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Abstract
To interpret uncertainty estimates from differen-
tiable probabilistic models, Antorán et al. (2021)
proposed generating a single Counterfactual La-
tent Uncertainty Explanation (CLUE) for a given
data point where the model is uncertain. Ley et al.
(2021) formulated δ-CLUE, the set of CLUEs
within a δ ball of the original input in latent space
– however, we find that many CLUEs generated
by this method are very similar, hence redundant.
Here we propose DIVerse CLUEs (∇-CLUEs),
a set of CLUEs which each provide a distinct
explanation as to how one can decrease the un-
certainty associated with an input. We further
introduce GLobal AMortised CLUEs (GLAM-
CLUEs), which represent amortised mappings
that apply to specific groups of uncertain inputs,
taking them and efficiently transforming them in
a single function call into inputs that a model
will be certain about. Our experiments show that
∇-CLUEs and GLAM-CLUEs both address short-
comings of CLUE and provide beneficial expla-
nations of uncertainty estimates to practitioners.

1. Introduction
For models that provide uncertainty estimates alongside
their predictions, explaining the source of this uncertainty
reveals important information. Antorán et al. (2021) propose
a method for finding an explanation of a model’s predictive
uncertainty of a given input by searching in the latent space
of an auxiliary deep generative model (DGM): they identify
a single possible change to the input, while keeping it in
distribution, such that the model becomes more certain in
its prediction. Termed CLUE (Counterfactual Latent Uncer-
tainty Explanations), this method is effective for generating
plausible changes to an input that reduce uncertainty, dis-
tinct from adversarial examples, which instead find nearby
points that change the label (Goodfellow et al., 2015).

CLUE introduces a latent variable DGM with decoder
µθ(x|z) and encoder µφ(z|x). H refers to any differen-
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tiable uncertainty estimate of a prediction y. The pairwise
distance metric takes the form d(x,x0) = λxdx(x,x0) +
λydy(f(x), f(x0)), where f(x) is the model’s mapping
from an input x to a label. CLUE minimises: L(z) =
H (y|µθ(x|z)) + d (µθ(x|z),x0) to yield xCLUE =
µθ (x|zCLUE)where zCLUE = argminz L(z).

In this paper, we tackle the problem of finding multiple,
diverse CLUEs. Providing practitioners with many explana-
tions for why their input was uncertain can be helpful if, for
instance, they are not in control of the recourse suggestions
proposed by the algorithm; advising someone to change
their age is less actionable than advising them to change a
mutable characteristic (Poyiadzi et al., 2020). With δ-CLUE,
Ley et al. (2021) introduce a method for generating a set of
CLUEs. However, many CLUEs therein are redundant. We
start by introducing metrics to measure the diversity in sets
of CLUEs such that we can optimise directly for it: we term
this∇-CLUE. We then consider how to make computational
improvements to CLUE, proposing GLAM-CLUE, GLobal
AMortised Counterfactual Latent Uncertainty Explanations,
which serves as a summary of CLUE for practitioners to
audit their model’s behavior on uncertain inputs. It does so
by finding global translations between certain and uncertain
groups in a computationally efficient manner.

2. Diversity Metrics for Counterfactuals
Once we have generated a set of viable CLUEs, we desire
to measure the diversity within the set; as such, we require
candidate convex similarity functions between points, which
could be applied either pairwise or over all counterfactuals.

DIVERSITY METRIC FUNCTION (D)
DETERMINANTAL
POINT PROCESSES det(K) where Ki,j =

1

1 + d(xi,xj)
AVERAGE PAIRWISE

DISTANCE
1(
k
2

) k−1∑
i=1

k∑
j=i+1

d(xi,xj)

COVERAGE 1
d′

d′∑
i=1

(
max
j

(xj − x0)i + max
j

(x0 − xj)i

)
PREDICTION COVERAGE 1

c′

c′∑
i=1

maxj [(yj)i]

DISTINCT LABELS 1

c′

c′∑
j=1

1[∃i : yi=j]

ENTROPY OF LABELS −
1

log c′

c′∑
j=1

pj(k) log pj(k)

Table 1. Diversity metrics, D. Where necessary, we define D = 0
for k = 1 and take d to be some arbitrary distance metric.

We consider similarity between counterfactuals in predic-
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Figure 1. Conceptual colour map of objective function L(z) with z0 located in high cost region. White circles indicate explanations found.
Left: Gradient descent to region of low cost (Antorán et al., 2021). Training points in colour. Left Centre: Gradient descent constrained to
δ-ball. Diverse starting points yield diverse local minima, albeit with many redundant solutions (Ley et al., 2021). Right Centre: Direct
optimisation for diversity (∇-CLUE). Right: Efficient mappings without gradient descent (GLAM-CLUE).

tion, input or latent space. Each diversity function D can
be applied to a set of k > 0 counterfactuals appropriately
i.e. D(x1, ...,xk), D(z1, ..., zk) or D(y1, ...,yk) where
xi ∈ Rd′ , zi ∈ Rm′ and yi ∈ Rc′ (we define the hard
prediction yi = maxj(yi)j). We summarise these metrics
in Table 1, and provide additional detail in Appendix B.

3. Optimizing for Diversity: ∇-CLUE
The diversity metrics defined in Section 2 find utility in
the optimisation of a set of k counterfactuals. We optimise
for diversity in the CLUEs we generate through an explicit
diversity term in our objective for the CLUEs found. We
call this “Div-CLUE” or ∇-CLUE. We posit that whilst
some aforementioned metrics may perform poorly during
optimisation, we retain them for evaluation.

Once the diversity metric is selected, the optimisation of k
counterfactuals can be performed. By optimising simul-
taneously over k counterfactuals (Mothilal et al., 2020)
in latent space, issues with how the diversity metric D
might scale with k can be avoided. We have the simulta-
neous optimisation problem of minimising L(z1, ..., zk) =
−λDD(z1, ..., zk) +

1
k

∑k
i=1 L(zi) where L(zi) =

H (y|µθ(x|zi))+d (µθ(x|zi),x0), to yield XCLUE =
µθ (X|ZCLUE) where ZCLUE = argminz1,...,zk

=
L(z1, ..., zk). Note that we apply the diversity function in
latent space; it could equally be applied in input space. This
is described in Algorithm 1. Appendix C details a sequential
procedure, analogous to a greedy optimisation.

We denote an initialisation scheme S of radius r to generate
starting points for the gradient descent. The∇-CLUE algo-
rithm is equivalent to δ-CLUE from Ley et al. (2021) when
λD = 0, which is itself equivalent to the original CLUE
algorithm when δ =∞, r = 0 and k = 1.

4. GLAM-CLUE: Global Amortised CLUE
CLUE primarily focuses on local explanations of uncer-
tainty estimates, as Antorán et al. (2021) propose a method
for finding just a single change for a specified uncertain in-
put. Such local explanations are computationally expensive
to apply to large sets of inputs. Large sets of counterfactuals
are also difficult to interpret. We thus face challenges when

Algorithm 1∇-CLUE (simultaneous)
Inputs: δ, k, S, r, x0, d, ρ,H, µθ , µφ, D, λD
1: Initialise ∅ of CLUEs: XCLUE = {};
2: Set δ-ball centre of z0 = µφ(z|x0);
3: for 1 ≤ i ≤ k do
4: Set initial value of zi = S(z0, r, i, k);
5: end for
6: while loss L is not converged do
7: for 1 ≤ i ≤ k do
8: Decode: xi = µθ(x|zi);
9: Use predictor to obtainH(y|xi);

10: L(zi) = H(y|xi) + d(xi,x0);
11: end for
12: L(z1, ..., zk) = −λDD(z1, ..., zk) +

1
k

∑k
i=1 L(zi);

13: Update z1, ..., zk with∇z1,...,zkL(z1, ..., zk);
14: for 1 ≤ i ≤ k do
15: Constrain zi to δ ball using ρ(zi, z0);
16: end for
17: end while
18: for 1 ≤ i ≤ k do
19: Decode explanation: xi = µθ(x|zi);
20: ifH(y|xi) < Hthreshold then
21: XCLUE ← XCLUE ∪ xi;
22: end if
23: end for
Outputs: XCLUE, a set of n ≤ k diverse CLUEs

using them to summarise global uncertainty behaviour.

We desire a computationally efficient method that only re-
quires a finite portion of the dataset (or set of counterfac-
tuals) from which global properties of uncertainty can be
learnt, in the hope that we could apply these properties to
unseen test data with a high degree of reliability. Therefore,
we propose GLAM-CLUE (GLobal AMortised CLUE),
which achieves such levels of reliability with considerable
speedups. Summarising global properties of uncertainty can
be important too in identifying areas in which the model
does not perform as expected or the training data is sparse.

GLAM-CLUE takes groups of high and low certainty points
and learns mappings of arbitrary complexity between them
in either latent or input space. It can be seen as a global
equivalent to CLUE. High certainty points are taken from
the training data to learn such mappings, but we demonstrate
improvements by instead using CLUEs generated from un-
certain points in the training data. Algorithm 2 defines a
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mapper of arbitrary complexity from uncertain groups to
certain groups in latent space: zcertain = G(zuncertain).

Algorithm 2 GLAM-CLUE
Inputs: Inputs Xuncertain, Xcertain, groups Yuncertain, Ycertain, DGM
encoder µφ, loss L, trainable parameters θθθ
1: for all groups (i→ j) in (Yuncertain, Ycertain) do
2: Select Xi from Xuncertain, Yuncertain;
3: Select Xj from Xcertain, Ycertain;
4: Encode: Zi = µφ(Z|Xi);
5: while loss L is not converged do
6: Update θθθi→j with ∇θθθi→jL(θθθi→j |Zi, Xj);

7: end while
8: end for

Outputs: A collection of mapping parameters θθθi→j for given
mappersGi→j that take uncertain inputs from group i and produce
nearby certain outputs in group j

To strive for global explanations, we restrict each map-
per in our experiments to be a simple latent space trans-
lation from an uncertain class i to a certain class j: zj =
Gi→j(zi+θθθi→j). Mappers should reduce the uncertainty of
points while keeping them close to the original when run on
test data. To train the parameters of the translation θθθ, we use
the loss function detailed in Equation 1. We learn separate
mappers for each pair of groups defined by the practitioner;
Algorithm 2 partitions these groups accordingly, and returns
distinct parameters θθθi→j for each case. We posit that more
complex models could improve the performance of the map-
pings at the risk of losing the global sense of an explanation.

λθ‖θθθ‖1+
1

|Zuncertain|
∑

z∈Zuncertain

min
x∈Xcertain

‖µθ(z+θθθ)−x‖22 (1)

There exist multiple baselines against which we can test
performance. Firstly, we can perform Difference Between
Means (DBM) of uncertain data to certain data in either
input or latent space. This can be added to uncertain test
data and reconstructed in the case of input space, or decoded
in the case of latent space. Another baseline is the Nearest
Neighbours (NN) in high certainty training data, in either
input or latent space (these are visualised in Appendix D).

5. Experiments
We perform experiments to validate our methods on 2
datasets: UCI Credit classification (Dua and Graff, 2017)
and MNIST image classification (LeCun, 1998). We train
VAEs as our DGMs (Kingma and Welling, 2014) and BNNs
for classification (MacKay, 1992). We demonstrate that our

Figure 2. Comparison of explanations for an uncertain input (left)
by the baselines, GLAM-CLUE, and CLUE.H is uncertainty, d is
input space distance, ρ is latent space distance. Low uncertainties
in baseline schemes have unrealistic distances from the original.

Figure 3. Effect of λD on diversity and performance. Row 1:
MNIST. Row 2: UCI Credit. Columns 1 to 3: DPP, APD and
Coverage diversity metrics applied to the set of k = 10∇-CLUEs.

constraints allow practitioners to better control the diversity
of counterfactuals (∇-CLUE). We then show that we can ef-
ficiently generate explanations that apply globally to groups
of inputs with our amortised scheme (GLAM-CLUE).

5.1. ∇-CLUE

We perform an ablative study on the effect of increasing the
diversity weight λD on the CLUEs produced, optimising the
DPP diversity metric in z-space and measuring the effect
that this has on each other metric, as well the effect on
performance (Figure 3). We use the simultaneous∇-CLUE
scheme in Algorithm 1 for a fixed number of k = 10 CLUEs
and parameters: δ = r = 4 for MNIST; δ = r = 1 for UCI
Credit. Note that λD = 0 is exactly equivalent to δ-CLUE,
and hence it is seen that δ-CLUE yields slightly better sets
of CLUEs that are much less diverse.

Takeaway: We observe that, when optimising for one diver-
sity metric, increasing λD monotonically improves diversity
by almost every other metric. Appendix C shows that this
does however come at the expense of some performance.

5.2. GLAM-CLUE
Gradient descent at inference time is computationally expen-
sive. Uncertainty estimates, distance metrics, and diversity
metrics (notably DPPs, which operate on k × k matrices)
all require evaluation over many iterations, to yield only
a single counterfactual to a local uncertain input. GLAM-
CLUE computes counterfactuals for all uncertain test points
in a single, amortised function call, permitting considerable
speedups. We demonstrate that the performance of these
counterfactual beats mean performance of all the baselines
discussed in Section 4, achieving lower variance also.

We train 2 mappers: GLAM-CLUE 1 learns from all cer-
tain and uncertain 7s in the MNIST training data; GLAM-
CLUE 2 learns from all uncertain 7s in the training data
and their corresponding certain CLUEs. Figure 4 shows
improvements when using the GLAM-CLUE 2 algorithm,
demonstrating that CLUEs capture properties of uncertainty
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Figure 4. GLAM-CLUE vs baselines when mapping uncertain 7s to certain 7s in MNIST. Left: Distributions of uncertainties,H (original
uncertainties exceed 1.5). Centre: Distributions of input distances, d. Right: Distributions of total costs,H+ λxd with λx = 0.03.

more reliably than the training data, at the expense of extra
computation time to generate the CLUEs used in learning.
An advantage of GLAM-CLUE is that the uncertainty-
distance trade-off can be tuned with λθ in Equation 1: larger
λθ restricts translations in latent space to be smaller, thus
lowering distances in input space but raising uncertainties.
For a given λx, GLAM-CLUE’s efficiency allows for the
optimal λθ to be determined quickly. While the baseline
schemes achieve lower uncertainties, they do so at the ex-
pense of moving further from the original input (Figure 2),
reducing the chance of yielding an actionable suggestion.

Takeaway: Amortisation of counterfactuals works. A sim-
ple global translation for class specific points is shown to
produce counterfactuals of comparable quality to CLUE.
Notably, performance of GLAM-CLUE is improved when
training on CLUEs rather than training data (Figure 4).

5.3. Computational Speedup
At inference time, GLAM-CLUE performs significantly
faster than CLUE by average CPU time (Table 2). For
uncertain 7s in MNIST, CLUE required 220 seconds to
converge; GLAM-CLUE computes in around 1 second. The
bottleneck in these processes is the uncertainty evaluation

Input DBM Latent DBM Input NN
0.0306 0.0262 0.0236

Latent NN GLAM-CLUE CLUE
0.0245 0.0238 4.68

Table 2. Avg. CPU time in seconds
to compute 1 MNIST counterfactual.

of the BNN, and as
such these timings are
not necessarily repre-
sentative of all situa-
tions. A drawback to
GLAM-CLUE is that

the optimisation required on average 17.6 seconds to train.
Should we use CLUEs during training (i.e. GLAM-CLUE
2), another 200+ seconds are required. Moving beyond basic
mappers to more advanced models, we expect performance
to improve at the cost of an increase in training time.

Takeaway: At inference time, GLAM-CLUE can produce
counterfactual explanations 200 times faster than CLUE.

6. Related Work
Very few works address explaining the uncertainty of prob-
abilistic models. Booth et al. (2020) take a user-specified
level of uncertainty for a sample in an auxiliary discrimina-

tive model and generate the corresponding sampling using
deep generative models (DGM). Joshi et al. (2018) propose
xGEMs that use a DGM to find counterfactual explanations
though not for uncertainty. Like CLUE and xGEMs, we
use a DGM to find a set of viable CLUEs. Though not
for uncertainty, Mothilal et al. (2020) and Russell (2019)
find a diverse set of counterfactual explanations. Neither
of the papers consider computational advances nor do they
venture to consider global counterfactual explanations, as
we do. Plumb et al. (2020) define a Global Counterfactual
Explanation that uses a mapper to transform points from one
low-dimensional group to another. In spirit of their work,
we propose amortising CLUE to find a transformation that
leads the model to treat the transformed uncertain points
from Group A as certain points from Group B.

7. Conclusion
Explanations from machine learning systems are receiving
increasing attention from practitioners and industry (Bhatt
et al., 2020). As these systems are deployed in high stakes
settings, well-calibrated uncertainty estimates are in high
demand (Spiegelhalter, 2017). To interpret such estimates,
(Antorán et al., 2021) propose generating a Counterfactual
Latent Uncertainty Explanation (CLUE) for a given data
point on which the model is uncertain; Ley et al. (2021)
extend this work to generate a set of potential CLUEs. We
study how to measure the diversity of these sets and find
that many CLUEs are similar to each other. We propose
DIVerse CLUE (∇-CLUE), a method to find a set of CLUEs
in which each proposes a distinct explanation for how to
decrease the uncertainty associated with an input. However,
these methods prove to be computationally inefficient for
large amounts of data. To that end, we propose GLobal
AMortised CLUE (GLAM-CLUE), which learns an amor-
tised mapping that applies to specific groups of uncertain
inputs. GLAM-CLUE efficiently transforms an uncertain
input in a single function call into an input that a model will
be certain about. We validate our methods with experiments,
which show that∇-CLUE and GLAM-CLUE address short-
comings of CLUE. We hope our proposed methods prove
beneficial to practitioners who seek to provide explanations
of uncertainty estimates to stakeholders.
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Appendix
This appendix is formatted as follows.

1. We discuss the Datasets and Models used in Appendix A.

2. We provide technicalities for Diversity Metrics for Counter-
factuals in Appendix B.

3. We analyse possible adjustments to∇∇∇-CLUE in Appendix C.

4. We discuss the technicalities of GLAM-CLUE in Appendix D.

Where necessary, we provide discussion of potential limita-
tions to our work and possible areas for future improvement.

A. Datasets and Models
One tabular dataset and two image datasets are employed
in our experiments (all publicly available). Details are pro-
vided in Table 3.

The default of credit card clients dataset, which
we refer to as “Credit” in this paper, can be
obtained from https://archive.ics.uci.edu/ml/
datasets/default+of+credit+card+clients/. We
augment input dimensions by performing a one-hot-
encoding over necessary variables (i.e. gender, education).
Note that this dataset is different from the also common
German credit dataset.

The MNIST handwritten digit image dataset can be obtained
from and is described in detail at http://yann.lecun.
com/exdb/mnist/. For the aforementioned datasets, we
thank Antorán et al. (2021) for making their private BNN
and VAE models available for use in our work.

B. Diversity Metrics for Counterfactuals
B.1. Technicalities of Metrics

Leveraging Determinantal Point Processes: We build on
Mothilal et al. (2020) to leverage determinantal point pro-
cesses, referred to as DPPs (Kulesza, 2012), as det(K) in
Table 1. DPPs implicitly normalise to 0 ≤ D ≤ 1. However,
matrix determinants are computationally expensive for large
k. This metric is effective overall and achieves diversity by
diverting attention away from the most popular (or salient)
points to a diverse group of points instead.

Diversity through Average Pairwise Distance: We can
calculate diversity as the average distance between all dis-
tinct pairs of counterfactuals. While we can adjust for
the number of pairs (thus, accomplishing invariance to the
number of counterfactuals k), this metric does not satisfy
0 ≤ D ≤ 1, scaling instead with the pairwise distances
characterised by the dataset.

Coverage as a Diversity Metric: Previous work in inter-
pretability has leveraged the notion of coverage as a mea-
sure of the quality of a set of counterfactuals. Ribeiro et al.
(2016) define coverage to be the sum of distinct features
contained in a set, weighted by feature importance: this
could be applied to counterfactual explanations to suggest a

way of optimally choosing a limited subset from a full set
of counterfactuals such that coverage is maximised. Plumb
et al. (2020) introduce coverage as a measure of the quality
of global counterfactual explanations. Herein, we interpret
coverage as a measure of diversity, using it directly for opti-
misation and evaluation of counterfactuals. The metric, as
given in Table 1, rewards changes in both positive and neg-
ative directions separately. For each feature, we find the 2
counterfactuals that produce the largest positive and largest
negative change for that feature and sum their magnitudes.
We repeat this over all features, summing the results.

D is bounded by the scale of the features, and we now
determine this bound under the coverage metric. Take
S+ =

∑d′

i=1 max(xi) and S− =
∑d′

i=1 min(xi) to repre-
sent the sum over all features of the maximum and minimum
values each feature can take, and that |x0| =

∑d′

i=1(x0)i
(the sum over all features of the uncertain input x0), where
d′ is the dimensionality of the feature space. The mini-
mum coverage of a counterfactual (D = 0) clearly occurs
when the counterfactual is simply the original input. The
maximum coverage can be calculated as:

Dmax =
1

d′
((S+ − |x0|)− (|x0| − S−)) (2)

=
S+ − S−

d′
(independent of x0) (3)

In the MNIST experiments performed, we have d′ = 28×
28 = 784, with the maximum and minimum values of each
pixel to be 1 and 0 respectively, thus giving S+ = 784 and
S− = 0. This does indeed result inDmax = 1. If S+ and S−
are known, we can guarantee this normalisation by dividing
the coverage by Dmax. In other applications, where features
can scale infinitely, normalising D is not possible.

Figure 5. To compute positive and negative coverage, we take the
positive and negative differences between counterfactuals and the
original input, and further combine these by selecting the max-
imum change observed in a given feature (pixels in this case).
We see that the 5 counterfactual explanations shown demonstrate
changes that almost completely remove the original input, whilst
adding features across a range of other areas. Total coverage is the
sum of the positive and negative coverages.

In theory, 2 counterfactuals are sufficient to achieve the max-

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients/
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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Name Targets Input Type Input Dimension No. Train No. Test

Credit Binary Continuous & Categorical 24 27000 3000
MNIST Categorical Image (Greyscale) 28× 28 60000 10000
Synbols Categorical Image (RGB) 3× 32× 32 60000 20000

Table 3. Summary of the datasets used in our experiments.

imum coverage (one counterfactual with all features at their
maximum values, and one with all features at their minimum
values e.g. one fully black and one fully white image in
MNIST). While coverage can never decrease as k increases,
the exact nature of this relationship is dependent on the
dataset and the counterfactual generation method. This is
analytically indeterminate and thus cannot be regularised.

Prediction Coverage: Given that y0 as an estimate of the
true label is inaccurate for uncertain predictions, and that
rewarding negative changes in y-space is redundant (max-
imising the prediction of one label implicitly minimises the
others), we adjust the coverage metric in y-space to be the
maximum prediction for a particular label found in the set of
counterfactuals, averaged over all predictions. This satisfies
1
c′ ≤ D ≤ 1, where we require at least k = c′ counterfactu-
als to achieve D = 1, equivalent to finding at least one fully
confident prediction for each label.

Targeting Diversity of Class Labels: While recent work
focuses on producing diverse explanations for binary classi-
fication problems (Russell, 2019) and others summarise cur-
rent methods therein (Pawelczyk et al., 2020), these metrics
perform well in applications rich in class labels, and con-
versely are likely ineffective in binary tasks. Posterior prob-
abilities are defined as y ∈ Rc′ and yi = argmaxi yi. We

define the probability of class j as pj(k) =
∑k
i=1 1[yi=j]

k =
number of counterfactuals in class j

number of counterfactuals . Using this, we suggest diversity
through the Number of Distinct Labels found, as well as
the Entropy of the Label Distribution. The former metric
loses its effect once all labels are found, whereas the latter
does not. The former satisfies 0 ≤ D ≤ 1, and given that
the maximum entropy of a c′ dimensional distribution is
log(c′), so too does the latter.

B.2. Future Work

Future work might include a human subject experiment to
determine the metric most aligned with human ideas of
diversity; or better still, what each of the metrics represent
themselves with regards to human intuition. The set of
diversity metrics proposed in this paper are not exhaustive
either, and further investigation of other metrics, perhaps
with inspiration drawn from said human subject experiments,
could provide meaningful insights.

C.∇-CLUE
C.1. Performance Trade-off

While ∇-CLUE can successfully increase the diversity of
counterfactuals through the λD hyperparameter, this comes

with a trade-off between diversity and performance, as
stated in the main text. This is a natural result of opti-
mising for DPP diversity in z-space; we achieve sufficient
diversity in this space, though diversity in latent space im-
plies some form of diversity in input space, resulting in
higher distances from the original input.

Figure 6. Performance degradation as λD increases. Average coun-
terfactual uncertaintyH (green) maintains an acceptably low value
with respect to the original uncertainty (red). Distance metric d
(purple) suffers to a greater extent.

C.2. Sequential Diversity Optimisation

In replacement of the simultaneous approach proposed in the
paper,∇-CLUE could be applied sequentially, where the ap-
proach is analogous to a greedy algorithm of the solution to
the former approach. The notation XCLUE = {x1, ...,xk}
is adopted to represent a set of k counterfactuals (similarly
ZCLUE and YCLUE).

Figure 7. Effect of size k of a set of∇-CLUEs on diversity under
DPP, APD and SPD metrics. Under sequential∇-CLUE, careful
consideration should be taken when considering the effect of k on
diversity, since tuning the λD hyperparameter after each iteration
requires added complexity and is undesirable.

Given a set of counterfactuals ZCLUE (initially the empty
set ∅), we append each new counterfactual to the set. At
each iteration, we minimise L(z) = λDD(ZCLUE ∪ z) +
H (y|µθ(x|z))+d (µθ(x|z),x0) to yield zCLUE, which we
append to the set. This is described in Algorithm 3. Possible
pitfalls include the manner with which D scales with k (it
is undesirable to have to re-tune the hyperparameter λD at
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Figure 8. Possible direct mappings from uncertainty to certainty in groups A to X, without necessarily satisfying symmetry or transitivity.
Asterisks represent uncertain/certain points that do not belong to a specific group. Correspondence in Appendix D.1.

each iteration). For instance, we might wish to remove the
normalisation term

(
k
2

)
of APD diversity when performing

sequential ∇-CLUE, resulting in a new metric: the Sum
of Pairwise Distances (SPD). Figure 7 details the effect of
k under three metrics in input space. With a constant λD
value, we see that the effect of the diversity term in∇-CLUE
will vary based on the diversity metric that we use.

Algorithm 3∇-CLUE (sequential)
Inputs: δ, k, S, r, x0, d, ρ,H, µθ , µφ, D, λD
1: Initialise ∅ of CLUEs: XCLUE = {};
2: Initialise ∅ of latent space CLUEs: ZCLUE = {};
3: Set δ-ball centre of z0 = µφ(z|x0);
4: for 1 ≤ i ≤ k do
5: Set initial value of zi = S(z0, r, i, k);
6: while loss L is not converged do
7: Decode: xi = µθ(x|zi);
8: Use predictor to obtainH(y|xi);
9: L(zi) = λDD(ZCLUE ∪ zi) +H(y|xi) + d(xi,x0);

10: Update zi with∇zL(zi);
11: Constrain zi to δ ball using ρ(zi, z0);
12: end while
13: Decode explanation: xi = µθ(x|zi);
14: ifH(y|xi) < Hthreshold then
15: XCLUE ← XCLUE ∪ xi;
16: ZCLUE ← ZCLUE ∪ zi;
17: end if
18: end for
Outputs: XCLUE, a set of n ≤ k diverse CLUEs

C.3. Future Work

We devote this section to performing a full ablative analysis
over all diversity metrics, since only DPP diversity in
z-space was trialled in the main paper. This includes a
more thorough trial of sequential ∇-CLUE also. Some
preliminary experiments have also shown that the strategy
of finding diverse initialisations as opposed to optimising
for diversity can also be effective; the latter method, used in

Figure 9. Visualisation of the input DBM baseline. The mean of all uncertain 7s in the MNIST training data is taken, followed by the
mean of all certain 7s is shown in the 1st and 2nd plots. The 3rd and 4th plots show the positive and negative changes made when moving
from uncertainty to certainty. The 5th to 7th plots illustrate how a final, certain counterfactual explanation is produced using this baseline
(by adding the difference between means in input space and reconstructing the result).

this paper, has been shown to compromise the performance
of the CLUEs found, and thus finding the best starting ini-
tialisations and performing δ-CLUE (where λD = 0) might
yield equally diverse sets that perform better overall.

D. GLAM-CLUE
D.1. Grouping Uncertainty

Most counterfactual explanation techniques center around
determining ways to change the class label of a predic-
tion; for example, Transitive Global Translations (TGTs)
consider each possible combination of classes and the map-
pings between them (Plumb et al., 2020). We choose here
to not only partition the data into classes, but into certain
and uncertain groups according to the classifier used. By
using these partitions, we learn mappings from uncertain
points to certain points, either within specific classes or in
the general case. While TGTs constrain a mapping G from
group i to j to be symmetric (Gi→j = G−1j→i) and transitive
(Gi→k = Gj→k ◦Gi→j), we see no direct need for the sym-
metry constraint. There exists an infinitely large domain
of uncertain points, unlike the bounded domain for certain
points, implying a many-to-one mapping. We also forgo
the transitivity constraint: defining direct mappings from
uncertain points to specific certain points is sufficient.

Our method is general to all schemes detailed in Figure 8,
and our experiments consider these groups to be class labels,
testing against the far left scheme, considering mappings
from uncertain points to certain points within a given class.
Future work may consider modes within classes, as well
as the more general far right scheme of learning mappings
from arbitrary uncertain inputs to their certain analogues.
The original local CLUE method is analogous to the far
right scheme, which is agnostic to the particular classes it
maps to and from. As a result of this, the original method
also struggles with diverse mappings.
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D.2. Baseline Visualisation

Although drawing inspiration from Transitive Global Trans-
lations (TGTs), as proposed by Plumb et al. (2020), our
method performs a different operation; instead of learn-
ing translations in input space that result in high quality
mappings in a lower dimensional latent space, we find that
results are best when learning translations in latent space,
as described in the main text. This is seen also in the fact
that the latent space DBM baseline outperforms input DBM;
the difference between means translation is a special case
of the GLAM-CLUE translation that we propose, and is
the value we use as an initialisation during gradient descent.
We also provide a visualisation for the input space DBM
baseline in Figure 9. In the case of image data, the resulting
image when DBM was added to the original input had to be
clipped to match the scale of the data (in our case, between
0 and 1). Figure 10 displays the latent space equivalent
(latent DBM) in a 2 dimensional latent space, as well as the
Nearest Neighbour (NN) baseline.

Figure 10. 2D latent space visualisation of DBM/NN baselines for
MNIST digit 4. Top: Uncertain and certain points in the training
data with their mean values. Left: Uncertain points in the test data
with their latent DBM mappings. Right: Uncertain points in the
test data with their NN mappings. High certainty training data
shown in green throughout. Latent dimension is higher in practice.

D.3. Future Work
While GLAM-CLUE shows very good performance in the
experiments demonstrated in the main text, it is not clear
that performance would be maintained in all situations. Con-
cerns include the performance on more complex datasets, or
simply the performance in cases where a group of uncertain

points are not easily separated from a group of certain points
by a simple translation (as in Figure 11).

Figure 11. 2D visualisation of a shortcoming of GLAM-CLUE.
The group of uncertain points (red) is not easily mapped onto the
group of certain points (blue) by a single translation, unless further
division of the uncertain group (into 3 clusters for instance) is
performed, or a more complex mapper is learnt.

To this end, there are two further avenues to explore: the
use of more complex mapping functions, or the potential
to split the uncertain groups into groups that translations
perform well on (in the Figure 11 example, this might entail
clustering the uncertain points further into 3 groups). This
latter approach would maintain GLAM-CLUE’s utility in
computational efficiency, as we demonstrate that learning
simple translations is extremely fast, and a promising route
for further research in this area.

We have the additional issue of selecting an appropriate λθ
parameter in the algorithm to best tune the trade-off between
uncertainty and distance. Dosovitskiy and Djolonga (2020)
propose a method that replaces multiple models trained on
one loss function each by a single model trained on a dis-
tribution of losses. A similar approach could be taken by
using a distribution over individual terms of our objective
and varying the hyperparameter weight at inference time.
This could yield a powerful technique for minimising uncer-
tainty and distance but allowing the trade-off between the
two to be selected post-training.

As far as more complex datasets are concerned, preliminary
trials on the black and white Synbols dataset (Lacoste et al.,
2020) showed that the DBM baselines produced incoherent
results. Our understanding is that, in input space, taking the
mean of a particular class that contains an equal distribution
of points with white backgrounds and points with black
backgrounds will result in a cancellation between the two,
such that the mean vector is close to zero. The same analogy
in latent space might be that black points within a particular
class may not be clustered in a similar region to those of
white points for the same class. As such, further clustering,
as alluded to above and in Figure 11 is probably necessary.


