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Abstract
While Adversarial Training remains the standard
in improving robustness to adversarial attack, it
often sacrifices accuracy on natural (clean) sam-
ples to a significant extent. Dual-domain training,
optimizing on both clean and adversarial objec-
tives, can help realize a better trade-off between
clean accuracy and robustness. In this paper, we
develop methods to improve dual-domain training
for large adversarial perturbations and complex
datasets. We first demonstrate that existing meth-
ods suffer from poor performance in this setting,
due to a poor training procedure and overfitting to
a particular attack. Then, we develop novel meth-
ods to address these issues. First, we show that
adding KLD regularization to the dual training
objective mitigates this overfitting and achieves
a better trade-off, on CIFAR-10 and a 10-class
subset of ImageNet. Then, inspired by domain
adaptation, we develop a new normalization tech-
nique, Dual Batch Normalization, to further im-
prove accuracy. Combining these two strategies,
our model sets a new state of the art in trade-off
performance for dual-domain adversarial training.

1. Introduction
The ability of carefully-crafted adversarial examples to fool
deep neural networks (Biggio et al., 2013; Szegedy et al.,
2014; Goodfellow et al., 2015) presents a significant secu-
rity vulnerability many safety-critical settings that rely on
neural networks. While Adversarial Training (Madry et al.,
2018) has become the standard technique for robust train-
ing, it degrads the model’s performance on natural (clean)
samples, an undesirable result for applications where clean
performance remains the priority. Currently, there are two
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popular approaches. The first is to use a hybrid loss function
γLcl + (1− γ)Ladv, where Lcl is the loss on clean samples
and Ladv on their adversarial counterparts (Goodfellow et al.,
2015). We denote this method as Mixed Adversarial Train-
ing (MAT). The other technique is TRADES (Zhang et al.,
2019), which replaces Ladv with a more theoretically-sound
KL divergence term. Both methods perform admirably
against small adversarial perturbations, but surprisingly,
their performance erodes when employed against larger
perturbations and more complex datasets. In this paper, we
explore techniques to gain better control over this trade-off.

We first systematically investigate this phenomenon. Xie &
Yuille (2020) posit that when the perturbation and dataset
complexity increase, the clean and adversarial distributions
diverge, making dual-domain training more difficult. We
demonstrate that this difficulty is particularly acute due to a
subtle algorithmic error made by nearly all dual-domain
training strategies today when the trained network con-
tains Batch Normalization (BN). The standard practice is
to forward-propagate these batches through the network
sequentially, one after the other. However, this practice re-
sults in a mismatch between training and testing behavior of
BN, hurting performance. Concatenating these two batches
into a single large batch establishes consistency and elimi-
nates this issue. On CIFAR-10 (ε = 16/255), concatenated
batching improves both clean and robust performance of
TRADES by 3.4% and 5.7% respectively (see Table 1).

However, even with concatenated batching, a second, more
perplexing problem emerges. Under certain conditions, a
network trained with MAT or even TRADES overfits to the
weak PGD attack used during training, providing a false
indication of robustness. A model suffering from the “false
robustness” issue will offer no robustness against stronger
attacks like AutoAttack (Croce & Hein, 2020) at test time.
This phenomenon was previously observed by Xie & Yuille
(2020) on extremely large networks trained with MAT on
the ImageNet dataset, and attributed to the BN layers being
unable to reconcile the highly-divergent clean and adversar-
ial distributions. We demonstrate that this issue occurs more
generally than previously speculated, manifesting even on
CIFAR-10 (ε = 16/255) with smaller Pre-Act ResNet-18
models, and is not unique to networks with BN.
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We further show that the KL divergence term in the
TRADES objective acts as a regularizer, driving the inter-
mediate clean/adv. distributions closer together. Adding
a similar KL regularizer to the MAT objective can drive
the same effects and eliminate its false robustness issue, en-
abling it to realize all the benefits of BN and achieve better
trade-off performance than even TRADES on CIFAR-10
(ε = 16/255) (Fig. 2). Finally, we propose Dual Batch
Normalization (DBN), an improved formulation of BN for
dual-domain training. Our scheme maintains two sets of
statistics, one for clean samples and one for adversarial,
and utilizes a Gaussian Mixture Model to infer what com-
bination of these statistics to use to normalize a sample (at
train and test time). We show that the combination of con-
catenated batching, KL regularization, and DBN enables
MAT to outperform all prior methods and establish a new
state-of-the-art trade-off on CIFAR-10 (ε = {8, 16}/255)
& Imagenette (ε = 16/255) (see Fig. 3).

2. Background and Related Work
While Adversarial Training (Madry et al., 2018) consistently
achieves strong robustness, it often degrades model perfor-
mance on clean samples, as only the adversarial objective is
optimized. To mitigate this, early papers such as Goodfel-
low et al. (2015) proposed to simply optimize the model on
both clean and adversarial samples. We denote this method
as Mixed Adversarial Training (MAT), with objective:

LMAT(x, y; θ) = γLCE(x, y; θ) + (1)
(1− γ) max

‖δ‖p≤ε
LCE(x+ δ, y; θ)

LCE denotes the cross-entropy loss, and γ controls the trade-
off between clean accuracy and robustness. To develop a
more theoretically-principled trade-off, Zhang et al. (2019)
proposed to minimize the KL divergence between clean
& adversarial logits, rather than adversarial cross-entropy.
Their method, TRADES, achieves the state-of-the-art trade-
off, consistently outperforming MAT (Gowal et al., 2021):

LTRADES(x, y; θ) = LCE(x, y; θ) + (2)
β max
‖δ‖p≤ε

DKL(f(x; θ) ‖ f(x+ δ; θ))

The robust loss weight β controls the trade-off. Tsipras et al.
(2019) demonstrated that there may be an inherent tension
between robustness and accuracy, making the trade-off in-
evitable. Optimizing this trade-off thus becomes paramount.

3. Problems with Dual-Domain Training
3.1. Sequential vs. Concatenated Batches

At each training iteration of MAT and TRADES, we train
on both the clean and adversarial versions of the input batch.

The current standard is to feed the clean/adv. batches to the
model sequentially, one after the other, rather than concate-
nating them into a single large batch first. The official code
for TRADES1 as well as a re-implementation of MAT by
Tramèr et al. (2018)2 follow this convention. This seemingly
inconsequential distinction has not been discussed in prior
work, to the extent of our knowledge. Yet, it represents a key
algorithmic error that can significantly erode performance.

The only difference between sequential and concatenated
batching lies in the BN layer. In sequential batching, the
clean and adversarial batches are normalized using their re-
spective mean and variance during training. However, there
is only one set of running statistics (used to normalize test
examples), updated by both clean and adv. moments. This
creates a mismatch between train- and test-time behavior:
training normalization occurs with moments that are specific
to the particular domain (clean or adversarial), while test
normalization uses the “mixed” moments.

Concatenating the clean and adversarial batches during train-
ing eliminates this train-test mismatch. The training mo-
ments are computed over the concatenated batch, so are
mixed themselves. The mixed moments are then used to
update the running statistics, resulting in consistent train-
test behavior. Fig. 4 confirms our hypothesis, showing that
Wasserstein distance between batch and running stats for
sequential version of MAT (MAT-Seq) is larger and less
stable than for concatenated version (MAT-Cat). Concate-
nated batching also significantly boosts empirical perfor-
mance (see Table 1). Notably, for TRADES on CIFAR-10
(ε = 16/255), clean and robust accuracies increase by over
3% & 5% respectively. For MAT on Imagenette, concatena-
tion raises clean accuracy by 5% and robustness by 10%.

3.2. False Robustness Problem

Even with concatenated batching, certain training strategies,
e.g. MAT-Cat with γ ≥ 0.3 (Fig. 5) or TRADES-Cat with
β ≤ 0.5 on CIFAR-10 (ε = 16/255), fail to impart robust-
ness to the model (Table 1) when measured by the strong
AutoAttack benchmark (Croce & Hein, 2020). Intriguingly,
when this problem occurs, the model still exhibits good
robustness under the relatively weak 10-step PGD attack
used during training, and achieves very high clean accuracy
(similar to that of normal training). We will refer to this
phenomenon as “false robustness” for the rest of this paper.

Xie & Yuille (2020) noted the same phenomenon when train-
ing BN models with MAT-Cat on the large-scale ImageNet
dataset (ε = 16/255). They attributed the cause to the BN
layers being forced to model a heterogeneous distribution

1https://github.com/yaodongyu/TRADES.
2https://github.com/ftramer/

ensemble-adv-training.

https://github.com/yaodongyu/TRADES
https://github.com/ftramer/ensemble-adv-training
https://github.com/ftramer/ensemble-adv-training
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Table 1. Accuracy comparison of sequential and concatenated batch dual-domain training (i.e. MAT, TRADES). Pre-activation ResNet-20
is used for CIFAR-10, and ResNet-34 for Imagenette. “Clean” denotes normal accuracy. “PGD” and “AA” respectively represent robust
accuracy under 10-step PGD attack (also used during training) and under AutoAttack, the current state-of-the-art robustness benchmark
consisting of four different attacks (Croce & Hein, 2020). Concatenated batching achieves nearly universal improvement over sequential.
The large drop-off from PGD to AA on MAT-Cat (γ = 0.5) is explained in Section 3.2. Naming convention persists throughout the paper.

CIFAR-10 (ε = 8/255) CIFAR-10 (ε = 16/255) Imagenette (ε = 16/255)

Training Method Clean PGD AA Clean PGD AA Clean PGD AA

MAT-Seq (γ = 0.5) 85.13 45.15 40.77 52.85 21.96 10.08 67.82 24.60 13.99
MAT-Cat (γ = 0.5) 85.53 46.03 43.29 93.95 33.11 3.70 72.43 28.62 23.67

TRADES-Seq (β = 6) 81.26 50.73 46.89 70.42 24.24 17.18 68.51 27.90 22.14
TRADES-Cat (β = 6) 80.75 52.06 48.14 73.82 33.16 22.89 62.14 28.83 23.77

during training, as the distributions of clean and adversarial
inputs are highly divergent. To mitigate the issue, they pro-
posed to 1) maintain a separate set of BNs for clean and adv.
batches to disentangle the mixture distribution, 2) reduce
the number of clean images in the concatenated training
batch, and 3) use batch-unrelated normalization layers, such
as Instance (IN) or Group (GN) Normalization, instead of
BN. We will demonstrate that their hypothesis is partially
correct but incomplete, particularly contrasting the second
and the third points.

First, as Fig. 5 shows, the number of clean images in the con-
catenated batch has no bearing on false robustness; instead,
the ratio of clean to adversarial loss magnitude, which rises
with γ, is the key driver. For MAT-Cat with γ ≤ 0.25, each
training batch still contains the entire clean and adversarial
sample set, meaning that the distribution is as heterogeneous
as γ ≥ 0.3; yet, the model still achieves strong robustness.
Second, this issue is not unique to BN. Using IN/GN instead,
or even just removing BN, still exhibits false robustness but
often requires a larger γ before it manifests (see Table 2).

We hypothesize that, when γ is large and clean loss magni-
tude high, the model is incentivized to construct more promi-
nent classification “pathways” for clean inputs through the
network. Given the dissimilarity between clean and ad-
versarial domains, these clean pathways must inevitably
diverge from the model’s adversarial pathways, putting pres-
sure on the network to learn two vastly different objectives.
As a result, the model overfits to the train-time PGD attack,
failing against stronger attacks. We believe this is analogous
to the well-known gradient obfuscation phenomenon (Atha-
lye et al., 2018).

The 2D visualization in Fig. 1 (top), as well as Table 2, con-
firm this hypothesis. For the setting with false robustness
(MAT-Cat-0.5), the clean and adversarial distributions are
well-separated at various layers, and the sum of Wasserstein
distances between these distributions across all layers is
high. AutoAttack is able to exploit this large dichotomy be-
tween clean/adv. pathways, constructing examples that fall
in between the two distributions (Fig. 1). These examples
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Figure 1. 2D visualization of inputs to three BN layers. Top: MAT-
Cat-0.5. Bottom: MAT-Cat-0.5 + KL (β = 0.4). Both models are
identically trained, apart from the KL regularization. Samples are
flattened and then projected to 2D with PCA. Each dot represents
one of the 500 test samples.

are considered out-of-distribution for both the network’s es-
tablished clean and adversarial pathways; hence, the model
performs poorly on them. Why BN drives this issue at lower
values of γ remains to be studied: perhaps BN improves the
model’s ability to construct divergent clean/adv. pathways.

4. Improving MAT with KL Regularization
While MAT-Cat suffers from false robustness with γ ≥ 0.3,
TRADES-Cat remains more resilient to this phenomenon,
maintaining good AA robustness even with BN (Table 1). In
the TRADES objective (Eqn. 2), clean cross-entropy has a
much larger magnitude than the adversarial KL divergence,
even with β = 6; thus, our prior analysis would indicate
that TRADES-Cat should exhibit an even greater false ro-
bustness issue. However, the distance between intermediate
clean and adversarial distributions remains small (Table 2),
limiting AA’s ability to construct evasive OOD examples.

We hypothesize that the KLD loss, forcing the model to
minimize the distance between clean and adversarial output
distributions, acts as a regularizer for the network. With
this regularization, the network is dis-incentivized from con-
structing highly divergent clean/adv. pathways that drive the
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Figure 2. Clean/robust (AA) trade-off comparison for MAT-Cat-
0.5 + KL (β varying from 0.25 to 4), TRADES-Cat, and MAT-Cat.
All runs are with BN, on CIFAR-10 (ε = 16/255). MAT-Cat-0.5
+ KL exhibits a superior trade-off compared to all other methods.

false robustness issue, despite the demands of the training
objective and the inherent dissimilarity of the two domains.

Thus, we believe that adding a similar KL regularizer term to
MAT-Cat can mitigate its false robustness issue. Concretely:

LMAT+KL(x, y; θ) = LMAT(x, y; θ) + (3)
βDKL(f(x; θ) ‖ f(xadv; θ))

As Table 2 and Fig. 1 show, adding KL regularization to
MAT-Cat-0.5 effectively bridges the gap between the clean
and adversarial distributions and pairs the pathways for the
two domains. Thus, false robustness is mitigated: as Fig. 2
shows, MAT-Cat-0.5 + KL (varying β) achieves a more
optimal clean-robustness trade-off than MAT-Cat and even
TRADES-Cat on CIFAR-10 (ε = 16/255), with higher
clean and AA accuracy in nearly all cases. Thus, MAT+KL
is able to harness the full potential of BN to achieve state-
of-the-art results for this setting. Next, we propose an im-
provement to BN itself to further enhance the performance.

5. Dual Batch Normalization
Xie & Yuille (2020) showed models which exclusively route
clean and adversarial samples through separate BN layers
achieve high accuracy and robustness simultaneously (pro-
vided the correct BN is used at test time). This agrees with
an observation from domain adaptation, that models can be
effectively applied to novel tasks by simply re-computing
BN’s statistics, no need to fine-tune weights (Li et al., 2017).

However, the lack of a clean/adversarial indicator at test
time (telling which BN to use) makes the Separate BN idea
infeasible in practice. Detecting adversarial examples is a
challenging unsolved problem, and many proposed methods
have failed against adaptive adversaries (Carlini & Wagner,
2017; Tramer et al., 2020; Carlini et al., 2019). Neverthe-
less, it is possible to distinguish clean and adversarial inputs
statistically with limited success (Grosse et al., 2017; Pang
et al., 2018). This inspires us to build such detection mech-
anism into BN to create a domain-specific normalization
layer, which we call Dual Batch Normalization (DBN).
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Figure 3. Clean/robust trade-off comparison of our best scheme,
MAT-Cat + DBN + KL, with MAT-Cat and TRADES-Seq (current
state-of-the-art dual-domain training strategies) in different set-
tings. All runs use BN. The dashed lines indicate false robustness.

5.1. Dual Batch Normalization Algorithm

Consider the typical setting where BN is applied to the out-
put of a convolutional layer. Essentially, DBN consists of
two BN’s, one for normal inputs (“clean” BN) and the other
for adversarial (“adversarial” BN). Each BN’s running statis-
tics are updated with those domain-specific moments, i.e.
(µcl, σ

2
cl) for clean BN, and (µadv, σ

2
adv) for adversarial BN.

Any input goes through both BN’s, and its normalized out-
puts are combined by a weighted average. The normalized
input x̂, at both training and test time, is given by:

x̂ = pcl ·
(
x− µcl

σcl

)
+ padv ·

(
x− µadv

σadv

)
(4)

The weight, pcl and padv, is the probability of an input x
belonging to the clean and adversarial domain respectively,
under an assumption that each distribution is C-dimensional
independent Gaussian. Similarly to BN, the parameters
µcl, σcl, µadv, σadv are computed using the samples from
the batch during training and are replaced by the running
moments for testing. The running statistics are kept and
updated separately for the two BN’s and the two domains.
See Appendix F and Eqn. 11 for the complete formulation.

5.2. Experimental Results

We combine the improvements we have proposed in this pa-
per (batch concatenation, KL regularization, DBN) and com-
pare the accuracy-robustness trade-off performance with
TRADES-Seq and MAT-Cat, the current state-of-the-art
dual-domain training strategies, for various settings in Fig. 3.
Our MAT-Cat + DBN + KL achieves more optimal trade-off
curves than the baselines across the board, particularly with
CIFAR-10 and Imagenette (ε = 16/255), establishing a new
state-of-the-art. Further, we show that MAT-Cat with a small
γ can outperform both Adversarial Training and TRADES-
Seq, contrary to previous beliefs. The original TRADES or
TRADES-Seq produces a very poor trade-off in cases other
than CIFAR-10 (ε = 8/255), due to the sequential batching
error. For additional experiments, an ablation study, and
hyperparameter value details, please refer to Appendix F.
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A. Related Work
A.1. Adversarial Training

The popular Adversarial Training paradigm developed by
Madry et al. (2018) involves generating loss-maximizing
adversarial examples from each batch of training data, con-
strained within an `p ball of radius ε. It then computes the
expected adversarial loss over the perturbed batch xadv and
trains the model to minimize this loss. Mathematically, AT
formulates the following saddle point optimization problem,
where θ are the parameters of the model and {(xi, yi)}ni=1

the training set:

argmin
θ

1

n

n∑
i=1

max
δ:‖δ‖p≤ε

LCE(xi + δ, yi; θ) (5)

Madry et al. (2018) used multi-step PGD to compute ad-
versarial examples (inner maximization) and standard op-
timizers, e.g., SGD or Adam, to train the network, using
the cross-entropy loss. Importantly, Adversarial Training
only trains on the adversarial loss, ignoring the standard
objective. Several works have since sought to improve Ad-
versarial Training, by reducing computation time (Shafahi
et al., 2019; Wong et al., 2020) and trying different loss
functions to improve robustness (Zhang et al., 2019; Ding
et al., 2020; Wang et al., 2020; Wu et al., 2020; Gowal et al.,
2021; Rebuffi et al., 2021).

A.2. Batch Normalization

Batch Normalization (BN) (Ioffe & Szegedy, 2015) has be-
come a crucial component of modern state-of-the-art com-
puter vision models, helping them train faster and optimize
more effectively. Given a batch {xi}Bi=1, Batch Normaliza-
tion performs the following normalization on each xi:

BN(xi) =

(
xi − µB√
σ2
B + ε

)
γ + β (6)

Here, µB and σ2
B denote the channel-wise mean and variance

of the input batch {xi}Bi=1. γ and β are the trainable scale
and shift parameters, respectively. At test time, the concept
of a “batch” disappears; thus, BN uses running statistics
µR and σ2

R, computed during training as an exponential
moving average of the training batch moments µB and σ2

B,
to normalize each test point xi.

The reasons driving BN’s empirical performance improve-
ment in the natural setting have been extensively studied.
Ioffe & Szegedy (2015) postulated that BN standardizes the
input distribution to each layer of the network, mitigating an
“internal covariate shift” phenomenon and enabling more
independent training layer-by-layer. Digging deeper, San-
turkar et al. (2018) found that BN instead improves training
speed and stability by increasing the β-smoothness of the

optimization landscape. Several studies have claimed that
BN increases adversarial vulnerability of the model, par-
ticularly for adversarial training with large perturbations
on complex datasets (Xie & Yuille, 2020; Galloway et al.,
2019; Awais et al., 2020; Benz et al., 2020). In this study,
we dig deeper into these claims in order to better understand
BN’s impact on adversarial training.

B. Experiment Setup
We provide detailed descriptions of our training frameworks
below. The DNNs we experiment with all use ReLU as the
activation function and are trained using SGD (momentum
of 0.9). We use early stopping during training, i.e., we
evaluate the model at the end of each epoch and only save
the checkpoint with the highest sum of clean and adversarial
validation accuracy. Dataset-specific training details are
provided below.

CIFAR-10. We use a Pre-Activation ResNet-18 model (He
et al., 2016) for all experiments and perturbation budgets
ε. Unless otherwise specified, we use the standard formula-
tion of this model, with Batch Normalization (BN) layers
within each block. We train all models for 80 epochs with
a batch size of 128 (thus, concatenated clean-adversarial
batches have a batch size of 256). We use untargeted 10-
step PGD with step size of 2/255 for ε = 8/255 and 4/255
for ε = 16/255, and uniform random initialization (no
restarts), for training. The initial learning rate is set to 0.05,
and is decreased by a factor of 10 at epochs 40, 55, and 70.
Weight decay is set to 5× 10−4. Standard data augmenta-
tion (random crop, flip, scaling, brightness jitter) and input
normalization is also used.

Imagenette. The hyperparameters are almost identical to
those of CIFAR-10. We use a ResNet-34 model with BN,
training for 80 epochs with a batch size of 64. We use
SGD, with initial learning rate set to 0.1 and decreased by a
factor of 10 at epochs 40, 55, and 70. Weight decay is set to
5× 10−4. Attack parameters for Imagenette (ε = 16/255)
are the same as for CIFAR-10 (ε = 16/255).

All of our code is written in PyTorch, and we train all our
models on servers with multiple NVIDIA 1080ti and 2080ti
GPUs. Each server has 12 cores of Intel(R) Xeon(R) E5-
2690 (2.60GHz) CPU and 252 GB of memory. With this
setup, a single Adversarial Training run on CIFAR-10 takes
roughly 6 hours, with MAT and TRADES taking roughly
7 and 8 hours respectively. After saving the checkpoint
with the best clean and robust performance on a hold-out
validation set (randomly chosen from 10% of the training
samples for CIFAR-10 and Imagenette), we then evaluate
this model on the entire test set. For AutoAttack (Croce &
Hein, 2020), we use the standard attack mechanism (APGD-
CE, APGD-T, FAB-T, and Square) with default parameters.
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(a) MAT-Seq (γ = 0.25)
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(b) MAT-Cat (γ = 0.25)

Figure 4. Wasserstein distance between clean (blue) / adversarial (orange) batch moments and BN’s running statistics at different training
iterations. Both models trained on CIFAR-10 with MAT (γ = 0.25), ε = 16/255.
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Figure 5. MAT-Cat on CIFAR-10 (ε = 16/255) exhibits the false
robustness issue when γ ≥ 0.3 (all with BN). With γ increasing,
clean accuracy increases and AA decreases as expected. However,
PGD falsely rises after γ = 0.3, staying near 33% until γ = 0.75.

C. Additional Comparisons between
Sequential and Concatenated Batching

Fig. 4 demonstrates the distinction between MAT-Seq and
MAT-Cat. Assuming that inputs to each BN layer follow an
independent normal distribution, we compute Wasserstein
distance between the clean/adversarial batch and the running
statistics. In MAT-Seq, both distances are unstable and shoot
up multiple times over the training, whereas the distances
in MAT-Cat steadily converges to zero. This empirically
confirms our analysis and indicates that there is a larger
difference between the training and test normalization for
MAT-Seq compared to MAT-Cat.

D. Additional Experiments on the False
Robustness Problem

Fig. 5 shows the clean accuracy and the accuracy under
PGD and AA attacks. The false robustness problem occurs
when there is a large gap between PGD and AA accuracies
for γ ≥ 0.3. We can also see that when this issue starts
to take effects, PGD and AA accuracies diverge, i.e. PGD
accuracy unexpectedly increases when γ goes from 0.25 to
0.3 (gray area in Fig. 5). At the same time, AA accuracy
decreases and clean accuracy increases as expected, even
though the trend immediately becomes steeper.

Table 2 shows that the false robustness phenomenon can
happen on Instance and Group normalization as well as
no normalization at all. All these cases, denoted in red,
share a common characteristic which is a larger Wasser-
stein distance between any pair of the distributions (Clean,
PGD, AA) by about an order of magnitude. To compute this
Wasserstein distance, we use the batch mean and variance
and assume that all data follow independent Gaussian dis-
tributions. For two univariate Gaussians with means µ1, µ2

and standard deviations σ1, σ2, the (squared) 2-Wasserstein
distance is given by

W 2
2 (N (µ1, σ

2
1),N (µ2, σ

2
2)) = (µ1 − µ2)

2 + (σ1 − σ2)2.
(7)

This can be easily generalized to multivariate independent
Gaussians by summing across all the dimensions.

E. Additional Experiments with KLD
Regularization for MAT

Table 3 compares MAT-Cat-0.5 + KL to various compara-
ble strategies representing the current state-of-the-art. Our



Improving the Accuracy-Robustness Trade-Off for Dual-Domain Adversarial Training

Table 2. Wasserstein distances (summed over all layers) between the clean, PGD-10, and AA test set distributions for various train and
network normalizer settings (all CIFAR-10, ε = 16/255). “Acc. Diff.” denotes the difference in accuracy under PGD-10 and AA attacks,
marked in red for models with the false robustness issue.

Training Method Normalizer Acc. Diff. Wasserstein Distance

Clean-PGD Clean-AA PGD-AA

Adversarial Training BN 9.77 1.6057 0.5072 1.2728

MAT-Cat-0.25 BN 9.85 1.5499 0.6168 1.2830
MAT-Cat-0.5 BN 29.41 25.0450 13.5271 12.5853
MAT-Cat-0.5 IN 27.48 99.8295 51.9016 48.6722
MAT-Cat-0.75 GN 29.10 58.2817 25.1242 36.8039
MAT-Cat-0.5 None 7.74 6.1931 2.7366 4.6481
MAT-Cat-0.75 None 30.08 278.7880 109.8840 177.3556

TRADES-Cat-6 BN 10.27 1.5399 0.566 1.0391
MAT-Cat-0.5 + KL-0.4 BN 13.64 2.5128 1.3143 1.4567

Table 3. Comparing performance of MAT-Cat-0.5 + KL with com-
parable training strategies for various β. Our method demonstrates
better results in nearly all cases, achieving the state of the art in
large-ε dual-domain training. All runs are with BN unless other-
wise stated, on CIFAR-10 (ε = 16/255). KL-x denotes added KL
regularization with β = x.

Training Method Clean PGD AA

MAT-Cat-0.5, no BN 79.03 23.33 15.59
MAT-Cat-0.5 + KL-0.4 (ours) 84.53 32.23 18.59

MAT-Cat-0.25 76.41 31.24 21.39
MAT-Cat-0.5 + KL-0.5 (ours) 78.21 30.41 21.42

TRADES-Cat-6 73.82 33.16 22.89
MAT-Cat-0.5 + KL-1 (ours) 75.21 32.19 22.92

Adversarial Training 66.44 34.03 24.26
MAT-Cat-0.5 + KL-4 (ours) 67.73 34.68 24.66

method outperforms these other techniques in nearly all
cases, even achieving greater robustness than Adversarial
Training for β = 4 (along with higher clean accuracy).

F. Additional Details and Experiments on
Dual Batch Normalization

Extending from Section 5, we include the full formulation
of DBN here. Once again, the batch moments as well as the
normalization are computed as follows:

µcl =
1

N

N∑
i=1

xicl, σ
2
cl =

1

N

N∑
i=1

(xicl − µcl)
2 (8)

µadv =
1

N

N∑
i=1

xiadv, σ
2
adv =

1

N

N∑
i=1

(xiadv − µadv)
2 (9)

x̂ = pcl ·
(
x− µcl

σcl

)
+ padv ·

(
x− µadv

σadv

)
(10)

where pcl and padv are defined below:

pcl := p(z = cl |X = x) (11)

=
N (x | µcl,σ

2
cl)

N (x | µcl,σ2
cl) +N (x | µadv,σ2

adv)
(12)

padv := p(z = adv |X = x) (13)

=
N (x | µadv,σ

2
adv)

N (x | µcl,σ2
cl) +N (x | µadv,σ2

adv)
(14)

= 1− pcl (15)

where N (x | µ,σ2) :=

C∏
j=1

1√
2πσj

e
−

(xj−µj)
2

2σ2
j (16)

In other words, p(z = cl | X = x) is the posterior proba-
bility of the domain indicator z being “clean” given an input
x. Note that we use the bolded variables to denote vectors
in RC . This is a direct consequence of Bayes’ rule which is
shown here for completeness:

p(cl | x) = p(x | cl)p(cl)
p(x)

(17)

=
N (x | µcl,σ

2
cl) · 0.5

p(x | cl)p(cl) + p(x | adv)p(adv)
(18)

=
N (x | µcl,σ

2
cl) · 0.5

N (x | µcl,σ2
cl) · 0.5 +N (x | µadv,σ2

adv) · 0.5
(19)

Note that we remove the random variables, X and z, to
declutter. As we are using the equal number of clean and
adversarial samples, the priors are uniform, i.e. p(z = cl) =
p(z = adv) = 0.5. In practice, we compute the log prob-
ability instead and use the sigmoid function to obtain the
posterior distribution or the score to avoid numerical insta-
bility. Similarly to BN, the parameters µcl, σcl, µadv, σadv
are computed using the samples from the batch during train-
ing and are replaced by the running moments for testing.
The statistics are computed and updated separately for the
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Table 4. Normal and robust accuracy of TRADES-Cat and MAT-Cat when augmented with our DBN and KLD regularization techniques.
DBN improves the accuracy slightly in all cases. The KLD regularization eliminates the false robustness problem (marked in red) and
slightly improves the trade-off. We use β = 6 for TRADES-Cat, γ = 0.5 for MAT-Cat, and β = 1 for MAT-Cat-0.5 + KL.

Method CIFAR-10 (ε = 8/255) CIFAR-10 (ε = 16/255) Imagenette (ε = 16/255)

Clean PGD AA Clean PGD AA Clean PGD AA

TRADES-Cat 82.20 52.06 48.10 73.82 33.16 22.89 62.14 28.83 23.77
+ DBN 81.68 53.65 49.01 74.79 36.91 22.63 64.89 31.59 24.79

MAT-Cat 85.53 46.03 43.29 93.95 33.11 3.70 72.43 28.62 23.67
+ DBN 87.64 48.05 43.85 93.60 32.19 0.98 75.34 31.69 25.17
+ KL 84.28 51.42 47.38 75.21 32.19 22.92 66.29 33.50 27.39
+ DBN + KL 82.97 51.96 48.05 76.39 31.39 22.41 72.74 33.89 25.81
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Figure 6. Accuracy-robustness trade-off of our method and the
baselines on CIFAR-10 (ε = 8/255). This is omitted from Fig. 3,
but the labels and layout remain the same as they are in Fig. 3.

two domains. When pcl (or padv) is always 1, we recover the
normal BN, and when pcl and padv are binary and always
assigned correctly, DBN results in the Separate BN.

The affine parameters, w, b ∈ RC , of DBN are “shared”
between the two domains and applied to the final normalized
output.

DBN(x) = w � x̂+ b (20)

Additionally, to encourage the correct matching between
clean (and adversarial) samples and clean (and adversarial)
BN, we add a negative log-likelihood loss which is summed
across all pixels and all DBN layers.

LDBN(x) :=− 1{x ∈ cl} · log(pcl) (21)
− 1{x ∈ adv} · log(1− pcl)

F.1. Additional Experiments

Table 4 shows an ablation study with each of the components
we introduced being added to MAT-Cat and TRADES-Cat.
While DBN does not solve the false robustness problem on
MAT-Cat (γ = 0.5) on CIFAR-10 (ε = 16/255), it offers
an improvement for ε = 8/255 and for Imagenette. It is
expected that DBN also overfits to the PGD attack and hence,

suffers from the same false robustness problem because
it is designed to utilize the two domains more effectively.
However, the KLD regularization easily mitigates this issue
on both BN and DBN, with a minor improvement to boost.


