following loss: LBCE(pφ(fi(x)), y) where LBCE is a binary cross-entropy loss. At the inference time,
for a given test sample x, we directly use the prediction of the regression model as the detection score: s(x) := pφ(fi(x)).
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As shown in Figure 2, easy OOD samples are well separated across the entire layer, while hard OOD samples are better
separated from the penultimate layer. This result supports our assumption in Section 2; some recent methodologies fail to
detect hard OOD due to the internal layer usage. We also provide t-SNE visualization of OOD datasets across all residual
blocks in Figure 3, which show a consistent observation.

D. More experimental results
Standard classification. We also consider the standard classification setup: we assume that in-distribution samples are
from a specific multi-class dataset and train a classifier, then test on various external datasets as out-of-distribution. In
addition to the the conventional OOD detection setup (Liang et al., 2018; Lee et al., 2018); where CIFAR-10 (Krizhevsky
et al., 2009) is in-distribution dataset while SVHN (Netzer et al., 2011), resized LSUN and ImageNet (Liang et al., 2018)
are out-of-distribution, we additionally consider the following hard OOD datasets: CIFAR-100, and fixed LSUN∗ and
ImageNet∗ (Tack et al., 2020), Food-101 (Bossard et al., 2014), Caltech-256 (Griffin et al., 2007), and MIT-67 (Quattoni
and Torralba, 2009). Note that we followed the same resizing operation as Tack et al. (2020) for high resolution datasets to
avoid generating easy OOD datasets.

The results in Table 5 support our belief that the state-of-the-art inference methods that utilize the internal feature of the
deep network (e.g., Mahalanobis and Gram matrix) do not generalize in detecting hard OOD datasets (e.g., LSUN∗). On
the other hand, our proposed method significantly outperforms the above inference methods in hard OOD detection while
achieving comparable results in easy OOD detection. By combining our method with auxiliary self-supervised loss, we
achieve comparable results to CSI, which is known to be one of the most strong baselines, while the training computation is
much efficient (73.33% less training time4).

Table 5. AUROC (%) of ResNet-34 trained on CIFAR-10, and CIFAR-100. Here, we consider various easy and hard OOD detection
scenarios. "CE", "Inter.", "HParam.", and "Cost." denote the cross-entropy, methods that utilize the internal feature of the network,
methods that require hyperparameters, and the relative training cost compare to the standard cross-entropy training, respectively. The
datasets with ∗ indicate the fixed version (i.e.hard OOD). The final column indicates the mean AUROC across all the OOD datasets and
the bold denotes results within 1% from the highest result.

(a) ResNet-34 trained on CIFAR-10 / CIFAR-100 and tested under various easy OOD datasets.

CIFAR-10→ CIFAR-100→
Train Inference Inter. HParam. Cost. SVHN LSUN ImageNet SVHN LSUN ImageNet

CE Baseline (Hendrycks and Gimpel, 2017) - - ×1 88.03 87.45 84.58 85.17 71.51 71.82
CE ODIN (Liang et al., 2018) - 3 ×1 76.09 89.20 83.37 89.65 78.49 77.76
CE Mahalanobis (Lee et al., 2018) 3 3 ×1 94.98 96.74 96.35 85.33 95.22 95.24
CE Gram matrix (Sastry and Oore, 2020) 3 3 ×1 99.41 98.85 98.22 96.97 95.79 95.12

CSI (Tack et al., 2020) Baseline (Hendrycks and Gimpel, 2017) - - ×30 98.07 97.69 97.61 86.25 86.13 84.85
CSI (Tack et al., 2020) CSI-ens (Tack et al., 2020) - - ×30 98.97 98.68 98.56 88.70 88.71 87.13

CE + Self-sup (3) Augment-Entropy (2) + Self-sup (3) - - ×4 98.64 94.99 94.48 94.12 90.90 92.09
CE + Consistency (1) Augment-Entropy (2) - - ×2 97.15 96.74 95.73 86.23 84.95 84.46
Final (5) Augment-Entropy (2) + Self-sup (3) - - ×8 98.80 96.66 97.22 95.34 90.60 92.22

(b) ResNet-34 trained on CIFAR-10 and tested under various hard OOD datasets.

CIFAR-10→
Train Inference Inter. HParam. Cost. LSUN∗ ImageNet∗ CIFAR-100 Food-101 Caltech-256 MIT-67 Mean

CE Baseline (Hendrycks and Gimpel, 2017) - - ×1 89.73 88.29 86.36 86.56 85.75 89.62 87.72
CE ODIN (Liang et al., 2018) - 3 ×1 85.55 81.00 76.94 76.65 80.76 85.71 81.10
CE Mahalanobis (Lee et al., 2018) 3 3 ×1 77.76 81.74 78.74 85.76 82.67 81.41 81.35
CE Gram matrix (Sastry and Oore, 2020) 3 3 ×1 76.81 77.70 73.75 73.05 78.44 78.79 76.42

CSI (Tack et al., 2020) Baseline (Hendrycks and Gimpel, 2017) - - ×30 94.81 95.22 92.67 95.63 92.18 96.29 94.47
CSI (Tack et al., 2020) CSI-ens (Tack et al., 2020) - - ×30 95.78 96.26 93.91 96.52 93.27 97.09 95.47

CE + Self-sup (3) Augment-Entropy (2) + Self-sup (3) - - ×4 86.32 89.13 85.06 93.83 87.11 91.25 88.78
CE + Consistency (1) Augment-Entropy (2) - - ×2 93.84 94.07 93.32 92.63 94.39 95.35 93.93
Final (5) Augment-Entropy (2) + Self-sup (3) - - ×8 94.14 95.29 92.97 97.51 94.49 96.73 95.19

4Without self-supervised loss, our method costs 93.33% less training time.
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Test accuracy and calibration. We demonstrate the effectiveness of our method on prediction and calibration performance
under various image classification datasets: CIFAR-10, CIFAR-100, and CUB-200. As shown in Table 6, the proposed
consistency regularization significantly and consistently improves both prediction accuracy and confidence calibration. We
note that consistent improvement in both metric is non-trivial, as the advanced baselines does not improve in all cases. We
also emphasize that our proposed method is specialized for calibration, as other methods, e.g., self-supervised learning
(Hendrycks et al., 2019), only increase the accuracy and the calibration may not improve.

Table 6. Test accuracy (%) and ECE (%) of classifiers trained on various image classification tasks. We train ResNet-34 for CIFAR
datasets and ResNet-18 for the fine-grained datasets. The arrow on the right side of the evaluation metric indicates the ascending or
descending order of the value. Parentheses indicate the relative rate of ECE from the cross-entropy (CE), and bold denotes the best results.

Evaluation metric Train method CIFAR-10 CIFAR-100 CUB-200

Test accuracy ↑
CE 94.75 73.94 52.71
CE + Self-sup (3) 96.72 77.47 60.98
CSI (Tack et al., 2020) 95.58 77.94 43.34

Ours, Lfinal(5) 96.79 (+2.15%) 80.78 (+9.25%) 61.63 (+16.92%)

ECE ↓
CE 3.64 11.81 20.35
CE + Self-sup (3) 2.65 11.88 17.49
CSI (Tack et al., 2020) 2.37 8.56 26.21

Ours, Lfinal(5) 1.51 (-58.51%) 8.17 (-30.82%) 6.78 (-66.68%)

E. Ablation study
Component analysis. In Table 7, we assess the individual effects of each component of our final training objective and
adding consistency loss improves all metrics such as test accuracy, calibration error and AUROC. Even though adding
each component might not always improve the all metrics, we observe that adding components in the training objective is
beneficial in most cases. Intriguingly, the consistency regularization loss and self-supervised loss improves both classification
accuracy and the softmax calibration, the unlabeled loss is rather more specified to the model calibration.

Table 7. Ablation study on each component of our proposed training loss. We measure test accuracy (%), ECE (%), and AUROC (%)
where CIFAR-100 is in-distribution, and CIFAR-10 is out-of-distribution. For all objective, we used the same score (i.e., baseline
(Hendrycks and Gimpel, 2017)) and network architecture (i.e., ResNet-34). No checkmark and full checkmark denote the standard
cross-entropy training, and the extended version (5), respectively. The best results are denoted in bold.

Consistency, Lcon (1) Self-sup, Lself (3) Unlabeled, Lunlabel (4) Test acc. ECE AUROC

- - - 73.94 11.81 76.2
3 - - 77.81 10.73 77.7
- 3 - 77.47 11.88 76.94
3 3 - 80.65 9.87 78.75
3 3 3 80.78 8.17 78.55

Effect of the sampling number. In Table 8, we investigate an effect of the sampling number used for approximating
Augment-Entropy (2). We note that the proposed Augment-Entropy indeed improve the OOD detection. Surprisingly, we
found that the sampling number of 4 is sufficient. The reason is that our consistency regularization already have forced
the augmentation to be concentrated. As a result, we can effectively approximate the expectation with a small number of
samples. Therefore, our method can be effectively used at a small cost.

Table 8. Ablation study on the effect of sampling number n for Augment-Entropy approximation. We measure AUROC (%) where
CIFAR-100 is in-distribution, and CIFAR-10 is out-of-distribution, and the network is ResNet-34.

n 1 2 4 8 16

AUROC 78.77 79.61 80.20 80.25 80.35
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F. Discussion on OOD validation set
We give an empirical evidence that one should avoid using an out-of-distribution validation set. In such a detection scenario,
we observed that the problem can be solved by a straightforward method, and it is comparable with most of the baseline
works. The high-level idea is to learn a logistic regression on top of the pre-trained representation by utilizing the OOD
validation set. Consider a depth-d pre-trained network which output for given input x is f(x;W1:d) = Wdσ(. . . σ(W1x))
where Wi is a ith layer weight and σ is an activation function. We then aggregate (i.e., concatenate) all the internal feature
and use as the input feature for logistic regression: xinput = aggregate({f(x;W1:i)}di=1). Finally, we train a logistic
regression function with the extracted features of in-and-out validation samples. For training the logistic regression, we use
the same pre-trained network (i.e., ResNet-34) and validation set from the previous work (Lee et al., 2018).5

The result in Table 9 shows that the simple regression achieves very high AUROC performance (over 96%) for popular OOD
setups, even comparable to the state-of-the-art results when the OOD validation set is used. Note that the logistic regression
achieves the result without even careful input preprocessing (Liang et al., 2018; Lee et al., 2018) used in the prior works.

Table 9. AUROC (%) value of detection under logistic regression trained using an OOD validation set. We train the logistic regression
upon the same pre-trained network (i.e., ResNet-34) and validation set from the previous work (Lee et al., 2018).

In-distribution OOD AUROC

CIFAR-10
SVHN 98.9

ImageNet 99.0
LSUN 99.4

CIFAR-100
SVHN 97.8

ImageNet 96.3
LSUN 98.4

5The pre-trained network and validation set are available at https://github.com/pokaxpoka/deep_Mahalanobis_det
ector.

https://github.com/pokaxpoka/deep_Mahalanobis_detector
https://github.com/pokaxpoka/deep_Mahalanobis_detector

