
Towards Stochastic Neural Networks via Inductive Wasserstein Embeddings

Hao Yang * 1 Yongxin Yang * 2 Da Li 2 3 Yun Zhou 1 Timothy Hospedales 2 3

Abstract

Stochastic Neural Networks (SNNs) have recently
shown promising results in adversarial defense, la-
bel noise robustness, and model calibration. How-
ever, the current implementations are dominated
by the Gaussian noise injection, which essentially
models the activations and/or the model weights
using Gaussian distributions. Despite its ease of
use, the Gaussian distribution has its own limita-
tion in being unimodal. In this work, we present
inductive Wasserstein embeddings, which models
the activations and weights using implicit den-
sity, i.e., we do not assign a specific form for the
distribution such as Gaussian, instead we design
the sampling process. Compared to the alterna-
tives, our method achieves competitive results on
various tasks.

1. Introduction
Stochastic neural networks (SNNs) have attracted great at-
tentions from the machine learning community in various
contexts, such as Bayesian deep learning (Blundell et al.,
2015; Hernández-Lobato & Adams, 2015; Gal & Ghahra-
mani, 2016; Huang et al., 2020), adversarial defense (Alemi
et al., 2017; Hendrycks et al., 2018), and model calibra-
tion (Guo et al., 2017).

One representative stream of SNNs in deep learning is
the deep Variational Information Bottleneck (VIB) method
(Alemi et al., 2017; 2018), which is inspired by the informa-
tion theory (Tishby et al., 1999). Though VIB has demon-
strated exceptional performances in multiple tasks, such as
standard supervised learning and adversarial defence, it still
suffers from the same limitation as the Variational Autoen-
coder (VAE) in terms of using a standard Gaussian prior
(Tomczak & Welling, 2018; Kim & Pavlovic, 2020).

Some researchers recently argued that the standard Gaussian

*Equal contribution 1National University of Defense Technol-
ogy 2University of Edinburgh 3Samsung AI Center, Cambridge.
Correspondence to: Yun Zhou <zhouyun@nudt.edu.cn>.

Presented at the ICML 2021 Workshop on Uncertainty and Robust-
ness in Deep Learning., Copyright 2021 by the author(s).

prior hinders VIB capturing the task uncertainty and limits
its performance, thus they proposed some variants with
Gaussian prior replaced by others, e.g., non-informative
prior in Yu et al. (2021). Those alternative choices still fall
into Gaussian family, and so are easy to implement using the
reparameterization trick. However, Gaussian distributions
might be insufficient to model multi-modal cases, found in
complex tasks.

In this paper, we relax the Gaussian distribution assumption,
and propose to model both the feature and class prototypes
using implicit density. More specifically, we do not as-
sign a specific distribution function, instead, we design the
sampling process. This can be thought of as the inductive
version of Wasserstein embeddings (Frogner et al., 2019),
where an object (e.g., a word or a node in a graph) is repre-
sented by a set of vectors (point-cloud), and the difference of
two objects is measured by Wasserstein distance of two sets.
This approach (Frogner et al., 2019) is transductive because
the set of vectors corresponds to the trainable parameter,
thus it is not applicable to new concepts.

In contrast, we derive an inductive variant for general super-
vised learning, where some data (e.g., feature vectors and
class labels) are combined with random noise, and passed
through a neural network, to get some samples conditioned
on those data. The archtecuture is very close to the gener-
ator of Conditional GAN (Mirza & Osindero, 2014). The
set of samples, as a whole, will be treated as the representa-
tion of the input feature/label, and the difference of them is
calculated by the Sliced Wasserstein distance (Rabin et al.,
2011).

The illustration of the proposed method can be found in
Fig. 1. Because of the intrinsic stochasticity, this method is
a realisation of a stochastic neural network. We evaluate the
proposed SNNs on three tasks: adversarial defence, model
calibration, and label noise robustness. Results show that
our method achieves the state-of-the-art performance across
various settings.

2. Preliminaries
2.1. Computation of logits

For classification using conventional neural networks, the
final layer involves the computation of logits, which is typi-

Towards Stochastic Neural Networks via Inductive Wasserstein Embeddings

N copies

Noise

Label

Noise

Feature

NN1

NN2 N samples

N samples SWD

Score

N copies

Figure 1. An illustration of our proposed method. Each feature and putative label (one-hot vector) are mapped to non-parametric
probability distributions represented by sample sets. The associated classifier logit is computed using Sliced Wasserstein Distance between
the feature and label distributions. Feature and label to distribution mapping is simply implemented by duplicating the feature and
prototype N times, concatenating with N independent noise vectors, and passing through two separate neural networks, which finally
leads to an N sample representation of each.

cally a dot product of feature vector x and classifier matrix
W . Then, the probability of class i for the given input x is
calculated by,

p(Y = i|x) = exp (x ·W·,i)∑C
j=1 exp (x ·W·,j)

(1)

where W·,j stands for the jth column of matrix W . The
dot-product is a kind of similarity measure (cosine similarity
without normalisation), thus it can be replaced by a negative
distance measure d(·, ·).

p(Y = i|x) = exp (−d(x,W·,i))∑C
j=1 exp (−d(x,W·,j))

(2)

2.2. Stochastic Neural Networks

Different from the conventional neural networks, the
stochastic neural networks treat x and/or W as distribution
instead of point-estimate, thus the vector-to-vector distance
function d(·, ·) should be replaced with a divergence.

In practice, this is realised by injecting noises into model
weights (Blundell et al., 2015) or activations (Alemi et al.,
2017; Kingma & Welling, 2014). For example, SE-SNN
(Yu et al., 2021) proposed to use

x←− fµ(x) + fσ(x)� ε (3)

where fµ(x) is a neural network that produces the mean
vector, fσ(x) is another neural network that produces the
(square root of) variance vector, and ε is a random sample
form standard Gaussian N (0, I). Equivalently, this indi-
cates that x is modelled by a Gaussian parametrised by
neural networks, i.e., x := N (fµ(x),diag(f

2
σ(x))).

Similarly, W·,j can be modelled as a Gaussian distribution,
and d(x,W·,i) can be any Gaussian-to-Gaussian divergence.
Alternatively, one can use sample(s) from the distribution,
and calculate the vector-to-vector distance as usual.

To prevent the distribution from collapsing, the SNNs usu-
ally have the regularisation term that promotes non-zero
variance. SNNs showed some nice properties for the cases
of adversarial attack, label noise robustness, etc.

3. Inductive Wasserstein Embeddings
Previous work is dominated by the use of Gaussian distri-
bution, or a specific kind of distribution which we know
how to do reparameterization. In this work, we aim to re-
lax this assumption to deal with arbitrarily distributions –
that support multi-modality for example. In fact, we do not
have to pre-define the distribution function, all we need is a
mechanism to sample from the distribution conditioned on

Towards Stochastic Neural Networks via Inductive Wasserstein Embeddings

x or W·,j . A simple model for x is

x := fθ (x, ε) = MLPθ ([[x;x; . . . ;x] ; ε]]) (4)

where [x;x; . . . ;x] is N copies of feature vector x, and ε is
aN×D matrix of pure noises (from the uniform/normal dis-
tribution). D is a hyper-parameter that controls the amount
of samples. [a; b] stands for row-wise concatenation of a
and b. MLPθ is a neural network parametrised by θ, and it
produces N output vectors for the N input vectors. These
N outputs are considered as N independent samples for the
distribution conditioned on x.

Similarly, we can model W·,j by

W·,j := gφ (cj , ε) = MLPφ ([[cj ; cj ; . . . ; cj] ; ε]]) (5)

where cj is the one-hot vector with the jth position being
one. Alternatively, cj could be a dense vector representing
the prototype of the jth class.

Now d(x,W·,i)) becomes a metric over set of samples, and
each set represents a distribution. There exit several choices
for d(·, ·), and the desired properties are (i) efficient compu-
tation and (ii) differentiability. Thus we choose to use the
Sliced Wasserstein Distance (SWD) (Rabin et al., 2011), as
it has a lower computational cost than the Sinkhorn iterative
method, and it is fully differentiable.

Finally, we need a mechanism that makes sure the distribu-
tion does not collapse into a single point. A simple solution
is to maximise the sample variance, i.e.,

max
θ

Var(fθ (x, ε)) (6)

In practice, it is better to use a margin loss so that the
variance would not go overly large.

min
θ

max(0, b−Var(fθ (x, ε))) (7)

Thus the loss is zero when the variance is larger than a
certain threshold b. The similar regularization term is also
defined for gφ.

To demonstrate the proposed method, we train a classifica-
tion model for MNIST with distribution dimension being
2, thus it is possible to visualize the embeddings directly in
Fig. 2, where we can see both instance x and classifier W·,j
are in the form of distributions (point clouds).

4. Experiments
We evaluate our proposed method in tasks: adversarial de-
fense, model calibration, and label noise robustness.

4.1. Adversarial Defense

Setting Following Dong et al. (2018) and Madry et al.
(2017), we focus on two types of adversarial attacks: Fast

15 10 5 0 5 10 15
15

10

5

0

5

10

15 0
1
2
3
4
5
6
7
8
9

Figure 2. Visualizing high-dimensional MNIST embeddings. Each
color corresponds to one class. The dots with black border are
samples from the class distribution, and the borderless dots are
samples from (multiple) instance distributions.

Gradient Sign Method (FGSM) and Project Gradient De-
scent (PGD) attack (Madry et al., 2017). A popular archi-
tecture we used is ResNet18 (V2), which is different from
classical ResNet in that we use 1x1 CNN layers instead of
average pooling for down-sampling. We compare the origi-
nal undefended network (denoted No defense), adversarial
training (adversarial), parametric noise injection (PNI, (He
et al., 2019)) and SE-SNN (Yu et al., 2021).

We train different models on CIFAR-10 and then use FGSM
and Project Gradient Descent (PGD) attacks to evaluate the
adversarial robustness of different methods. For the FGSM
and PGD attack, we keep a consistent settings as PNI and
data is normalized to 0-1. In PGD attack, we set the iteration
times as 7 for each data and α is 0.01.

Results As can be seen from the comparative results in
Table 2, our proposed method outperforms the competing
defense methods on FGSM and PGD attacks. Different
from SE-SNN and PNI, which assume Gaussian stochastic
layers, our proposed method relaxes this assumption to a
more flexible distribution.

4.2. Model Calibration

Setting We evaluate our proposed method following the
protocol in Guo et al. (2017) except that we set the kernel
size of the first conv layer to 7. We follow the architec-
ture used in Yu et al. (2021) and add a stochastic layer
before the classification layer in ResNet-18, ResNet-50, and
ResNext101-32-8d respectively with datasets CIFAR-10 and
CIFAR-100. In this experiment, we choose a widely-used
evaluation matrix called Expected Calibration Error (ECE)
(Naeini et al., 2015; Guo et al., 2017) to measure the cali-
bration error. ECE approximates the difference in expection
between confidence and accuracy by partioning predictions

Towards Stochastic Neural Networks via Inductive Wasserstein Embeddings

Table 1. ECE (%, lower is better) with 15 bins on ResNet18, ResNet50 and ResNext101-32x8d (WRN). Comparison methods are the
basic ResNet network and their SE-SNN version. Results after temperature scaling are shown in brackets.

Dataset CIFAR-10 CIFAR-100
ResNet18 ResNet50 WRN ResNet18 ResNet50 WRN

Baseline 11.2(14.1) 13.1(17.8) 8.3(1.2) 39.2(19.1) 41.4(36.9) 42.3(34.8)
SE-SNN 9.7(2.8) 10.7(5.8) 9.4(3.9) 38.2(12.0) 37.1(34.7) 37.0(22.8)
Proposed 10.0(7.7) 4.9(1.8) 7.1(1.9) 20.5(11.2) 13.4(6.9) 2.0(3.2)

Table 2. Comparison of defense methods against FGSM and PGD
attacks on CIFAR-10 with a ResNet-18 (V2) backbone (Acc, %).

Method FGSM PGD
No defense 35.38 0.01

Adversarial Training 52.94 45.24
SeSNN 57.98 48.70

PNI 58.06 49.42
Proposed 58.25 50.22

into M equally-spaced bins and taking a weighted average
of the bins’ difference between accuracy and confidence.
Specifically, ECE is calculated as follows:

ECE =

K∑
k=1

|Bk|
n
|acc (Bk)− conf (Bk)| (8)

where n is the number of samples, Bk denotes the set of
samples in bin k. acc and conf denote the average accuracy
and confidence of items in the specified bin respectively.
The K is set to 15 in this experiment. Following Guo et al.
(2017) we report results with and without additional temper-
ature scaling.

Results We compared our proposed method with vanilla
neural networks and SE-SNN model for two datasets:
CIFAR-10 and CIFAR-100. Table 1 shows the ECE (with
K = 15 bins) result, the bracketed numbers indicate the
results after temperature scaling skills. It can be seen that
the proposed method outperforms baseline and SE-SNN.
Temperature scaling benefits all methods but our method
still performs best overall.

4.3. Label Noise Robustness

Setting The label noise robustness of our proposed
method is evaluated on MNIST (LeCun et al., 1998). We
consider patterned label noise which is more common in
practice. Specifically, one class label will be flipped to a
different one at a strength p. The flipping pattern is fixed
within each run but varies across different runs following
(Hendrycks et al., 2018). For the network architecture, we
follow Patrini et al. (2017) to train a neural network with

0.0 0.1 0.2 0.3 0.4 0.5
Corruption Strength

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Baseline
Bootstrap hard
Bootstrap soft
SE-SNN
Proposed

Figure 3. Learning with label-noise on MNIST.

three FC layers of dimension 128, 128 and the output layer,
where the second FC layer is implemented as stochastic
layer. Due to the randomness of noisy samples in selection
and label reassignment, multiple runs of experiments are
conducted.

For baseline methods, we choose bootstrap-hard and
bootstrap-soft (Reed et al., 2015), and both of them use
the predicted labels to refine the original labels that are po-
tentially corrupted by noise. The difference lies on whether
the updated label is binary or continuous. We also compare
SE-SNN (Yu et al., 2021) which adds Gaussian stochastic
layer on the second FC layers.

Results The results are shown in Figure. 3. We can see
that our proposed method is competitive over listed methods.
Especially when the corruption strength is larger than 0.3,
we outperform the other methods.

5. Conclusion
In this paper, we propose a novel stochastic neural network
model. Instead of the Gaussian distribution, we use implicit
density for the distributions of both features and class pro-
totype. The experiments show the proposed method has
advantages for adversarial defense, model calibration, and
label noise robustness.

Towards Stochastic Neural Networks via Inductive Wasserstein Embeddings

References
Alemi, A. A., Fischer, I., Dillon, J., and Murphy, K. Deep

variational information bottleneck. In ICLR, 2017.

Alemi, A. A., Fischer, I., and Dillon, J. V. Un-
certainty in the variational information bottleneck.
CoRR:abs/1807.00906, 2018.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural network. In ICML, 2015.

Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., and
Li, J. Boosting adversarial attacks with momentum. In
CVPR, 2018.

Frogner, C., Mirzazadeh, F., and Solomon, J. Learning
embeddings into entropic wasserstein spaces. In ICLR,
2019.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approxi-
mation: Representing model uncertainty in deep learning.
In ICML, 2016.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In ICML, 2017.

He, Z., Rakin, A. S., and Fan, D. Parametric noise injection:
Trainable randomness to improve deep neural network
robustness against adversarial attack. In CVPR, 2019.

Hendrycks, D., Mazeika, M., Wilson, D., and Gimpel, K.
Using trusted data to train deep networks on labels cor-
rupted by severe noise. In NIPS, 2018.

Hernández-Lobato, J. M. and Adams, R. Probabilistic back-
propagation for scalable learning of bayesian neural net-
works. In ICML, 2015.

Huang, C.-W., Touati, A., Vincent, P., Dziugaite, G. K.,
Lacoste, A., and Courville, A. Stochastic neural network
with kronecker flow. In AISTATS, 2020.

Kim, M. and Pavlovic, V. Recursive inference for variational
autoencoders. In NeurIPS, 2020.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In ICLR, 2014.

LeCun, Y., Léon Bottou, Y. B., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Madry, A., Schmidt, A. M. L., Tsipras, D., and Vladu, A.
Towards deep learning models resistant to adversarial
attacks. In CVPR, 2017.

Mirza, M. and Osindero, S. Conditional generative adver-
sarial nets. CoRR, abs/1411.1784, 2014.

Naeini, M. P., Cooper, G., and Hauskrecht, M. Obtaining
well calibrated probabilities using bayesian binning. In
AAAI, 2015.

Patrini, G., Rozza, A., Menon, A. K., Nock, R., and Qu, L.
Making deep neural networks robust to label noise: A
loss correction approach. In CVPR, 2017.

Rabin, J., Peyré, G., Delon, J., and Bernot, M. Wasserstein
barycenter and its application to texture mixing. In Scale
Space and Variational Methods in Computer Vision, 2011.

Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., and
Rabinovich, A. Training deep neural networks on noisy
labels with bootstrapping. In ICLR Workshop, 2015.

Tishby, N., Pereira, F. C., and Bialek, W. The information
bottleneck method. Allerton, 1999.

Tomczak, J. and Welling, M. Vae with a vampprior. In
International Conference on Artificial Intelligence and
Statistics, pp. 1214–1223. PMLR, 2018.

Yu, T., Yang, Y., Li, D., Hospedales, T., and Xiang, T.
Simple and effective stochastic neural networks. In AAAI,
2021.

	Introduction
	Preliminaries
	Computation of logits
	Stochastic Neural Networks

	Inductive Wasserstein Embeddings
	Experiments
	Adversarial Defense
	Model Calibration
	Label Noise Robustness

	Conclusion

