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Abstract
In this paper, we tackle the challenge of jointly
quantifying in-distribution and out-of-distribution
(OOD) uncertainties. We introduce KLoS, a
KL-divergence measure defined on the class-
probability simplex. By leveraging the second-
order uncertainty representation provided by evi-
dential models, KLoS captures more than existing
first-order uncertainty measures such as predic-
tive entropy. We design an auxiliary neural net-
work, KLoSNet, to learn a refined measure directly
aligned with the evidential training objective. Ex-
periments show that KLoSNet acts as a class-wise
density estimator and outperforms current uncer-
tainty measures in the realistic context where no
OOD data is available during training. We also re-
port comparisons in the presence of OOD training
samples, which shed a new light on the impact of
the vicinity of this data with OOD test data.

1. Introduction
Obtaining reliable predictive uncertainty estimates is crucial
to safely deploy models in open-world conditions (Ben-
dale & Boult, 2015). Notable progress has been made with
the renewal of Bayesian neural networks (MacKay, 1992)
and ensembling (Lakshminarayanan et al., 2017). These
techniques describe an implicit probability density over the
predictive categorical distribution obtained from sampling.
A recent class of models, coined evidential (Sensoy et al.,
2018; Malinin & Gales, 2019; Joo et al., 2020), proposes
instead to explicitly learn the concentration parameters of a
Dirichlet distribution over output probabilities. They have
been shown to improve generalisation (Joo et al., 2020) and
OOD detection (Nandy et al., 2020)

Based on the subjective logic framework (Josang, 2016), evi-
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(a) Natural image of a husky
MCP = 0.50 , entropy = 0.97, KLoS = 97.85

(b) Drawing of a husky
MCP = 0.50 , entropy = 0.97, KLoS = 104.71

Figure 1. Limitations of 1st-order uncertainty measures. (a) In-
distribution image with conflicting evidence. (b) OOD image with
same class confusion is supposed to have larger total uncertainty,
which is correctly reflected by its KLoS score.

dential models capture different sources of uncertainty. First-
order uncertainty relates to the expectation of the Dirichlet
distribution and is caused by conflicting evidence, e.g., class
confusion. Second-order uncertainty expresses the lack of
evidence in a prediction (Shi et al., 2020), which is character-
ized by the spread of the Dirichlet distribution. For instance,
huskies share lots of features with wolves although being
a breed of dog, which leads to a large 1st-order uncertainty
due to class confusion in Fig. 1a. In presence of a drawing
of a husky, Fig. 1b, a similar class confusion is expected,
but a lower amount of evidence due to the distribution shift.

Surprisingly, previous works do not leverage the distribution
over probabilities on the simplex to derive such a joint mea-
sure of the two sources of uncertainty. Some methods focus
on OOD detection by characterizing only the distribution
spread, e.g., using mutual information (Malinin & Gales,
2019). Approaches targeting total uncertainty actually re-
duce probability distributions on the simplex to their ex-
pected value and compute first-order uncertainty measures,
e.g., predictive entropy (Sensoy et al., 2018). However,
these measures are invariant to the spread of the distribution
(Fig. 1), whereas uncertainty caused by class confusion and
lack of evidence should be cumulative, a property naturally
fulfilled by the predictive variance in Bayesian regression
(Murphy, 2012). In addition, some methods for evidential
models use auxiliary data during training to enforce higher
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distribution spread on OOD inputs. But when deprived ac-
cess to OOD training data, the low-dispersion behavior is not
guaranteed for all OOD examples (Charpentier et al., 2020;
Sensoy et al., 2020) and 2nd-order uncertainty measures
struggle to discriminate them from in-distribution examples.

Contributions. We introduce KLoS, a KL-divergence mea-
sure on the simplex based on the Dirichlet distribution.
KLoS provides richer estimates than standard first-order
measures by considering both 1st-order and 2nd-order un-
certainties. Noting that KLoS naturally reflects the training
objective used in evidential models, we propose to learn
an auxiliary model, KLoSNet, to regress the values of this
objective for training samples and to improve uncertainty
estimation. Experiments on simultaneous detection of mis-
classifications and OOD samples show the benefits of KLoS-
Net thanks to its class-wise density estimator behaviour, a
crucial property in the absence of OOD training data. We
also shed a new light on the impact of the type of OOD
training samples for existing measures.

2. Capturing 1st- and 2nd-Order Uncertainties
2.1. Background: Evidential Neural Networks

Let us consider a training dataset D composed of N i.i.d.
samples (x, y) drawn from an unknown joint distribution
p(x,y). We denote π = (π1, · · · , πC) the random vari-
able over categorical probabilities, where

∑C
c=1 πc = 1,

and which lives on the (C-1)-dimensional simplex 4C−1.
Bayesian models and ensemble approaches approximate the
posterior predictive distribution p(y|π,x) by marginalizing
over a network’s parameters θ via Monte-Carlo sampling or
explicit ensembling. But this comes at the cost of multiple
forward passes. Evidential Neural Networks (ENN) propose
instead to model explicitly the posterior distribution over
categorical probabilities by a Dirichlet distribution,

qθ(π|x)=Dir
(
π|α

)
=

Γ(α0)∏C
c=1 Γ(αc)

C∏
c=1

παc−1
c , (1)

whose concentration parameters α = exp f(x,θ) are
output by a network f with parameters θ; Γ is the
Gamma function and α0 =

∑C
c=1 αc. Precision α0 con-

trols the sharpness of the density with more mass con-
centrating around the mean as α0 grows. By conjugate
property, the predictive distribution for a new point x∗

is P (y = c|x∗,D) ≈ Eqθ(π|x∗)[πc] = exp fc(x
∗,θ)∑C

k=1 exp fk(x∗,θ)
,

which is the output of a network with softmax activation.

ENN training is formulated as a variational approximation
to minimize the KL divergence between the distribution
qθ(π|x) and the true posterior p(π|x, y). Following Joo
et al. (2020), we use the non-informative uniform prior
p(π|x) = Dir

(
π|1
)
. The evidential training objective thus

Figure 2. Illustration of KLoS behavior in absence of uncertainty
(a), with class confusion (b) and with lack of evidence (c).

reads:

Lvar(θ;D) =
1

N

∑
(x,y)∈D

(
ψ(αy)− ψ(α0)

+ λKL
(
Dir(π|α) ‖ Dir(π|1)

))
, (2)

where ψ is the digamma function and with hyperparameter
λ > 0. In particular, minimizing this loss enforces training
sample’s precision α0 to remain close to C + 1/λ.

2.2. A KL-Divergence Measure on the Simplex

By explicitly learning a distribution of the categorical proba-
bilities π, evidential models can distinguish first-order from
second-order uncertainty on the simplex. Inputs with large
first-order uncertainty due to class confusion will have a
distribution closer to the simplex center. Conversely, inputs
with large second-order uncertainty are expected to present
flat distributions, reflecting the lack of evidence of the model
on these points. To encompass both types of uncertainty, an
efficient measure needs to encapsulate both the sharpness
of the distribution and its location on the simplex.

We introduce a novel measure, named KLoS for “KL on
Simplex”, that computes the KL divergence between the
model’s output and a sharp Dirichlet distribution with con-
centrations γŷ focused on the predicted class ŷ:

KLoS(x) , KL
(

Dir
(
π|α

)
‖ Dir

(
π|γŷ

))
, (3)

where α = exp f(x,θ) are model’s output and γŷ =
(1, . . . , 1, τ, 1, . . . , 1) are the uniform concentration param-
eters except for the predicted class with τ = 1/λ+ 1.

The lower KLoS is, the more certain the prediction is. Cor-
rect predictions will have Dirichlet distributions close to
the posterior distribution and will thus be associated with a
low uncertainty measure (Fig. 2a). Samples with high class
confusion will present concentration parameters closer to
simplex’s center than the target Dirichlet objective, resulting
in a higher KLoS measure (Fig. 2b). KLoS also penalizes
samples having a different precision α0 than the precision
α∗0 = τ+C−1 of the target γŷ. For instance, samples with
lacking evidence, i.e., having smaller precision than α∗0
(Fig. 2c), receive a larger KLoS score. Since in-distribution
samples are enforced to have precision close to α∗0 during
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training, KLoS will be effective to detect various types of
OOD samples whose precision is far from α∗0, and acts as
a class-wise density estimator (see also Section 3.1). In
contrast, second-order uncertainty measures, such as the
mutual information, assume that OOD samples have smaller
α0, a property difficult to fulfill for models trained only with
in-distribution samples (see Section 3.3).

2.3. Improving First-Order Uncertainty
Representation with Confidence Learning

Figure 3. KLoS*

When the model misclassifies an exam-
ple, i.e., the predicted class ŷ differs
from the ground truth y, KLoS mea-
sures the distance between the ENN’s
output and the wrongly estimated pos-
terior p(π|x, ŷ). Measuring instead the
distance to the true posterior distribution
p(π|x, y) (green region in Fig. 3) would more likely yield a
greater value, reflecting the fact that the classifier made an
error. Thus, a better measure for misclassification detection
would be:

KLoS∗(x, y) , KL
(

Dir
(
π|α

)
‖ Dir

(
π|γy

))
, (4)

where γy corresponds to the uniform concentrations except
for the true class y with τ = 1/λ+ 1.

Connecting KLoS∗ with evidential training objec-
tive. Choosing such value for τ results in KLoS∗ matching
the objective function in Eq. (2). This means that KLoS∗

is explicitly minimized during training for in-distribution
samples and reflects the fact that the model is confident
about its prediction if its score is close to zero.

Obviously, the true class of an output is not available when
estimating confidence on test samples. We propose to learn
KLoS∗ by introducing an auxiliary confidence neural net-
work, termed KLoSNet, with parameters ω, which outputs
a confidence prediction C(x,ω). KLoSNet consists of a
small decoder, composed of several dense layers attached to
the penultimate layer of the original classification network.
During training, we seek ω such that C(x,ω) is close to
KLoS∗(x, y), by minimizing

LKLoSNet(ω;D) =
1

N

∑
(x,y)∈D

∥∥C(x,ω)−KLoS∗(x, y)
∥∥2.
(5)

At test time, we now directly use KLoSNet’s scalar output
C(x,ω) as our uncertainty estimate.

3. Experiments
We evaluate our approach against various baselines: 1st-
order uncertainty metrics (Maximum Class probability
(MCP) and predictive entropy (Entropy)), 2nd-order metrics

(a) Toy data (b) Entropy (c) Mut. Inf. (d) KLoS

Figure 4. Visualisation of different uncertainty measures on a toy
dataset. Yellow (resp. purple) indicates high (resp. low) certainty.

(mutual information (Mut. Inf.), differential entropy (Diff.
Ent.) and expected pairwise KL-divergence (EPKL)), post-
training methods for OOD detection (ODIN (Liang et al.,
2018) and Mahalanobis (Lee et al., 2018)) and for mis-
classification detection (ConfidNet (Corbière et al., 2019)).
Uncertainty measures are derived from the same evidential
model trained with λ = 10−2. We rely on the learned classi-
fier to train our auxiliary confidence model KLoSNet, using
the same training set. Except in Section 3.3, we consider
setups where no OOD data is available for training. All
training details are available in Appendix A.

3.1. Synthetic Experiment

We analyse the behavior of the KLoS measure and the limi-
tations of existing first- and second-order uncertainty met-
rics on a 2D synthetic dataset composed of three Gaussian-
distributed classes with equidistant means and identical
isotropic variance (Fig. 4). OOD samples are drawn from
a ring around the in-distribution dataset and are only used
for evaluation. Fig. 4b shows that Entropy correctly as-
signs large uncertainty along decision boundaries, which
is convenient to detect misclassifications, but yields low
uncertainty for points far from the distribution. Surpris-
ingly, Mut. Inf. (Fig. 4c) decreases when moving away from
the training data. This behavior is due to the linear nature
of the toy dataset where models assign higher concentra-
tion parameters far from decision boundaries, hence smaller
spread on the simplex, as also noted by Charpentier et al.
(2020). Additionally, Mut. Inf. does not reflect the un-
certainty caused by class confusion along decision bound-
aries. In contrast, KLoS allows discriminating both misclas-
sifications and OOD samples from correct predictions as
uncertainty increases far from in-distribution samples for
each class (Fig. 4d). By measuring a distance between the
model’s output and a class-wise target distribution, we can
observe that KLoS acts as a density estimator for each class.

3.2. Comparative Experiments

When jointly detecting in-distribution misclassifications and
OOD samples, correct predictions are considered as posi-
tive samples while misclassified inputs and OOD examples
constitute negative samples. Following standard practices
(Hendrycks & Gimpel, 2017), we use the area under the
ROC curve (AUROC) to evaluate threshold-independent
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Table 1. Comparative experiments on CIFAR-10. Misclassification (Mis.), OD and simultaneous (Mis+OOD) detection results (mean %
AUROC and std. over 5 runs). Bold type indicates significantly best performance (p < 0.05) according to paired t-test.

LSUN TinyImageNet STL-10
Method Mis. OOD Mis+OOD OOD Mis+OOD OOD Mis+OOD

C
IF

A
R

-1
0

V
G

G
-1

6

MCP (Hendrycks & Gimpel, 2017) 87.6 ±1.6 79.7 ±1.1 84.9 ±1.1 80.3 ±1.5 85.2 ±1.5 60.3 ±1.2 75.2 ±1.4

Entropy (Sensoy et al., 2018) 83.5 ±2.4 83.8 ±0.3 87.9 ±0.2 82.3 ±0.4 87.2 ±0.4 60.1 ±1.2 75.0 ±1.4

ConfidNet (Corbière et al., 2019) 90.2 ±0.8 82.1 ±1.5 87.6 ±1.1 83.5 ±0.6 88.3 ±0.7 61.5 ±1.6 77.2 ±1.1

Mut. Inf. (Malinin & Gales, 2019) 84.1 ±1.5 84.6 ±0.6 85.1 ±1.0 80.6 ±0.8 83.4 ±1.1 61.3 ±0.8 65.0 ±2.5

Diff. Ent. (Malinin & Gales, 2018) 86.8 ±1.0 85.6 ±0.5 87.2 ±0.7 82.7 ±0.7 85.8 ±0.8 62.0 ±1.0 75.4 ±1.3

EPKL (Malinin, 2019) 83.9 ±1.5 84.5 ±0.7 85.1 ±1.0 80.4 ±0.8 83.2 ±1.2 61.3 ±0.8 73.8 ±1.1

ODIN (Liang et al., 2018) 86.0 ±2.0 79.5 ±1.2 83.8 ±1.5 79.6 ±1.9 84.0 ±2.0 54.7 ±1.5 65.0 ±2.6

Mahalanobis (Lee et al., 2018) 91.2 ±0.3 88.9 ±0.2 91.3 ±0.1 86.4 ±0.2 90.2 ±0.1 63.4 ±0.2 78.8 ±0.3

KLoSNet (Ours) 92.5 ±0.6 87.6 ±0.9 91.7 ±0.9 86.6 ±0.9 91.2 ±0.8 67.7 ±1.4 81.8 ±0.9

Figure 5. Effect of OOD training data on precision α0.

(a) Mis. (b) OOD (c) Mis.+OOD

Figure 6. Comparative results with varying OOD training datasets.

performance. Experiments are conducted with VGG-16
(Simonyan & Zisserman, 2015) architectures on CIFAR-10
(Krizhevsky, 2009). We also report experiments on CIFAR-
100 and with ResNet-18 (He et al., 2016) architecture in
Appendix B.1. Along with simultaneous detection results,
we also provide separate results for misclassifications detec-
tion and OOD detection respectively in Table 1.

On OOD detection, density estimation-based methods such
as Mahalanobis and KLoSNet outperform other methods,
including 2nd-order measures. Indeed, for settings where
OOD training data is not available, there is no guarantee that
every OOD sample will result in lower predicted concentra-
tion parameters as shown by the density plot of precision
α0 in Fig. 5a. This stresses the importance of class-wise
density estimation. While Mahalanobis may sometimes be
slightly better than KLoSNet for OOD detection, it performs
significantly less well in misclassification detection. As a
result, KLoSNet appears to be the best measure in every si-
multaneous detection benchmark. For instance, for CIFAR-
10/STL-10 benchmark, KLoSNet achieves 81.8% AUROC
while the second best, Mahalanobis, scores 78.8%. We also
observe that KLoSNet improves significantly misclassifica-
tion detection, even compared to dedicated methods such as
ConfidNet. In Appendix B.2, we provide a detailed ablation
study to evaluate the impact of confidence learning.

3.3. Effect of Training with OOD Samples

The literature on evidential models only deals with an OOD
training set somewhat related to the in-distribution dataset,

e.g., CIFAR-100 for models trained on CIFAR-10. In Fig. 6,
we vary the OOD training set used to train an evidential
model with the reverse KL-divergence loss (Malinin &
Gales, 2019) and evaluate performances using TinyIma-
geNet as OOD test set. As expected, using CIFAR-100 as
OOD training data improves performance for every measure
(MCP, Mut. Inf. and KLoS). However, the boost provided by
training with OOD samples depends highly on the chosen
dataset: The performance of Mut. Inf. decreases from 92.6%
AUC with CIFAR-100 to 82.9% when switching to LSUN,
and even becomes worse with SVHN (78.5%) compared
to using no OOD data (80.6%). We also note that KLoS
outperforms or is on par with MCP and Mut. Inf. in every
setting. Most importantly, using KLoS on models without
OOD training data yields better detection performance than
other measures taken from models trained with inappropri-
ate OOD samples, here being every OOD dataset other than
CIFAR-100.

4. Discussion
We propose KLoSNet, an auxiliary model to estimate the
uncertainty of a classifier for both in-domain and out-of-
domain inputs. Experiments demonstrate its effectiveness
on simultaneous detection of misclassifications and of OOD
samples, and reveal its class-wise density estimation be-
havior. Far from being the panacea, using training OOD
samples depends critically on the choice of these samples for
existing uncertainty measures. Conversely, KLoS is more
robust to this choice and can alleviate their use altogether.
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A. Experimental Setup
In this section, we provide comprehensive details about the
datasets, the implementation and the hyperparameters of the
experiments shown in Section 3.
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Synthetic Data. The training dataset (Fig. 4a) consists
of 1,000 samples (x, y) from a distribution p(x,y) over
R2 × {1, 2, 3} defined as:

p(x = x,y = y) =
1

3
N (x = x|µy, σ2I2×2), (6)

where µ1 = (0,
√

3/2), µ2 = (−1,−
√

3/2) , µ3 =
(1,−

√
3/2) and σ = 4. The marginal distribution of x is a

Gaussian mixture with three equally weighted components
having equidistant centers and equal spherical covariance
matrices.

The test dataset consists of 1,000 other samples from this
distribution. Finally, we construct an out-of-distribution
(OOD) dataset following Malinin & Gales (2019), by sam-
pling 100 points in R2 such that they form a ‘ring’ with
large noise around the training points. Some OOD samples
will be close to the in-distribution while others will be very
far (see Fig. 3 of the paper). The number of OOD samples
has been carefully chosen so that it amounts approximately
to the number of test points misclassified by the classifier.
Classification is performed by a simple logistic regression.

A set of five models is trained for 200 epochs using the
evidential training objective (Eq. 7 of the paper) with reg-
ularization parameter λ = 5e-2 and Adam optimizer with
learning rate 0.02. Uncertainty metrics – MCP, Entropy,
Mut. Inf., Malahanobis and KLoS – are computed from
these models.

Image Classification Datasets. Experiments are
conducted using CIFAR-10 and CIFAR-100 datasets
(Krizhevsky, 2009). They consist in 32×32 natural images
featuring 10 object classes for CIFAR-10 and 100 classes
for CIFAR-100. Both datasets are composed with 50,000
training samples and 10,000 test samples. We further
randomly split the training set to create a validation set of
10,000 images.

OOD datasets are TinyImageNet1 – a subset of ImageNet
(10,000 test images with 200 classes) –, LSUN (Yu et al.,
2015) – a scene classification dataset (10,000 test images of
10 scenes) – and STL-10 – a dataset similar to CIFAR-10
but with different classes. We downsample each image of
TinyImageNet, LSUN and STL-10 to size 32×32.

Training Details. We implemented in PyTorch (Paszke
et al., 2019) a VGG-16 architecture (Simonyan & Zisser-
man, 2015) in line with the previous works of (Malinin &
Gales, 2019; Charpentier et al., 2020; Nandy et al., 2020),
with fully-connected layers reduced to 512 units. In both
experiments, the models are trained for 200 epochs with
a batch size of 128 images, using a stochastic gradient de-
scent with Nesterov momentum of 0.9 and weight decay

1https://tiny-imagenet.herokuapp.com/

5e-4. The learning rate is initialized at 0.1 and reduced
by a factor of 10 at 50% and 75% of the training progress.
Images are randomly horizontally flipped and shifted by ±4
pixels as a form of data augmentation.

CIFAR-10 CIFAR-100

Train 99.0 ±0.1 91.2 ±0.2

Val 93.6 ±0.1 70.6 ±0.3

Test 93.0 ±0.3 70.1 ±0.4

Table 2. Mean accuracies (%)
and std. over five runs.

Balancing Misclassifica-
tion and OOD Detection
The models used in the
experiments present high
predictive performances
as shown in Table 2. Most
often, there are much fewer misclassifications in the test set.
Hence, joint detection performances might be dominated
by the evaluation of the quality of OOD detection. To miti-
gate this unbalance, we propose to consider the following
scheme based on oversampling. Let AM be the subset of
in-distribution test examples that are misclassified by the
observed model and AO the set of OOD test samples. We
randomly sample κ|AO| points in AM, with κ = 1. Sup-
posing |AO| ≥ |AM|, this corresponds to oversampling
the set of misclassifications. This over-sampled set is then
added to the OOD set to form the negative examples for
detection training. The set of correct predictions remains
the same. We observed that the variance in AUROC due to
this sampling is negligible and we report only the mean.

KLoSNet. We start from the pre-trained evidential model
described above. As detailed in Section 2.3, KLoSNet con-
sists of a small decoder attached to the penultimate layer
of the main network. In CIFAR experiments, this corre-
sponds to VGG16’s fc1 layer of size 512. This auxiliary
neural network is composed of five fully-connected layers
of size 400, except for the last layer obviously. KLoSNet
decoder’s weights ω are trained for 100 epochs with `2
loss (Eq. 11 in the main paper) and with Adam optimizer
with learning rate 1e-4. As KLoS∗ ranges from zero to
large positive values (>1000), one may encounter some
issues when training KLoSNet. Consequently, we apply
a sigmoid function, σ(x) = 1

1+e−x , after computing the
KL-divergence between NN’s output and γy. To prevent
over-fitting, training is stopped when validation AUC metric
for misclassification detection starts decreasing. Then, a
second training step is performed by initializing new en-
coder E′ such that θE′ = θE and by optimizing weights
(θE′ , ω) for 30 epochs with Adam optimizer with learning
rate 1e-6. We stop training once again based on validation
AUC metric.

B. Additional Results
B.1. Results on CIFAR-100 and with ResNet-18

In Table 3, we extend our comparative experiments on si-
multaneous detection to CIFAR-100 dataset and to mod-
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Table 3. Comparative experiments on CIFAR-10 and CIFAR-100
with ResNet-18 architectures. Misclassification (Mis.), out-of-
distribution (OOD) and simultaneous (Mis+OOD) detection results
(mean % AUROC and std. over 5 runs). Bold type indicates
significantly best performance (p < 0.05) according to paired
t-test

LSUN TinyImageNet STL-10
Method Mis. OOD Mis+OOD OOD Mis+OOD OOD Mis+OOD

C
IF

A
R

-1
0

R
es

N
et

-1
8

MCP 84.9 ±0.8 79.6 ±1.0 83.0 ±0.9 77.2 ±0.7 81.8 ±0.7 58.5 ±1.2 72.5 ±0.4

Entropy 84.6 ±0.8 79.6 ±1.1 82.8 ±0.9 77.2 ±0.7 81.6 ±0.7 58.4 ±1.2 72.2 ±0.4

ConfidNet 90.7 ±0.4 84.6 ±1.1 88.6 ±0.6 83.5 ±1.1 88.0 ±0.6 63.2 ±1.2 77.9 ±0.5

Mut. Inf 80.6 ±0.6 77.0 ±1.2 79.4 ±0.9 74.3 ±0.8 78.0 ±0.7 56.4 ±1.0 69.1 ±0.2

Diff. Ent 82.7 ±0.6 78.3 ±1.2 81.1 ±0.9 75.9 ±0.8 79.9 ±0.7 57.5 ±1.1 70.8 ±0.3

EPKL 80.2 ±0.6 76.8 ±1.3 79.0 ±0.9 74.1 ±0.8 77.7 ±0.7 56.2 ±1.0 68.9 ±0.3

ODIN 83.7 ±0.7 78.9 ±1.0 81.9 ±0.9 76.5 ±0.7 80.7 ±0.7 57.9 ±1.2 71.5 ±0.4

Mahalanobis 91.2 ±0.4 90.7 ±0.4 91.8 ±0.3 87.6 ±0.4 90.3 ±0.4 66.8 ±0.5 80.0 ±0.3

KLoSNet (Ours) 93.9 ±0.4 93.1 ±1.1 94.4 ±0.3 90.6 ±0.6 93.2 ±0.2 68.5 ±0.3 82.3 ±0.2

C
IF

A
R

-1
00

V
G

G
-1

6

MCP 82.9 ±0.8 62.8 ±1.3 77.6 ±0.9 72.0 ±0.5 81.8 ±0.7 69.7 ±0.7 80.9 ±0.7

Entropy 82.2 ±0.8 63.2 ±1.4 77.2 ±1.0 72.5 ±0.6 81.5 ±0.8 70.1 ±0.8 80.6 ±0.7

ConfidNet 84.4 ±0.6 65.3 ±2.0 80.0 ±1.3 73.8 ±0.6 83.7 ±0.7 71.5 ±0.6 82.7 ±0.3

Mut. Inf. 78.9 ±0.8 65.6 ±0.7 76.2 ±0.9 71.8 ±0.2 79.1 ±0.4 70.1 ±0.6 78.5 ±0.6

Diff. Ent. 80.2 ±0.8 65.6 ±0.9 77.2 ±0.8 72.7 ±0.3 80.4 ±0.4 71.0 ±0.5 79.7 ±0.5

EPKL 78.8 ±0.8 65.2 ±1.0 76.1 ±0.9 71.6 ±0.2 78.9 ±0.4 70.0 ±0.6 78.3 ±0.6

ODIN 82.1 ±0.8 62.9 ±1.4 77.1 ±1.0 71.9 ±0.6 81.3 ±0.8 69.6 ±0.8 80.3 ±0.7

Mahalanobis 84.0 ±0.2 71.1 ±1.0 82.4 ±0.5 77.0 ±0.5 84.9 ±0.3 75.4 ±0.3 84.3 ±0.5

KLoSNet (Ours) 86.7 ±0.4 68.4 ±1.1 83.0 ±0.6 76.4 ±0.4 86.4 ±0.4 75.0 ±0.5 86.0 ±0.4

C
IF

A
R

-1
00

R
es

N
et

-1
8

MCP 84.0 ±0.4 70.4 ±0.9 81.0 ±0.3 76.6 ±0.5 83.6 ±0.4 75.4 ±0.5 83.1 ±0.2

Entropy 83.7 ±0.4 70.4 ±0.9 80.8 ±0.3 76.9 ±0.5 83.5 ±0.3 75.7 ±0.5 83.0 ±0.3

ConfidNet 87.1 ±0.2 73.0 ±1.4 84.5 ±0.6 79.1 ±0.3 86.8 ±0.3 78.5 ±0.8 86.6 ±0.5

Mut. Inf 82.6 ±0.4 70.2 ±1.1 80.0 ±0.4 76.4 ±0.6 82.6 ±0.3 75.1 ±0.5 82.1 ±0.3

Diff. Ent 83.0 ±0.4 70.1 ±1.1 80.2 ±0.4 76.8 ±0.5 83.0 ±0.3 75.6 ±0.5 82.5 ±0.3

EPKL 82.5 ±0.4 70.2 ±1.1 80.0 ±0.4 76.3 ±0.6 82.5 ±0.3 75.0 ±0.5 82.0 ±0.2

ODIN 83.7 ±0.4 70.3 ±0.9 80.8 ±0.3 76.6 ±0.5 83.5 ±0.3 75.4 ±0.5 83.0 ±0.3

Mahalanobis 85.9 ±0.4 75.2 ±0.6 84.5 ±0.1 78.4 ±0.5 85.9 ±0.3 77.5 ±0.4 85.6 ±0.3

KLoSNet (Ours) 86.9 ±0.3 73.1 ±0.4 84.4 ±0.1 80.8 ±0.2 87.3 ±0.2 79.0 ±0.2 86.7 ±0.3

Table 4. Impact of confidence learning. Comparison of detection
performances between KLoS and KLoSNet for CIFAR-10 and
CIFAR-100 experiments with VGG-16 architecture.

LSUN TinyImageNet STL-10
Method Mis. OOD Mis+OOD OOD Mis+OOD OOD Mis+OOD

CIFAR-10
VGG-16

KLoS 92.1 ±0.3 86.5 ±0.3 91.2 ±0.2 85.4 ±0.3 90.4 ±0.2 64.1 ±0.3 79.6 ±0.3

KLoSNet 92.5 ±0.6 87.6 ±0.9 91.7 ±0.9 86.6 ±0.9 91.2 ±0.8 67.7 ±1.4 81.8 ±0.9

CIFAR-100
VGG-16

KLoS 85.4 ±0.2 65.1 ±1.1 81.3 ±0.6 74.5 ±0.4 85.4 ±0.4 72.7 ±0.3 84.8 ±0.4

KLoSNet 86.7 ±0.4 68.4 ±1.1 83.0 ±0.6 76.4 ±0.4 86.4 ±0.4 75.0 ±0.5 86.0 ±0.4

els with ResNet-18 architecture. We can observe that den-
sity estimation-based methods, Mahalanobis and KLoSNet,
still outperform second-order measures in OOD detection.
KLoSNet improves also misclassification detection, even
compared to dedicated methods such as ConfidNet. These
results confirm that simultaneous detection of misclassifica-
tions and OOD samples can be significantly improved by
KLoSNet in settings without OOD training data.

B.2. Impact of Confidence Learning

To evaluate the effect of the uncertainty measure KLoS and
of the auxiliary confidence network KLoSNet, we report
a detailed ablation study in Table 4. We can notice that
KLoSNet improves misclassification over KLoS but also
OOD detection in every benchmark. We intuit that learning
to improve misclassification detection also helps to spot
some OOD inputs that share similar characteristics.

B.3. Impact of Adversarial Perturbations

In the original papers, ODIN and Mahalanobis preprocess
inputs by adding small inverse adversarial perturbations to
reinforce networks in their prediction; this has also the ob-

served benefit to make in-distribution and out-of-distribution
samples more separable. The tuning of the adversarial
noise’s magnitude depends on the evaluated OOD data. In
Figure 7a, we plot the AUC of each detection task with
different values of perturbation magnitude ε with ODIN,
Mahalanobis and our criterion KLoS, using SVHN as OOD
dataset. Even though there exists a particular noise value for
improved OOD detection (Fig. 7a, middle), increasing noise
magnitude deteriorates performances in misclassification
detection (Fig. 7a, left) for each method. Best results on the
simultaneous detection task (Fig. 7a, right) correspond to
ε = 0, as done in previous experiments.

(a) CIFAR-10 / SVHN

(b) CIFAR-10 / LSUN

(c) CIFAR-10 / TinyImageNet

(d) CIFAR-10 / STL-10

Figure 7. Effect of inverse adversarial perturbations on OOD-
designed measures and KLoS for misclassification detection, OOD
detection and simultaneous detection with VGG16 architecture.

Worse, except with SVHN, adversarial perturbations are
detrimental even to OOD detection. We report the AUC
results of varying adversarial perturbations on CIFAR-10
dataset when using LSUN (Fig. 7b), TinyImageNet (Fig. 7c)
and STL-10 (Fig. 7d) as OOD datasets. Best results on each
considered task correspond to ε = 0 and KLoS outperforms
both Mahalanobis and ODIN. As opposed to results with
SVHN as OOD dataset, we did not observe improvements
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on any method (ODIN, Mahalanobis and KLoS) when using
inverse adversarial perturbations for OOD detection with
LSUN, TinyImageNet and STL-10 datasets. Similar results
are observed in (Liang et al., 2018) (Appendix B, Fig. 8)
when using WideResNet architectures. Regarding Maha-
lanobis (Lee et al., 2018), the authors only provided ablation
for SVHN dataset.

C. Link between KLoS* and Evidential
Training Objective

Let us remind the definition of KLoS as a KL divergence be-
tween the model’s output and a sharp Dirichlet distribution
with concentrations γŷ focused on the predicted class ŷ:

KLoS∗(x, y) , KL
(

Dir
(
π|α

)
|| Dir

(
π|γy

))
, (7)

where α = exp f(x,θ) is model’s output and γy =
(1, . . . , 1, τ, 1, . . . , 1) are the uniform concentration param-
eters except for the true class with τ = 1/λ+ 1.

The KL-divergence between two Dirichlet distributions can
be obtained in closed form and KLoS* can be calculated as:

KLoS∗(x, y) = KL
(

Dir
(
π|α

)
|| Dir

(
π|γy

))
(8)

= log Γ(α0)− log Γ(C − 1 + 1/λ)

+ log Γ(1 + 1/λ)−
C∑
c=1

log Γ(αc)

+
∑
c6=y

(
αc − 1

)(
ψ(αc)− ψ(α0)

)
+
(
αy − (1 + 1/λ)

)(
ψ(αy)− ψ(α0)

)
.

(9)

On the other hand, the KL-divergence between the model’s
output and a uniform Dirichlet distribution Dir

(
π|1
)

reads:

KL
(

Dir
(
π|α(x,θ)

)
|| Dir

(
π|1
))

= log Γ(α0)− log Γ(C)−
C∑
c=1

log Γ(αc)

+

C∑
c=1

(
αc − 1

)(
ψ(αc)− ψ(α0)

)
. (10)

Hence, KLoS* can be written as:

KLoS∗(x, y) =
1

λ

(
ψ(αy)− ψ(α0)

)
+ KL

(
Dir(π|α) || Dir(π|1)

)
+
(

log Γ(1 + 1/λ)− log Γ(C − 1 + 1/λ)

− log Γ(C)
)
. (11)

Let us decompose Lvar(θ;D) = 1
N

∑
(x,y)∈D lvar(x, y,θ).

We retrieve that KLoS∗(x) ∝ lvar(x, y,θ) + r where r =

−
(

log Γ(1 + 1/λ)− log Γ(C−1 + 1/λ)− log Γ(C)
)

does
not depend on the model parameters θ.

In summary, minimizing the evidential training objective
Lvar(θ;D) is equivalent to minimizing the KLoS∗ value of
each training point x.


