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Abstract

We present a Post-Training Quantization (PTQ)
flow for Bayesian Neural Networks (BNNs) to
reduce the memory and compute requirements.
The mean-field variational inference with Gaus-
sian distribution (mean w and standard deviation
o) in BNNs have 2x the number of parameters
and memory footprint compared to the determin-
istic Deep Neural Networks (DNNs) with sim-
ilar architectures. During BNN inference runs,
multiple (T') stochastic forward-passes through
the network require 7' times more compute and
bandwidth requirements. An 8-bit representation
(INTS) for the sampled weights reduces the band-
width requirements by 200x for 50 Monte Carlo
stochastic forward-passes. We present an end-to-
end BNN quantization flow with up to 7.1x reduc-
tion in model size has no significant degradation
in the test accuracy or the quality of uncertainty as
compared to the full-precision FP32 model. We
also show that representing the o values at lower
precision (1-8 bits) gives comparable results to
INTS representation.

1. Introduction

Deep neural networks (DNNs) are unable to capture model
uncertainty associated with their predictions, which is essen-
tial for reliable decision-making. Bayesian neural networks
(BNNs) (MacKay, 1992; Neal, 1995) can capture principled
uncertainty estimates including aleatoric and epistemic un-
certainties (Kendall & Gal, 2017). BNNs are demonstrated
to be robust (Ovadia et al., 2019; Krishnan & Tickoo, 2020)
and widely used in many safety-critical applications includ-
ing autonomous driving (McAllister et al., 2017; Michel-
more et al., 2020), medical diagnosis (Filos et al., 2019;
Kompa et al., 2021), video activity recognition (Subedar
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et al., 2019). The additional computation and memory cost
associated with BNNS rise practical challenges for wider
usage and deployment. Various hardware acceleration ap-
proaches for BNNs (Cai et al., 2018; Awano & Hashimoto,
2020; Fan et al., 2021) are being proposed more recently to
address computation challenges. To realize optimal hard-
ware acceleration, model quantization plays an important
role. Neural network quantization reduces the model size
and memory footprint by reducing the number of bits re-
quired to represent the model parameters and activations
with the goal of improving inference throughput and energy
cost. Quantization of Deep Neural Networks (DNNs) (Han
et al., 2015; Dong et al., 2017; Banner et al., 2018) is a
well-studied problem. Though quantization of DNNs is an
active area of research and has shown promising results,
the quantization of BNNs and the effect towards the qual-
ity of uncertainty is not yet studied well to the best of our
knowledge.

In this work, we study the effect of post-training quanti-
zation of BNNs with variational layers modeled through
mean-field Gaussian distributions parameterized by mean
() and standard deviation (o). The quantization of x and o
values is critical to reduce the memory footprint while rep-
resenting the activations and sampled weights in quantized
8-bit format will reduce the compute and bandwidth re-
quirements. Compared to DNN with similar neural network
architecture, BNN has twice the number of parameters and
requires multiple stochastic forward passes while sampling
the weights from the posterior distribution. Since BNNs
have higher compute and memory requirements, they can
significantly benefit from the quantization.

Contributions: Our main contributions in this work are:

 proposed a post-training quantization flow for BNNs
and evaluated the effect on model accuracy and quality
of uncertainty,

 presented a systematic study on the effect of BNN
quantization under dataset shifts,

* evaluated various bit representations for the variational
parameters representing the weight posterior in BNNs
demonstrating there is no significant degradation in
model accuracy and quality of uncertainty.
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Figure 1. Post-training quantization steps for Bayesian Neural Networks (BNNs): Mean (1) and standard deviation (o) are the variational
parameters representing Gaussian distribution, and p4, o4 are their quantized representations, respectively. The sampled weights w, use
the same calibration step as the u, values. The stochastic forward-passes use INT8 computations.

2. Background

A low-precision representation of neural network param-
eters and activations is beneficial in real-world deploy-
ments. A combined pruning, quantization, and Huffman
coding (Han et al., 2015) steps are shown to provide a sig-
nificant reduction in memory and compute requirements for
DNNGs. The changes in architecture definition (Iandola et al.,
2016) to reduce the number of parameters can further reduce
the complexity. Binarized neural networks (Hubara et al.,
2016) are the extreme case of representing the weights by bi-
nary values. Architectural changes including channel shuffle
operation (Zhang et al., 2018) and depth-wise convolution
are shown to provide efficient hardware implementation.
Joint optimization of balancing depth, width and resolu-
tion for convolutional layers (Tan & Le, 2019) can provide
improved accuracies at the reduced number of parameters.
Please refer to the additional references (Sze et al., 2017;
Zmora et al., 2019) for a more complete review of the effi-
cient implementation of DNNs. Additional methods such as
weight pruning and compression (Han et al., 2015) applied
to DNNSs help to further reduce the resource requirements.
These added steps are orthogonal to the quantization step
and applicable to BNNs, which can further improve the effi-
ciencies of BNN inference, but we are not studying them in
this paper.

The weights in BNNs are modeled as probability distribu-
tions. Given observed data D {x, y}, prior distribution p(w)
and model likelihood p(y | x, w), posterior distribution over
the weights p(w|D) is to be inferred. Prediction of an input
is obtained through Bayesian marginalization with Monte
Carlo sampling over the weight posterior. It is difficult
to compute exact posterior in neural networks as it is an-
alytically intractable, hence various approximate methods
are proposed including variational inference (Graves, 2011;
Blundell et al., 2015; Kingma et al., 2015) and stochastic-
gradient MCMC (Welling & Teh, 2011; Zhang et al., 2020).
In this work, we focus on mean-field variational inference
where weights are modeled with fully factorized Gaussian

distributions parameterized by variational parameters p and
oie. w~ N(w|u,o). We refer to Blundell et al. (2015)
for details on variational inference in BNNs.

Algorithm 1 quantization of o

Input: o (per layer tensor array)

nbits (bit-precision or number of bits)
Output: o, (per layer quantized tensor array)

1: Omaw = max(o)

2: Omin = min(o)

3: if 0100 == Omin then
Oscale = Omax

O zero_point = 0

4: else
min_val =0
mazx_val = 2nbits _ 1

(maz_val—min_val)

compute Ogegle =

(Tmaz—0min)
COMPULE O zero_point = Min_val — int(

5: end if

6: compute 0q = Ozero_point + U/Uscale

Omin )
Oscale

In this work, we evaluate the effect of the quantization of
variational parameters in BNN on the quality of uncertainty
using calibration metrics. Bhatt et al. (2020) summarize
various calibration metrics as model calibration acts as a
form of quality assurance for uncertainty estimates. We
use Expected Calibration Error (ECE) (Naeini et al., 2015),
Uncertainty Calibration Error (UCE) (Laves et al., 2019)
and proper scoring rules (Gneiting & Raftery, 2007) such
as Negative Log-Likelihood (NLL) and Brier score (Brier,
1950) calibration metrics to study the effect of quantization.

3. Implementation Details

Figure 2 shows the proposed PTQ flow for BNNs. The
first step is to obtain a PTQ model for the mean (u) values
from the learned Gaussian distribution. We use the PyTorch
PTQ steps (PyTorch-Documentation) to obtain a quantized
INTS8 model. The u represents mid-point of the distribution



Quantization of Bayesian Neural Networks and Its Effect on Quality of Uncertainty

Table 1. Test accuracy (Test Acc), Expected Calibration Error (ECE), Negative Log-likelihood (NLL) and Brier scores for the BNN
ResNet20 and BNN LeNet-5 models evaluated on CIFAR-10 and MNIST respectively using proposed PTQ flow.

DATASET  FORMAT MODEL SIZE  TEST AccC (%) 1 ECE (%)l NLL |} 1+BRIER |
FP32 4.37 MB 91.00 £ 0.07 1.523 £0.13  0.263 £ 0.0008 0.130 £ 0.0003
INTS8 1.09 MB 90.87 £0.15 2.001 £0.18  0.269 £0.0015 0.132 £ 0.0006
CIFAR10 INT8_SIGMA4 0.87 MB 90.92 £0.05 1.778 £0.21  0.266 £ 0.0027 0.131 £ 0.0007
INT8_SIGMA2 0.72 MB 90.85 £ 0.04 2.547£0.01 0.273 £0.0018 0.134 £ 0.0005
INT8_SIGMA1 0.54 MB 90.96 £ 0.10 0.711 £0.11  0.266 £ 0.0023  0.130 £ 0.0005
FP32 0.51 MB 99.40 £ 0.01 0.221 £0.012 0.020 £ 0.0002  0.01 £ 0.0000
INTS 0.13 MB 99.36 £ 0.02 0.211 £0.025 0.020 £0.0003  0.01 £0.0001
MNIST INT8_SIGMA4 0.10 MB 99.36 £0.01 0.215 £0.024 0.020 £ 0.0002  0.01 £ 0.0001
INT8_SIGMA2 0.08 MB 99.32 £ 0.01 0.277 £0.033 0.024 £ 0.0003  0.01 £ 0.0000
INT8_SIGMA1 0.06 MB 99.34 £ 0.01 0.351 £0.018 0.027 £0.0003  0.01 £ 0.0000
the Gaussian distributions, respectively; IV is the sample
1.00 from INT8 quantized Gaussian (zero mean, unit variance)
- 0ss) 1 |F|\TT3§ distribution. Quantized INT8 weight values w, use the
' INTS SIGMA4 calibration values obtained during PTQ of 1. The output of
2 0.90. INT8_SIGMA2 the stochastic forward passes provides posterior prediction
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Figure 2. BNN ResNet-20/CIFAR10: Model confidence evalua-
tion under dataset shift. Accuracy as a function of confidence
evaluation on CIFAR-10 data shifted with Gaussian blur at inten-
sity 3.

and hence will resemble the point estimates for the DNNs.
We use the calibration step from p to quantize w,. The
Jfbgemm (Khudia et al., 2021) backend at 8-bit precision
is set to run the quantized models on x86 machines. We
independently obtain per-channel quantized o values repre-
sented using Uniform symmetric quantizer (Krishnamoorthi,
2018). Algorithm 1 provides the steps to calculate scale and
mid_point values for quantized o representation. The quant
function to calculate sigma values is given by Equation 1.

Oq = Ozero_point + U/Uscale (])

For every Monte Carlo (MC) stochastic forward-pass, we
calculate the sampled weights using reparameterization
equation (Blundell et al., 2015):

Wq = g + g * quant(N(0,1)) (2)

where, p,, 0, are the quantized mean and sigma values for

We evaluate our experiments with BNN ResNet-20 (He
et al., 2015) and LeNet-5 (LeCun et al., 2015) architectures
on CIFAR-10 (Krizhevsky et al., 2009) and MNIST datasets
respectively. We train the BNN ResNet-20 model on the
CIFAR-10 dataset in full-precision floating-point (FP32)
format using Adam optimizer for 200 epochs with initial
learning rate of 0.001 and batch size of 128. The initial
learning rate was multiplied by 0.1, 0.01, 0.001 and 0.0005
at epochs 80, 120, 160 and 180, respectively as part of
the learning rate scheduler. The BNN LeNet-5 model was
trained with MNIST dataset in full-precision floating-point
(FP32) format using Adam optimizer for 80 epochs with an
initial learning rate of 0.01 and batch size of 128. The initial
learning rate was multiplied by 0.1 and 0.01 at epochs 40 and
60 respectively as part of the learning rate scheduler. During
the inference step, we run 50 MC stochastic forward passes
using the quantized neural network weights sampled from
the learned posterior Gaussian distribution. The resulting
predictive distribution is utilized to compute test accuracy,
and model calibration metrics to evaluate the quality of
uncertainty.

In addition to INTS representation for o,, we studied the
4, 2 and 1 quantized representation (henceforth referred
as INT8_SIGMAn, where n={1,2,4} indicates bits used to
represent o) resulting in model size reduction by 5.3x, 6.4x
and 7.1x respectively as compared to FP32 format.

4. Results

We evaluate the effect of quantization on the quality of un-
certainty in BNNs under dataset shift. We utilize 16 different
types of image corruptions (Hendrycks & Dietterich, 2018)
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Figure 3. BNN ResNet-20/CIFAR-10: Evaluation of various bit-precision for quantized BNN model under dataset shift at various shift
intensities (1-5). At each shift intensity level, the boxplot summarizes the results across 16 different dataset shift types showing the min,
max and quartiles. We observe there is no significant degradation in test accuracy and model calibration with BNN quantization.

at 5 different levels of intensities for each datashift type on
CIFAR-10. Table 1 shows the test accuracy and model cali-
bration metrics for the quantized models compared to the
full-precision FP32 model, indicating there is no significant
degradation in the model performance while representing
BNN model parameters with lower bit-precisions. We com-
pare the test accuracy, Expected Calibration Error (ECE) and
Negative Log-likelihood (NLL) metrics under dataset shift
(shown in Figure 3) for full-precision FP32 and quantized
models (additional metrics including UCE and Brier score
are provided in the Appendix). The box plot shows BNN
models can be quantized effectively without sacrificing
the accuracy and quality of uncertainty even under dataset
shift. Figure 2 shows the model yield higher confidence
when they are accurate for both full-precision and quantized
models. The INT8, INT§_SIGMA4, INT8_SIGMA?2 and
INT8_SIGMA1 quantized models have lower memory foot-
print, representing the weights in quantized format reduce
the bandwidth requirement by 4Tx, where T is the number
of stochastic forward passes (T=50 in our experiments cor-

responds to 200x reduction in local bandwidth to caches).

5. Discussion and Conclusion

We presented an end-to-end PTQ flow in INTS8 representa-
tion for BNN quantization. Our results indicate INT8 BNN
model with up to 7.1x reduction in model size (with different
bit-precisions for o, along with INT8 1.,) has no degrada-
tion in the test accuracy or the calibration error compared to
the end-to-end processing of FP32 model results.

Lower precision representation for o values did not affect
the quality of uncertainty scores. The analysis on the per-
turbed weights from 1-bit o, representation indicates the
sampled parameters albeit quantized have a similar range
of values as the higher precision o, representation. Hence,
we do not see any degradation in test accuracy or the model
calibration error. These systematic studies demonstrate
the applicability of quantized BNN models in resource-
constrained applications with limited compute budget.
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Figure 4. BNN ResNet-20/CIFAR-10: Evaluation of various bit-precision for quantized BNN model under dataset shift at various shift
intensities (1-5). At each shift intensity level, the boxplot summarizes the results across 16 different datashift types showing the min, max
and quartiles. We observe there is no sigificant degradation in test accuracy and model calibration with BNN quantization.
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Figure 5. DNN ResNet-20/CIFAR-10: Evaluation of various bit-precision for quantized DNN model under dataset shift at various shift
intensities (1-5). At each shift intensity level, the boxplot summarizes the results across 16 different datashift types showing the min, max
and quartiles. We observe there is no sigificant degradation in test accuracy and model calibration with DNN quantization.



