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Abstract
Despite impressive accuracy, deep neural net-
works are often miscalibrated and tend to overly
confident predictions. Recent techniques like tem-
perature scaling (TS) and label smoothing (LS)
show effectiveness in obtaining a well-calibrated
model by smoothing logits and hard labels with
scalar factors, respectively. However, the use of
uniform TS or LS factor may not be optimal for
calibrating models trained on a long-tailed dataset
where the model produces overly confident prob-
abilities for high-frequency classes. In this study,
we propose class-distribution-aware TS (CDA-
TS) and LS (CDA-LS) by incorporating class fre-
quency information in model calibration in the
context of long-tailed distribution. In CDA-TS,
the scalar temperature value is replaced with the
CDA temperature vector encoded with class fre-
quency to compensate for the over-confidence.
Similarly, CDA-LS uses a vector smoothing fac-
tor and flattens the hard labels according to their
corresponding class distribution. We also inte-
grate CDA optimal temperature vector with distil-
lation loss, which reduces miscalibration in self-
distillation (SD). We empirically show that class-
distribution-aware TS and LS can accommodate
the imbalanced data distribution yielding superior
performance in both calibration error and predic-
tive accuracy. We also observe that SD with an
extremely imbalanced dataset is less effective in
terms of calibration performance.

1. Introduction
Modern deep neural networks have demonstrated the ability
to achieve very high accuracy in recognition tasks. These
deeper and wider networks can fit the training dataset with
ease, achieving high accuracy (Zhang et al., 2016). However,
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this raises a new concern, to what extend the network’s
predictions are likely to be correct? As these deep network
tries to reduce the negative log-likelihood loss, they overfit
to datasets, rendering its predictions to be over-confident and
less trustworthy (Mukhoti et al., 2020). Here, the network
is termed to be poorly calibrated. In a calibrated model,
the accuracy matches the prediction confidence. A well-
calibrated model is of utmost importance in a real-world
application, at times assisting the user make a life-saving
decision. For instance, letting the doctor decide whether to
perform further diagnosis should the model’s predictions
be of low confidence. Network miscalibration is strongly
related to the network’s expanding capacity and the lack of
regularization techniques (Guo et al., 2017). Additionally,
the long-tailed dataset has also been found to cause model
miscalibration. As the dataset distribution is biased towards
few very significant classes, in reducing the training loss, the
model’s predictions get over-confident towards these classes,
leading to model miscalibration (see Appendix A.2, Figure
4). This creates additional issues in calibrating probability
prediction with conventional calibration methods.

The importance of model calibration over model accuracy
has been acknowledged and worked upon recently. Most
frequent methods used for model calibration are Platt scal-
ing (Platt, 1999), isotonic regression (Niculescu-Mizil &
Caruana, 2005) and, bayesian binning and averaging (Bella
et al., 2009). Temperature scaling (TS), a variant of Platt
scaling, has been proven to have a positive effect in cali-
brating the model (Guo et al., 2017). In the temperature
scaling technique, the network’s confidence in its prediction
is scaled down by diving the logits with a scalar value, called
the temperature scale (T > 0). The scaled logits help over-
come the problem of overconfidence and thereby attaining
better model calibration.

Most recently, label smoothing (LS) is introduced, a regular-
ization technique to flatten the hard onehot label to improve
accuracy, thereby implicitly reduces the overconfident pre-
dictions and demonstrate better confident calibration and
feature representation (Müller et al., 2019). A scalar smooth-
ing factor controls the smoothing level where a higher value
enforces a larger squeeze in the true label.

Despite the effective performance of TS and LS in probabil-
ity calibration with the standard dataset, there are additional
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issues with a long-tailed dataset where the distribution of
a few classes is significantly higher than the other. In real-
ity, most sensitive applications do not possess a balanced
dataset. Therefore, during training, the model gets biased
towards reducing the loss of the few high-frequency classes,
thereby causing over-confidence and miscalibration. In both
techniques, TS and LS, a scalar smoothing factor applied
uniformly over all the classes do not cater to probability pre-
diction biases introduced by class distribution. In this work,
we propose Class-Distribution-Aware TS (CDA-TS) and LS
(CDA-LS) that incorporates class frequency information to
calibrate prediction probability in the long-tailed dataset.

The key contributions of this paper are as follows:(I) We
introduce a class-distribution-aware temperature scaling
(CDA-TS) and label smoothing (CDA-LS) techniques that
improve model calibration despite training on the long-tailed
datasets; (II) We design a knowledge-distillation (KD) loss
with CDA-TS and demonstrate the superior performance of
our KD loss in self-distillation; (III) We validate the effec-
tiveness of our methods on three long-tailed datasets and
four state-of-the-art probability calibration metrics, uncer-
tainty calibration metric and reliability diagrams.

2. Method
2.1. Preliminaries

Most of the model calibration techniques try to reduce the
over-confident prediction by manipulating either onehot
label or predicted probability. For example, temperature
scaling (TS) downgrades the logits by dividing them using a
scalar temperature value and label smoothing (LS) squeezes
the onehot label with a scalar smoothing factor. In TS, tem-
perature scaled probability is P̂TS = σSM (z/T ), where
temperature T (> 1), logits z and softmax layer σSM . To
find the optimal temperature, a conjugate gradient solver or
a naive line-search is used on a trained model without affect-
ing model accuracy (Guo et al., 2017). In LS, smoothened
label or soft label is PLS = POH(1 − α) + α/N , where
smoothing factor α (0 < 1), onehot label POH and to-
tal number of classes N . The smoothing factor α con-
trols the flatten degree in the smoothened label. A higher
value provides a larger smoothened label. This is also
called soft labels (PLS) and used to calculate CE loss,
LCE =

∑N
c=1−PLS

c log(P̂c), where P̂c) is the predicted
probability. Though both TS and LS are proven to improve
model calibration to an extend, model miscalibration is not
entirely addressed since it can be affected by long-tailed
distribution.

2.2. Class-Distribution-Aware TS

TS addresses model miscalibration by dividing the logits
with an optimal temperature value. By scaling the logits,

TS restricts the model from being overly confident in its
prediction. The TS scales all the logits using a scalar value
uniformly. However, a model trained on a long-tailed dataset
could be biased towards high-frequency classes, resulting
in overly confident logits. There, we introduce a class-
distribution-aware TS (CDA-TS) that incorporates class
frequency information with the optimal temperature. We
construct a vector temperature instead of a scalar by re-
weighting the optimal temperature based on class frequency
in the dataset. In this way, high-frequency classes divide
with a larger value of the temperature and substantially
downgrade the confidence score.

If [f1, f2, ...fN ] are the max-normalized class frequencies
for N total classes and T opt is the optimal temperature then
class-distribution-aware vector temperatures T cda formu-
lates is defined as:

T cda = T opt + γ[f1, f2, ..., fN ] (1)

where, γ is the down-scale factor and the suitable value
of γ = 0.1 is found by the experiments. Therefore, the
final equation of CDA temperature scaling is P̂CDA−TS =
σSM ([z1, z2, ..., zN ]/[T cda

1 , T cda
2 , ..., T cda

N ]).

2.3. Class-Distribution-Aware LS

Label smoothing (LS) limits the network to produce overly
confident predictions by squeezing the true onehot label
in CE loss calculation. In LS, onehot label flattens with
a uniform distribution by using a smoothing factor. How-
ever, high-frequency classes in the long-tailed dataset over-
fit the model, limiting the LS performance with a uniform
smoothing factor. To tackle this problem, we generate a
class-distribution-aware LS (CDA-LS) soothing factor and
replace the scalar smoothing factor in training with LS.
CDA-LS flatten the high-frequency classes with a higher
penalty than low-frequency classes. Similar to CDA-TS, the
class-distribution-aware smoothing factor can be formulated
as:

αcda = α+ γ[f1, f2, ..., fN ] (2)

where, the down-scale factor γ = 0.01 is found by
the experiments. Therefore, soft labels can be gener-
ated as, PCDA−LS = POH(1 − [αcda

1 , αcda
2 , ..., αcda

N ]) +
[αcda

1 , αcda
2 , ..., αcda

N ]/N .

2.4. Self-Distillation with CDA-TS

A popular way to use knowledge distillation (KD) (as well
as self-distillation(SD)) is to apply Kullback-Leibler diver-
gence loss on temperature (T) scaled logits of teacher and
student model (Hinton et al., 2015). A predefined value
of T (e.g., T = 4) is used to produces a softer probability
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Table 1. Performance of Class-aware TS on CIFAR-100-LT, Places-LT and ImageNet-LT dataset with ResNet18, ResNet152 and ResNet10,
respectively.

Dataset Ratio Method ACC↑ ECE↓ SCE↓ TACE↓ BS↓ UCE↓

CIFAR-100-LT

10
Baseline 57.60 0.1801 0.0047 0.0043 0.6115 0.2344

TS (1.551) 57.60 0.0425 0.0034 0.0035 0.5656 0.0502
CDA-TS 57.93 0.0356 0.0032 0.0033 0.5593 0.0305

100
Baseline 38.57 0.3280 0.0082 0.0071 0.8976 0.3892

TS (2.0147) 38.57 0.0372 0.0047 0.0056 0.7580 0.0194
CDA-TS 38.90 0.0280 0.0046 0.0055 0.7526 0.0099

Places-LT 996
Baseline 29.34 0.2987 0.0022 0.0019 0.9590 0.4512

TS (1.7349) 29.34 0.0619 0.0014 0.0016 0.8505 0.1760
CDA-TS 29.63 0.0581 0.0014 0.0016 0.8467 0.1689

ImageNet-LT 256
Baseline 34.83 0.0853 0.0007 0.0006 0.7976 0.2850

TS (1.1200) 34.83 0.0348 0.0006 0.0006 0.7897 0.2301
CDA-TS 35.68 0.0214 0.0006 0.0006 0.7795 0.2116

(b) CIFAR-100-LT (ratio: 100) (b) Places-LT (ratio: 996) (c) ImageNet-LT (ratio: 256)

Figure 1. Reliability graph for CE, TS and CDA-TS with (a) CIFAR-100-LT imbalanced ratio of 100, (b) Places-LT imbalanced ratio of
996 and (c) ImageNet-LT imbalanced ratio of 256.

distribution over the classes while calculating KD loss. Nev-
ertheless, a long-tailed dataset produces overly confident
probability to certain classes, and a fixed value of T is not
tackling the long-tail effect during KD. Similar to CDA-TS,
the information of class distribution can be integrated with
the T in KD loss and formulated as-

LSD =

N∑
c=1

KL
(
σSM

( zt(c)

T cda(c)

)
, σSM

( zs(c)

T cda(c)

))
(3)

where T cda(c) is the CDA temperature for cth class and zt,
zs are the logits of teacher and student network, respectively.
Student loss (LCE) and distillation loss (LSD) are fused to
train the student model.

3. Experiments
3.1. Dataset

The experiments are conducted on three long-tailed datasets:
CIFAR-100-LT (Krizhevsky et al., 2009), Places-LT (Zhou
et al., 2017) and ImageNet-LT (Liu et al., 2019). CIFAR-
100-LT: The 100-class CIFAR-100 long-tailed dataset is

Figure 2. Reliability graph for CE, LS and class-aware LS with
CIFAR-100-LT imbalanced ratio of 10.

generated by following (Cao et al., 2019) with a data dis-
tribution imbalance factor of 10 and 100. Places-LT: The
365-class Places long-tailed dataset with aa imbalance fac-
tor of 996 from (Ren et al., 2020) is adopted. The dataset
consists of 62.5k training images and 36.5k test images.
ImageNet-LT: similar to Places-LT dataset, the 1000-class
ImageNet dataset with an imbalance factor of 256 is also
adopted from (Ren et al., 2020). The dataset comprises
115k training images and 20k test images.
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3.2. Implementation

The two CIFAR-100-LT with the 10 and 100 imbalance
factor are trained on ResNet18 (Zhang et al., 2017) back-
bone. The model is trained using an SGD optimizer with a
batch size of 1024, a momentum of 0.9, the number of train
epochs of 200 and a learning rate of 0.1. For Places-LT and
ImageNet-LT dataset, pre-trained ResNet152 and ResNet18
models from (Ren et al., 2020) are used, respectively. Cross-
entropy (CE) loss is employed in training all the backbone
networks.

4. Evaluation
The model’s performance and its miscalibration are quan-
tified using accuracy (ACC) and various state-of-the-art
calibration error metrics such as Expected calibration error
(ECE) (Guo et al., 2017; Naeini et al., 2015), Static cali-
bration error (SCE), thresholded adaptive calibration error
(TACE), brier score (BS) (Nixon et al., 2019; Ashukha et al.,
2020) and uncertainty calibration error (UCE) (Laves et al.,
2019) (see Appendix B).

As shown in Table 1, the proposed CDA-TS is observed
to outperform both the (a) baseline and (b) TS calibrated
model and improve model calibration in all three long-tailed
datasets. Reliability is also showing better calibration with
CDA-TS in Figure 1, bringing the confidence curve close to
an identify function. The proposed CDA-LS is also observed
to improve model calibration compared to baselines in Table
2 and Figure 2. On the other hand, SD based on CDA
optimal T outperforms (a) base model and (b) SD based
on fixed T (Hinton et al., 2015) in improving accuracy and
model calibration (as shown in Table 3) and Figure 3.

5. Discussion and Conclusion
We have shown that the calibration of a model trained on
a long-tailed dataset can be improved by employing class-

Figure 3. Reliability diagram for baseline-CE, SD with Fixed T
and class-distribution-aware T with CIFAR-100-LT imbalanced
ratio of 10.

Table 2. Top-1 accuracy of class-aware LS on CIFAR-100-LT
dataset. LS smoothing factor α = 0.1 is assigned for all the
experiments.

Imb. Ratio: 10 Imb. Ratio: 100
ACC ECE UCE ACC ECE UCE

Baseline 57.60 0.180 0.234 38.57 0.328 0.389
LS 57.98 0.092 0.153 37.90 0.045 0.040

CDA-LS 58.35 0.078 0.137 37.94 0.038 0.047

Table 3. CIFAR-100-LT performance of Class-distribution-aware
TS on self-distillation with fixed temperature is set to 4 and optimal
(opt.) temperature obtains 1.551 for the imbalanced ratio of 10.

Method ACC↑ ECE↓ TACE↓ UCE↓
Baseline 57.60 0.1801 0.0043 0.2344
SD (4) 57.64 0.1974 0.0044 0.2498

SD Opt. T (1.551) 57.95 0.1714 0.0042 0.2264
SD CDA Opt. T 58.67 0.1694 0.0042 0.2230

distribution-aware temperature scaling (CDA-TS) and label-
smoothing (CDA-TS). CDA-TS has shown improvement
across accuracy and all calibration error matrix of mod-
els trained on CIFAR-100-LT, Places-LT and ImageNet-LT.
While the proposed CDA-LS technique outperformed the
traditional LS techniques in most of the metrics, the scalar
LS techniques seem to perform better on other uncertainty
calibration error metrics for high imbalance factor (as in
Table 2). Furthermore, we show that the CDA-TS does not
hinder knowledge distillation. It outperforms the baseline
model and model trained using TS in accuracy (as in Ta-
ble 3). It is observed that, while the use of TS generally
increased calibration error when trained on highly imbal-
anced data, the proposed CDA-TS introduces lesser error
compared to the TS technique.

Overall, we have shown that, by incorporating knowledge on
class distribution, the CDA-TS and CDA-LS improve model
calibration. Additionally, LS is known to hinders knowledge
distillation (Müller et al., 2019; Shen et al., 2021). There-
fore, we further extend our work and show that CDA-TS
improves accuracy and introduce lesser calibration error
during knowledge distillation. In the future, we aim to study
the effects of CDA calibration techniques in domain adap-
tation and introduce CDA loss function to improve model
accuracy and calibration simultaneously.
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A. Related Work
A.1. Network Calibration

Several techniques are being introduced for calibrating net-
works trained on datasets with the less biased class dis-
tribution. The common methods are temperature scaling,
isotonic regression, deep ensemble, label smoothing, and
mixup. Guo et al. (2017) show that modern neural network
is poorly calibrated, and temperature scaling (TS) is effec-
tive in calibration prediction. Variants of TS are also being
explored. TS is extended to drop-out variational inference
to produce well-calibrated model uncertainty (Laves et al.,
2019). Local temperature scaling is developed by focusing
on calibration in multi-label semantic segmentation (Ding
et al., 2020). Other variations of TS include attended temper-
ature scaling (Mozafari et al., 2018), bin-wise temperature
scaling (Ji et al., 2019) and TS with focal loss (Mukhoti
et al., 2020). Dirichlet calibration, a multiclass calibra-
tion method, is introduced using Dirichlet distribution (Kull
et al., 2019). Recently, label smoothing presents as one of
the efficient regularization techniques to improve the confi-
dence calibration and feature representation (Müller et al.,
2019; Islam et al., 2020).

A.2. Long-Tailed Dataset

Long-tail is the common issue for pragmatic deep learning
applications, consisting of extremely imbalanced class dis-
tribution in the training dataset (see Figure 4). There are
three general approaches to tackle long-tailed dataset, (a)
re-sampling (Byrd & Lipton, 2019; Buda et al., 2018), (b)
Re-weighting (Huang et al., 2019), and (c) incorporating
class frequency information (Cao et al., 2019; Ren et al.,
2020). We are particularly interested in class frequency-
based techniques in this work. Label distribution aware
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Figure 4. Relation of class-frequency-distribution and correspond-
ing confidence score on CIFAR-100-LT.

margin Loss is introduced to learn the imbalanced dataset
in visual classification tasks (Cao et al., 2019). Balanced
meta-softmax is designed with class distribution and meta-
learning (Ren et al., 2020) where balanced group softmax
trains the model group-wise to balance the classifier.

A.3. Self-Distillation

Self-distillation (SD) or knowledge distillation (KD) is a
kind of transfer of knowledge from a teacher model to a
student model by commonly minimizing an objective func-
tion (Ba & Caruana, 2013; Crowley et al., 2018). A popular
way to do this is by calculating the Kullback-Leibler diver-
gence loss between the temperature scaled probability of
teacher and student models (Hinton et al., 2015). Hardmax
and softmax with temperature are used to perform self dis-
tillation for overparameterized neural network (Dong et al.,
2019).

B. Calibration Metrics
The model’s performance and its miscalibration are quan-
tified using various state-of-the-art calibration error met-
rics. Expected calibration error (ECE) (Guo et al., 2017;
Naeini et al., 2015) is used as the base calibration met-
ric. ECE computes the discrepancy between accuracy and
confidence probability. It can be formulate as, ECE =
B∑

b=1

n[b]

N | Acc[b] − Conf[b] |, where B, N , n[b], Acc[b]

and Conf[b] are the total number of bins, total number
of samples, and number of samples, accuracy and confi-
dences in bth bin. However, it is indicated that ECE is
sensitive to bin number and unable to present class-wise
model calibration (Nixon et al., 2019). Static calibration
error (SCE), thresholded adaptive calibration error (TACE),
brier score (BS) are introduced to deal with the limitation of
ECE and determine accurate calibration error (Nixon et al.,
2019; Ashukha et al., 2020). TACE can be formulated as

TACE = 1
KR

K∑
k=1

R∑
r=1
| Acc[r,c] − Conf[r,c] |, where R

is a number of calibration ranges with threshold t, Acc[r,c]
and Conf[r,c] are the accuracy and confidence in r range
and c class. We also calculate the uncertainty calibration
error (UCE) by following (Laves et al., 2019). The formula
for UCE is similar to ECE except determining uncertainty
calibration instead of probability calibration. Therefore,

UCE =
B∑

b=1

n[b]

N | Err[b] − Uncert[b] | where, total bin is

B, number of samples in bth bin is n[b] and error and un-
certainty in the corresponding bin are Err[b] and Uncert[b]
respectively. For simplicity we assigned bin size of 10 for
all the calibration metrics and threshold of 10−3 for TACE.
The reliability diagram is used to visualize the model’s mis-
calibration for under-confidence or over-confidence.


