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Abstract
Invariant Risk Minimization(IRM) is a promising
framework to prevent the model from relying on
spurious features. Various variants of IRM have
been proposed since the initial work (Arjovsky
et al., 2019). However, can IRM and its variants
work well on deep models (e.g. ResNet-18 and
ResNet-50)? Except for several negative results
of IRMv1 mentioned in Gulrajani & Lopez-Paz
(2020); Ahmed et al., this question remains un-
derexplored so far. In this work, we undertake
an extensive empirical evaluation of IRM meth-
ods on deep models with a synthetic dataset from
CIFAR-10 and MNIST. Among the tested IRM
methods, InvRat is the only one that can consis-
tently learn invariant models in all the considered
settings. However, the performance of InvRat
still heavily relies on the way of parameterization.
Several popular IRM variants (i.e. IRMv1 and
REx) perform poorly, especially on ResNet-50.
We release the implementations of the dataset and
models to facilitate further research.

1. Introduction
In recent decades, deep learning based approaches have
achieved great success in many real-world applications,
such as computer vision (Krizhevsky et al., 2012; He et al.,
2016), speech recognition (Graves et al., 2013), and game
playing (Silver et al., 2017). Most of the approaches are
optimized by Empirical Risk Minimization (ERM) under
the i.i.d assumption that the training and test data are in-
dependently and identically drawn from the same distribu-
tion. However, the i.i.d assumption does not always hold
in real scenarios. Specifically, the ERM-based models face
catastrophic performance drop when the test distribution is
different from the training one.

To relax the i.i.d assumption, Arjovsky et al. (2019) pro-
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poses Invariant Risk Minimization (IRM) that regularizes
the model to learn invariant features rather than spurious
features. Specifically, IRM considers the setting that the
training data is collected from several environments, where
the correlation of spurious features with the target changes
in different environments while the correlation of invariant
features remains the same. The goal of IRM is to learn
an invariant representation that merely depends on invari-
ant features. Hopefully, the model can be robust to unseen
environments based on the learned invariant features.

IRM becomes popular and inspires a line of works. Sev-
eral variants are proposed in Ahuja et al. (2020); Chang
et al. (2020); Krueger et al. (2020); Xie et al. (2020). The
theoretical property of IRM is analyzed in Rosenfeld et al.
(2020); Ahuja et al. (2020g); Kamath et al. (2021). However,
despite the popularity of IRM, it remains underexplored on
the question of whether IRM methods can work out well
on deep models (i.e. ResNet-18 and ResNet-50), except for
some negative results of IRMv1 mentioned in Ahmed et al.;
Gulrajani & Lopez-Paz (2020).

In this work, we carry out extensive experiments of IRM
methods on ResNet-18 and ResNet-50 on a synthetic dataset
from CIFAR-10 and MNIST. Different from Aubin et al.
(2021); Ahmed et al.; Gulrajani & Lopez-Paz (2020), our set-
tings is kept as close as possible to the CMNIST (Arjovsky
et al., 2019) to retain simplicity. However, even in the con-
sidered settings, we find that several popular variants of
IRM, i.e. IRMv1 (Arjovsky et al., 2019) and REx (Krueger
et al., 2020), fail on ResNet-50. InvRat (Chang et al., 2020)
performs well on the considered settings of ResNet-18 and
ResNet-50. However, we find that the parameterization
methods play a non-trivial role in InvRat. In several set-
tings, InvRat with the parameterization method adopted in
Chang et al. (2020) works much less effectively than the
parameterization proposed in this work in Section 3.

We summarize our contributions as follows:

• We compare IRM methods on deep models (i.e.
ResNet-18 and ResNet-50) on a synthetic dataset con-
structed from CIFAR-10 and MNIST. InvRat (Chang
et al., 2020) performs well on both ResNet-18 and
ResNet-50 , whereas, several popular IRM variants, i.e.
IRMv1 and REx, fail on ResNet-50.
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• We find that the parameterization methods play a non-
trivial role in InvRat. The parameterization method
adopted in Chang et al. (2020) works much less ef-
fectively in several settings than the one proposed in
Section 3.

• We provide the code of the dataset and the implemen-
tation of several IRM variants at https://github.
com/IRMBed/IRMBed, which serves as a baseline
for future work.

2. Invariant Risk Minimization(IRM) and Its
Variants

In this section, we will review IRM and its several variants.

Preliminaries. Throughout the paper, upper-cased letters,
X and Y , denote random variables; lower-cased letters, x
and y, denote deterministic instances. Following Arjovsky
et al. (2019), we consider the datasets D := {De}|Etr|i=1 =

{(xei , yei )}
|Etr|
i=1 , which are collected from multiple environ-

ments Etr. The instance (xe, ye) from De follows the prob-
ability distribution De. We then use hu(·) and gv(·) to
denote the representation extractor and the classifier, which
are parameterized by u and v respectively. The goal of out-
of-distribution generalization is to minimize the following
target:

sup
e∈E

Re(gv(fu(X
e)), Y e),

where Re(gv(hu(X)), Y ) = E
(x,y)∼De

l(gv(hu(x)), y).

Here l is the loss function. We denote Re
u,v :=

Re(gv(hu(X)), Y ) for simplicity in the rest of the paper.

Invariant Risk Minimization(IRM). Formally, IRM aims
to solve the following problem:

minu,v
∑

e∈Etr R
e
u,v (1)

s.t. v ∈ argminve Re
u,ve ,∀e ∈ Etr

IRM described in Equation 1 aims to learn an invariant rep-
resentation hu(X) based on which the classifier gv is simul-
taneously optimal for all environments. In order to achieve
such constrain, hu(X) should screen out the environment-
dependent (spurious) features and retain the environment-
independent (invariant) features.

IRMv1. Since (1) is a challenging bi-level optimization
problem, Arjovsky et al. (2019) proposes IRMv1 to approx-
imate the solution of (1). IRMv1 is shown as following:

min
u,v

∑
e∈Etr

Re
u,v + λ‖∇vR

e
u,v‖2 (2)

InvRat (Chang et al., 2020). InvRat uses another classi-
fier, g′v′(·, E), to test whether gv(·) is simultaneously opti-
mal for all environment. The only difference between the

two classifiers is that g′v′(·, e) also takes the environment
index(embedding) as additional input. If knowing the envi-
ronment index e can help to predict Y better, it means that
gv(·) is not optimal for some environment e. InvRat can be
formulated as a minimax game (3):

min
u,v

max
v′

∑
e

Re(gv(hu(X)), Y ) + (3)

λ
∑
e

Re(gv(fu(X)), Y )−Re(g′v′(fu(X), e), Y )

Besides IRMv1 and InvRat, there are several other IRM
variants: REx (Krueger et al., 2020) and RVP (Xie et al.,
2020) propose to penalize the variance of losses of different
environments; IRMGame (Ahuja et al., 2020) seeks for
invariant presentation by finding the Nash equilibrium of an
ensemble game.

3. Parameterizing InvRat
InvRat shown in (3) is a flexible framework. One may have
several possible choices to parameterize g′v′(fu(X), E). In
the following part, we first introduce the parameterization
adopted in Chang et al. (2020) and then discuss about an-
other parameterization method which gains a strong empiri-
cal performance.

InvRat with Environmental emBedding (InvRat-EB)
(Chang et al., 2020). Let’s consider a sample (x, y) from
environment e. Chang et al. (2020) first learns a embedding
functionm(·) that maps e to a latent space. The classifier g′v′

consumes both the extracted feature hu(x) and environment
embedding m(e) to make prediction, i.e. g′v′(hu(x),m(e)).
We name this parameterization method as InvRat with en-
vironmental embedding (InvRat-EB) because it learns an
embedding for each environment.

min
u,v

max
v′,m

∑
e

Re(gv(hu(X)), Y ) + (4)

λ
∑
e

Re(gv(hu(X)), Y )−Re(g′v′(hu(X),m(e)), Y )

InvRat with Environmental Classifier (InvRat-EC). Here,
we present another method to parameterize InvRat. We train
several environmental classifiers, {gve}e, one for each en-
vironment. Specifically, gve is trained to fit environment
e. Each environmental classifier gve shares the same struc-
ture with the shared classifier gv. Then (3) converts to the
following objective:

min
u,v

max
{ve}e

∑
e

Re(gv(hu(X)), Y ) + (5)

λ
∑
e

Re(gv(hu(X)), Y )−Re(gve(hu(X)), Y )

https://github.com/IRMBed/IRMBed
https://github.com/IRMBed/IRMBed
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Proposition 1 InvRat-EC defined in (5) is equiva-
lent to InvRat defined in (3) with g′v′(·, e1) =∑

e2
gve2 (·)I(e1, e2),∀e1 ∈ Etr, where I(e1, e2) is the in-

dicator function that outputs 1 if e1 = e2, otherwise 0. Each
element of {gve} share the same structure with gv .

Proposition 1 shows that InvRat-EC is contained in InvRat
with g′v′ chosen from a special function class. In the inner
loop, we aim to optimize {gve}e by maximizing the negative
loss −

∑
eR

e(gve(hu(X)), Y ). The loss gap between the
gv and gve indicates how much environmental (spurious)
information is contained in the representation hu(X), which
serves as the penalty of violating the invariance condition.
In the outer loop, the representation function and shared
classifier are optimized to minimize the empirical loss as
well as the invariance penalty. The algorithm of InvRat-EB
is shown in Algorithm 1

Algorithm 1 InvRat-EC
Input: environment number N , penalty weight λ, learning
rate η , η′ , function hu, gv, {gve}Ne=1, loss function l, the
number of inner steps K.
while Training do

for e = 1:N do
for i=1:K do

Obtain Ne samples from environment e.
Re

u,ve = 1/Ne

∑Ne

j=1 l(gve(hu(xj)), yj)
ve ← ve − η′∇veRe

u,ve

Obtain Ne samples from environment e.
Re

u,v = 1/Ne

∑Ne

j=1 l(gv(hu(xj)), yj)

u← u− η∇u

(∑N
e=1R

e
u,v + λ(Re

u,v −Re
u,ve)

)
v ← v − η∇v

(∑N
e=1R

e
u,v + λ(Re

u,v −Re
u,ve)

)

4. Experiments and Results
4.1. Dataset and Experimental Setup

CIFAR-MNIST dataset: Inspired by Shah et al. (2020),
we construct a CIFAR-MNIST dataset, in which each image
is synthesized by concating two component images, one
from CIFAR-10 and the other from MNIST. We make the
CIFAR-10 and MNIST component behave as invariant and
spurious features, respectively. Specifically, the label of the
synthesized image is generated from the CIFAR-10 compo-
nent and the MNIST component exhibit a high but unstable
correlation with the label. Figure 1 shows an illustration of
the dataset. Following Arjovsky et al. (2019), we construct
several environments. The MNIST component’s correlation
with the label changes across different environments while
the CIFAR-10 component’s correlation remains invariant.

We consider two settings for the training sets: 1). 2 Env:

Figure 1. Illustration of the synthetic dataset from CIFAR-10 and
MNIST. We first randomly select two classes (”car” and ”bird”)
from CIFAR-10. Then each CIFAR-10 image is concatanated with
an image from MNIST (”0” and ”1”). The CIFAR-10 component
serves as the invariant feature and the label is generated from
the CIFAR-10 component. The MNIST component serves as the
spurious feature. The MNIST component is highly correlated with
the label in the training dataset, however, the correlation reverses
in the testing dataset.

the training data contains two environments, in which the
spurious correlations are 99.9% and 80.0%, respectively,
2). 4 Env: the training data contains four environments, in
which the spurious correlations are 99.9%, 95.0%, 90.0%,
80.0%, respectively. In both settings, we set the correlation
of spurious features to 10% in testing environment to see
whether the learned model relies on the spurious feature.
We also add 10% label noise as Arjovsky et al. (2019) does.

Experimental setup. In this work, we adopt the ResNet-18
and ResNet-50 (He et al., 2016) for experiments. We initial-
ize the network with ImageNet-pretrained weight and train
for 100 epochs. The networks are optimized by SGD with
the learning rate as 0.01. The batch size is 128 and 32 for
ResNet-18 and ResNet-50, respectively. We search for the
best penalty weight in [1, 10, 102, 103, 104, 105]. We inves-
tigate both imposing penalty on the output(i.e. choose the
scalar multiplied on the output as w for IRMv1 (Arjovsky
et al., 2019)) and on the hidden feature (i.e. choose the fully
connected layer as gv for IRMv1).

We append (o) and (h) after the model name to denote im-
posing penalty on the output and the hidden feature, re-
spectively. One-layer fully connected module is adopted in
ResNet for models except InvRat-EB. We use a two-layer
fully connected module as g′v′ for InvRat-EB to ensure that
the embedding of environment can interact with the features.
The hidden dimension of the two-layer fully connected NN
is 512 for ResNet-18 and 2048 for ResNet-50. We search
for the best dimension of environment embedding in [64,
128, 256, 512] for InvRat-EB. Following Goodfellow et al.
(2014), we use iterative gradient ascend and descend to
solve the minimax game of InvRat-EC and InvRat-EB.
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4.2. Experimental results

Table 1 shows the test accuracy of different IRM methods
on the CIFAR-MNIST dataset. ERM and ERM(Oracle) in
Table 1 stand for empirical risk minimizing on the CIFAR-
MNIST dataset with and without spurious feature, respec-
tively. ERM(Oracle) achieves over 80% accuracy on both
ResNet-18 and ResNet-50, whereas, the test accuracy of
ERM is less than 40%. This means that ERM heavily re-
lies on the spurious feature. The test accuracy of ERM on
ResNet-50 is even worse than that of ResNet-18. This is
consistent with the finding in Sagawa et al. (2020) that over-
overparameterization exacerbates spurious correlations.

Results on ResNet-18. IRMv1(o) has 70.8% test accuracy
on ResNet-18(2Env). However, the test accuracy drops to
53.6% on ResNet-18 with four environments. IRMv1(h)
does not work out well on both ResNet-18(2Env) and
ResNet-18(4Env). This indicates that IRMv1 fails to learn
invariant representations when imposing penalty on the hid-
den feature. Notably, REx, RVP and IRMGame do not
perform well in the considered settings. InvRat-EB(h) and
InvRat-EC(h) both achieve over 75% accuracy ResNet-
18(2Env). Though the test accuracy of InvRat-EB(h) is
averagely 68.6% on ResNet-18(4Env), the standard devia-
tion is 9.4%, which indicates the instability of InvRat-EB(h)
in this setting. InvRat-EC(h) is the only method that obtains
an accuracy higher than 70% on ResNet-18(4Env).

Results on ResNet-50. Table 1 shows that IRMv1, REx,
RVP and IRMGame all fail on both ResNet-50(2Env) and
ResNet-50(4Env). Notably, IRMv1 works out well on
ResNet-18(2Env) but fails on ResNet-50(2Env). Similar
results can also be found in InvRat-EB, the performance of
which deteriorates on ResNet-50. It indicates that deeper
network may add more difficulties in learning invariant rep-
resentation. The performance of InvRat-EC(h) is the best
among the considered IRM variants on ResNet-50. Its accu-
racy is 81.2% on ResNet-50(2Env) and 77.9% on ResNet-
50(4Env).

Regularizing on the output or the hidden feature? Com-
paring InvRat-EC(h) with InvRat-EC(o), we can see that
regularizing on the hidden feature consistently improves the
performance over regularizing on the output. This is consis-
tent with the common practice in several related fields, i.e.
Domain Adaption (Ganin et al., 2016; Tzeng et al., 2014)
and Domain Generalization (Shankar et al., 2018; Piratla
et al., 2020). However, IRMv1(h) performs much worse
than IRMv1(o). IRMv1(h) fails even in the setting ResNet-
18(2Env) where IRMv1(o) has 70.8% test accuracy. This
shows that IRMv1 is less effective when function space of
gv becomes larger.

InvRat-EB vs InvRat-EC. As shown in Table 1, InvRat-
EB(h) is less effective than InvRat-EC(h) in three settings,

ResNet-18(4Env), ResNet-50(2Env) and ResNet-50(4Env).
InvRat-EB(h) only has 55.9% test accuracy on ResNet-
50(4Env), which is significantly worse than InvRat-EC(h).
In Table 2, we provide more results InvRat-EB on ResNet-
50(2Env) and ResNet-50(4Env). Specifically, we try dif-
ferent embedding size and number of hidden neurons. We
find that InvRat-EB does not perform well on these com-
bination of hyper-parameters. These results indicate that
the parameterization method has a significant influence on
the performance of InvRat. According to our observation,
InvRat-EC(h) is more stable than InvRat-EB(h). We leave it
to future work to understand the mechanism of the parame-
terization methods.

Table 1. Test Accuracy of Different Models on the CIFAR-MNIST
Dataset. “o” and “h” denote imposing penalty on the output and
the hidden feature, respectively. “Oracle” denotes that the spurious
feature is removed (the mnist components are replaced by blank
images).
Method ResNet-18 ResNet-50

2 Env 4 Env 2 Env 4 Env

ERM(Oracle) 83.7±1.5 83.2±0.9 84.8±0.8 85.0±0.8

ERM 39.5±0.4 35.7±0.7 38.1±0.8 32.0±2.1
IRMv1(o) 70.8±0.4 53.6±3.1 43.3±12.5 51.8±4.9
REx(o) 52.5±2.2 44.5±1.7 51.1±2.2 37.6±7.3
RVP(o) 49.4±3.1 49.4±1.1 50.2±0.3 50.1±0.7
IRMv1(h) 48.6±2.1 39.1±4.8 43.3±3.2 46.7±2.2
IRMGame(h) 43.0±1.9 37.2±2.8 44.5±1.5 40.1±5.5
InvRat-EB(h) 77.6±2.0 68.6±9.4 68.5±3.6 55.9±14.4
InvRat-EC(o) 67.5±0.2 67.7±4.0 73.8±1.7 68.4±1.8
InvRat-EC(h) 75.8±1.2 73.4±4.0 81.2±1.3 77.9±4.2

Table 2. Experimental results of InvaRat-EB (ResNet50) on
CIFAR-MNIST dataset. We try the combination of different em-
bedding size (denoted as ”Emb”, and different size of hidden
channel in gv (denoted as ”Hid”).

Emb
Hid 2 Env 4 Env

512 2048 512 2048
64 50.0±4.0 68.5±3.6 47.7±19.4 31.0±1.6
128 64.3±8.6 47.9±3.7 39.0±2.7 37.7±2.1
256 68.7±12.3 54.5±15.6 49.4±10.1 55.9±14.4
512 67.2±8.8 56.4±9.3 54.9±14.5 44.5±7.0

5. Conclusion
In this work, we construct a synthetic dataset to study the
IRM methods on deep models. The performance of IRM
methods is significantly different on deep models than on
shallow models as reported in existing works. This work
serves as a baseline for IRM methods on deep models. We
make the dataset as well as the implementation of IRM
methods public to facilitate further research.
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