
Multi-headed Neural Ensemble Search

Ashwin Raaghav Narayanan 1 Arbër Zela 1 Tonmoy Saikia 1 Thomas Brox 1 Frank Hutter 1 2

Abstract

Ensembles of CNN models trained with differ-
ent seeds (also known as Deep Ensembles) are
known to achieve superior performance over a
single copy of the CNN. Neural Ensemble Search
(NES) can further boost performance by adding ar-
chitectural diversity. However, the scope of NES
remains prohibitive under limited computational
resources. In this work, we extend NES to multi-
headed ensembles, which consist of a shared back-
bone attached to multiple prediction heads. Un-
like Deep Ensembles, these multi-headed ensem-
bles can be trained end to end, which enables us
to leverage one-shot NAS methods to optimize
an ensemble objective. With extensive empirical
evaluations, we demonstrate that multi-headed en-
semble search finds robust ensembles 3× faster,
while having comparable performance to other
ensemble search methods, in both predictive per-
formance and uncertainty calibration.

1. Introduction
Ensembles of neural networks are a common solution to
improve predictive performance and uncertainty calibration
(Hansen & Salamon, 1990). Ensembles of networks trained
with different random initializations (known as Deep En-
sembles) can lead to well-performing and diverse models
as they include different local optima (Lakshminarayanan
et al., 2016; Fort et al., 2019). They have also been shown
to outperform approximate Bayesian methods (Lakshmi-
narayanan et al., 2016; Ovadia et al., 2019; Gustafsson et al.,
2020). On top of that, Neural Ensemble Search (NES) (Zaidi
et al., 2020) and HyperDeepEns (Wenzel et al., 2021) can
further improve performance by searching for a comple-
mentary set of ensemble members. However, building and
maintaining multiple models can be expensive.

1University of Freiburg 2Bosch Center for Artificial In-
telligence. Correspondence to: Ashwin Raaghav Narayanan
<anarayan@cs.uni-freiburg.de>, Arbër Zela <zelaa@cs.uni-
freiburg.de>, Tonmoy Saikia <saikiat@cs.uni-freiburg.de>.

Presented at the ICML 2021 Workshop on Uncertainty and Robust-
ness in Deep Learning., Copyright 2021 by the author(s).

Table 1. Overview: Multi-headed NES (MH-NES) leads to perfor-
mant models on CIFAR-100 with significantly less search costs.

Method # Params Search Cost Error ECE
(M) (GPU hours)

NES-RS 4.0 15.2 19.75±0.27 0.021±0.001

HyperDeepEns (RS) 4.2 28.7 20.11±0.18 0.019±0.003

MH-NES 2.7 5.0 19.65±0.09 0.017±0.001

While more efficient alternatives have been proposed for
constructing ensembles, such as BatchEnsembles (Wen
et al., 2020) and Snapshot Ensembles (Huang et al., 2017;
Loshchilov & Hutter, 2017), they do not typically outper-
form deep ensembles. Multi-headed networks are another
means to build efficient ensembles which uses a single
shared backbone with multiple prediction heads (Lee et al.,
2015; Lan et al., 2018). While multi-headed models have
been studied before, to the best of our knowledge, there is
no prior work that studies the performance impact of search-
ing head architectures. In this work, we employ neural
architecture search (NAS) (Elsken et al., 2019) to search for
the heads’ architecture in the multi-headed models. Unlike
Deep Ensembles, multi-headed models are trained end-to-
end, which allows one-shot NAS methods (Bender et al.,
2018; Liu et al., 2019) to optimize an ensemble objective.

The key contributions of this paper are as follows:

• We extend the standard NAS search space to sample
prediction heads in multi-headed ensembles.

• We evaluate three one-shot NAS methods and demon-
strate comparable or better performance to other ensem-
ble search methods such as NES and HyperDeepEns,
with significantly less search costs (see Table 1).

• We provide an analysis and shed some light on poten-
tial factors affecting the performance of one-shot NAS
methods in the multi-headed setting, particularly for
larger ensemble sizes.

1.1. Related Work

Ensemble methods (Hansen & Salamon, 1990; Dietterich,
2000) are extensively used in machine learning research,
as both a means to boost performance, but also for better
calibration and uncertainty estimates of deep neural net-
works (Lakshminarayanan et al., 2016). Diversity in the



Multi-headed Neural Ensemble Search

predictions made by the ensemble base learners is believed
to be crucial in order to obtain good ensembles. Some meth-
ods induce diversity by training with specialized losses (Lee
et al., 2015; Zhou et al., 2018), building ensemble members
with different topologies (Zaidi et al., 2020) or different
training hyperparameters (Wenzel et al., 2021) to improve
ensemble performance. Multi-head networks trained under
a unified objective can produce robust ensembles too, by
utilizing diversity encouraging specialized losses (Lee et al.,
2015), co-distillation (Lan et al., 2018) or both (Dvornik
et al., 2019).

Neural Architecture Search (NAS) aims to find an optimal
neural network architecture that optimizes some objective
(e.g. validation loss) (Elsken et al., 2019). Early meth-
ods, such as reinforcement learning (Zoph & Le, 2016) and
evolutionary algorithms (Real et al., 2019), but also more
recent efficient methods (Bender et al., 2018; Elsken et al.,
2017; Cai et al., 2019; Liu et al., 2019; Xu et al., 2019;
Chen et al., 2021) have shown that NAS can find architec-
tures that can surpass hand-crafted ones. Recently, NAS has
also been applied to ensemble learning. Neural Ensemble
Search (NES) (Zaidi et al., 2020) builds a pool of strong
independent models with different architectures and applies
ensemble selection to create the ensembles. On the other
hand, AdaNAS (Macko et al., 2019) iteratively adds base
learners to an ensemble to improve the ensemble perfor-
mance. While NES and AdaNAS construct ensembles by
independently training the base learners, which is computa-
tionally expensive, we focus on multi-headed ensembles that
are cheaper to construct and allow us to leverage efficient
NAS methods to design their topology.

2. Background
2.1. Multi-headed Ensembles

Figure 1 depicts an overview of a multi-headed ensemble
for a classification task. The network can be divided into
two sections: a lower block shared by all the heads and
multi-head block consisting of M heads. Each head may
have similar or different architectures.

Given a classification task, let Dtrain = {(xn, yn) : n =
1, ..., N} be the training set, where xn ∈ RD is the D-
dimensional input and yn ∈ {1, ..., C} is the label, assumed
to be one of the C classes. We denote a base learner, in our
case neural networks, by fθ, where θ represents the network
parameters. A network takes the input xi and outputs a
vector of probabilistic class posteriors over the classes as
fθ(x) ∈ RC . We construct an ensemble F of M members
fθ1 , ..., fθM by averaging the output of the networks.

Let ` be the cost function. We use an ensemble-aware
loss function, which includes the ensemble loss term, in
addition to the individual head losses to improve the model

Low-level layers

Head 1

Head 2

Head m

Classifier Logits

Ensemble
Logits

Figure 1. A multi-head ensemble for a CNN classifier

performance:

Ltrain =
M∑
i=1

`(fi(x), y) + `(F (x), y). (1)

2.2. Differentiable Architecture Search

Differentiable architecture search (DARTS) (Liu et al.,
2019) relaxes the discrete architecture space by assign-
ing continuous architectural parameters to every operation
choice in that space. Typically, the search is done for a
cell (e.g., convolutional or recurrent) which is stacked in a
repetitive manner to form the full network. The cell itself
is represented as a directed acyclic graph (DAG) with an
ordered sequence of N nodes. Every node x(i) denotes a
latent representation and each edge (i, j) is associated with
an operation o(i,j) ∈ O that transforms x(i), where O is a
pre-defined space of operations.

The goal is to choose one operation from O to connect each
pair of nodes. DARTS continuously relaxes these discrete
choices by creating a convex combination of the operations
in O using the mixed operation ō:

ō(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(x), (2)

where α(i,j)
o is the operation mixing weight. Thus, the prob-

lem of searching for the cell architecture boils down to learn-
ing a set of continuous variables α = {α(i,j)}. This allows
to formulate the NAS problem as a bi-level optimization
problem:

min
α
Lval(w∗(α), α) s.t. w∗(α) = arg min

w
Ltrain(w,α).

After the search, the final architecture is derived by retaining
the top-k strongest operations from all the previous nodes.

In our work, we use three efficient variations of DARTS,
namely:



Multi-headed Neural Ensemble Search

Head

Reduction
Cell

Normal
Cell

Fe
at

ur
es

 fr
om

 lo
w

er
 la

ye
rs

C
la

ss
ifi

er

Lo
gi

ts

L-1

Figure 2. Single-headed network from the search space

PC-DARTS (Xu et al., 2019) introduces partial channel
connections, where only a portion of channels are sent to
the mixed operation. To overcome the instability induced
by sampling, it introduces edge weights, β, explicitly for
every edge. The connectivity of an edge is then determined
by combining both α and β.

DrNAS (Chen et al., 2021) samples the α parameters from
a parameterized Dirichlet distribution. Since it uses partial
channel connections, it introduces a multi-stage scheme that
increases the channel fraction while pruning the number of
operators at every stage.

RandomNAS (Li & Talwalkar, 2020) builds a supernet-
work similar to DARTS and simply uses randomly sampled
architectures to train the shared weights during every mini-
batch iteration. The trained shared weights are then used
to evaluate the performance of multiple randomly sampled
configurations and select the best performing one as the
final architecture.

3. NAS for multi-headed models
3.1. Search Space

Similar to the DARTS search space (Liu et al., 2019), we
use a cell-based architecture for every head, as shown in
Figure 2. A head is made of L cells, with the first cell as
a reduction cell (reducing spatial dimensions) and the re-
maining L− 1 as normal cells (keeping spatial dimensions).
Unlike DARTS, we do not distinguish the configurations
between reduction and normal cells. We found that having
different configurations for reduction and normal cells had
little to no impact in the performance of a multi-headed
ensemble and only expanded the architecture space. Hence,
in a multi-head ensemble with M heads, there are M × L
cells but onlyM cell configurations orM×{α} parameters
to optimize.

3.2. Diversity Encouraging Loss for Differentiable
Search

During the search phase of DARTS, there is no guarantee
that the head architectures learnt via gradient descent would
be diverse. To this end, we introduce an additional diversity

term only in the loss function for the architecture weights,
Lval. This ensures that the diversity in the one-shot model
predictions originates from the architecture weights and not
from the network weights.

We use the Jensen-Shannon Divergence (JSD) to measure
the diversity between the individual head predictions and
maximize it in the validation objective. Unlike KL diver-
gence, JSD is symmetric and bounded (Lin, 1991), which
allows for direct maximization without the loss exploding.

Given M heads, the diversity-encouraging loss term is:

Ljsd = JSD[fθ1(x), ..., fθM (x)]

=
1

M

M∑
i=0

KL[F (x) ‖ fθi(x)]

Lval = Ltrain − λjsdLjsd

where λjsd is the weight of the JSD loss. Refer to Appendix
D for ablations.

4. Experiments
4.1. Setup

Backbone architecture. We use a WideResNet-40-2
(Zagoruyko & Komodakis, 2017) backbone for all the meth-
ods. The final block is then replaced with 3 cells from our
search space.

Baselines. We compare our multi-headed ensemble meth-
ods with deep ensembles (Lakshminarayanan et al., 2016)
(DeepEns (Sample) and DeepEns (RS)), NES-RS (Zaidi
et al., 2020) and hyper-deep ensembles (Wenzel et al., 2021)
(HyperDeepEns (RS)) from our search space. Sample and
RS refer to head configurations that are randomly sampled
and found by random search, respectively. We ran RS for
25 iterations (function evaluations).

Evaluation. We compare the methods on NLL, classifi-
cation error and ECE (Guo et al., 2017). All results are
aggregates of 3 runs. We provide more details on the experi-
mental setup in Appendix A.

4.2. Results

Figure 3 shows the performance comparison of the ensemble
methods on CIFAR-100 and Tiny-ImageNet for an ensemble
size M = 3. Figure 4 shows a comparison between the
computational cost and ensemble performance.

As we can see, almost all multi-headed ensembles (even a
randomly sampled configuration) show better uncertainty
calibration than a deep ensemble. Compared to NES and
DeepEns (RS), the one-shot multi-headed search methods,
especially DrNAS and RandomNAS, achieve comparable



Multi-headed Neural Ensemble Search

19.0

19.5

20.0

20.5

21.0

En
se

m
bl

e 
Er

ro
r

0.008

0.012

0.016

0.020

0.024

En
se

m
bl

e 
EC

E

32

33

34

35

En
se

m
bl

e 
Er

ro
r

0.016

0.024

0.032

0.040

0.048
En

se
m

bl
e 

EC
E

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Tiny-ImageNet

DeepEns (Sample)
DeepEns (RS)
HyperDeepEns (RS)
NES-RS
MHE-Sample
MHE-RS
MHE (PC-DARTS)
MHE (DrNAS)
MHE (RandomNAS)

Figure 3. Ensemble performance comparison for M = 3 (mean
± std.dev.). M is the number of ensemble members or prediction
heads.

0 5 10 15 20 25 30
Search Cost (GPU hours)

19.6

19.8

20.0

20.2

20.4

En
se

m
bl

e 
Er

ro
r

3×

DeepEns (Sample)
DeepEns (RS)
HyperDeepEns (RS)
NES-RS
MHE-RS
MHE (PC-DARTS)
MHE (DrNAS)
MHE (RandomNAS)

Figure 4. Ensemble error vs search cost (for M = 3) on CIFAR-
100. Data points closer to the origin are better. Size of each point
is proportional to the final ensemble’s model size.

predictive performance, while being 3× more efficient dur-
ing search. Among the multi-headed methods, configu-
rations identified by DrNAS perform the best in terms
of prediction error. This can be attributed to the natural
exploration-exploitation trade-offs in distribution learning.
RandomNAS also performed almost as well for small en-
sembles and for CIFAR-100 identified better configurations
than a naive and expensive random search.

Interestingly, for larger ensemble sizes the performance of
differentiable methods deteriorates while methods based on
random search achieve better performance (Appendix B).
We provide more insights into this behavior in the following
section.

4.3. Analysis of Differentiable Search Methods

Zela et al. (2020) demonstrated that DARTS can often find
degenerate architectures depending on the search space at
hand. Similarly, we found that PC-DARTS and DrNAS
struggled to find architectures better than random search, or
even random samples, especially for larger ensemble sizes.

A Hessian norm analysis of ∇2Lvalid (Zela et al., 2020)
of these methods (Appendix C) indicated that this was not

attributed to architecture over-fitting in the one-shot model:
both PC-DARTS and DrNAS were able to find well per-
forming configurations for a single network from the search
space, though not for the multi-headed space.

1 2 3 5 10
# Heads

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Va
lid

at
io

n 
NL

L

5 10 15 20
# Evaluations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Va
lid

at
io

n 
NL

L 
Re

gr
et

Heads
1
2
3
5
10

Figure 5. (left) Distribution of validation NLL from 60 samples
across 3 random search runs. (right) Validation NLL Regret from
optimal configuration of random search (mean ± std.dev.). All
results on CIFAR-100.

To this end, we analyze the search space by randomly sam-
pling configurations for different ensemble sizes. Figure 5
shows that while there is a clear improvement in the mean
ensemble performance when scaling up the number of heads,
the variance in the ensemble performance decreases signif-
icantly. The validation regret curves flatten out with more
heads, indicating that diminishing returns can be expected
for running a more complex search method for M > 5
(while increasing computational demands). A similar be-
haviour can be observed on Tiny-ImageNet in Appendix
C.

Furthermore, while most NAS methods previously searched
for only 2 cells (Liu et al., 2019; Zhou et al., 2019; Xu
et al., 2019; Chen et al., 2021), our search space size in-
creases exponentially with the number of ensemble mem-
bers/heads. We hypothesize that this, coupled with a low
variance regime, leads the DARTS-based methods to get
stuck in local optima and find suboptimal configurations.
This could also explain why random search traverses the op-
eration search space better and identifies better performing
configurations.

5. Conclusion and Future Work
In this work, we introduced a method for efficiently search-
ing for the architectures of the individual heads in a multi-
headed ensemble. The resulting models are accurate, well
calibrated and also more efficient (computationally and
memory-wise) compared to deep ensembles and other meth-
ods found using inefficient methods that require training
every ensemble base learner individually. In the future, we
would like to improve the robustness of differentiable NAS
methods applied to ensemble learning.



Multi-headed Neural Ensemble Search

References
Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., and Le, Q.

Understanding and simplifying one-shot architecture search. In
International Conference on Machine Learning, pp. 550–559.
PMLR, 2018.

Cai, H., Zhu, L., and Han, S. Proxylessnas: Direct neural architec-
ture search on target task and hardware, 2019.

Chen, X., Wang, R., Cheng, M., Tang, X., and Hsieh, C.-J.
Dr{nas}: Dirichlet neural architecture search. In International
Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=9FWas6YbmB3.

Dietterich, T. G. Ensemble methods in machine learning. In
International workshop on multiple classifier systems, pp. 1–15.
Springer, 2000.

Dvornik, N., Schmid, C., and Mairal, J. Diversity with cooperation:
Ensemble methods for few-shot classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vision,
pp. 3723–3731, 2019.

Elsken, T., Metzen, J.-H., and Hutter, F. Simple and efficient
architecture search for convolutional neural networks, 2017.

Elsken, T., Metzen, J. H., Hutter, F., et al. Neural architecture
search: A survey. J. Mach. Learn. Res., 20(55):1–21, 2019.

Falkner, S., Klein, A., and Hutter, F. Bohb: Robust and efficient
hyperparameter optimization at scale, 2018.

Fort, S., Hu, H., and Lakshminarayanan, B. Deep ensembles: A
loss landscape perspective. arXiv preprint arXiv:1912.02757,
2019.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On calibration
of modern neural networks. In International Conference on
Machine Learning, pp. 1321–1330. PMLR, 2017.

Gustafsson, F. K., Danelljan, M., and Schön, T. B. Evaluating
scalable bayesian deep learning methods for robust computer
vision, 2020.

Hansen, L. K. and Salamon, P. Neural network ensembles. IEEE
transactions on pattern analysis and machine intelligence, 12
(10):993–1001, 1990.

Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., and Wein-
berger, K. Q. Snapshot ensembles: Train 1, get m for free,
2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimiza-
tion, 2017.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple and
scalable predictive uncertainty estimation using deep ensembles.
arXiv preprint arXiv:1612.01474, 2016.

Lan, X., Zhu, X., and Gong, S. Knowledge distillation by on-the-
fly native ensemble. arXiv preprint arXiv:1806.04606, 2018.

Lee, S., Purushwalkam, S., Cogswell, M., Crandall, D., and Ba-
tra, D. Why m heads are better than one: Training a diverse
ensemble of deep networks. arXiv preprint arXiv:1511.06314,
2015.

Li, L. and Talwalkar, A. Random search and reproducibility for
neural architecture search. In Uncertainty in Artificial Intelli-
gence, pp. 367–377. PMLR, 2020.

Lin, J. Divergence measures based on the shannon entropy. IEEE
Transactions on Information theory, 37(1):145–151, 1991.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable archi-
tecture search, 2019.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gradient descent
with warm restarts, 2017.

Macko, V., Weill, C., Mazzawi, H., and Gonzalvo, J. Improv-
ing neural architecture search image classifiers via ensemble
learning, 2019.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S.,
Dillon, J. V., Lakshminarayanan, B., and Snoek, J. Can you trust
your model’s uncertainty? evaluating predictive uncertainty
under dataset shift, 2019.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regularized evo-
lution for image classifier architecture search. In Proceedings
of the aaai conference on artificial intelligence, volume 33, pp.
4780–4789, 2019.

Van der Maaten, L. and Hinton, G. Visualizing data using t-sne.
Journal of machine learning research, 9(11), 2008.

Wen, Y., Tran, D., and Ba, J. Batchensemble: An alternative
approach to efficient ensemble and lifelong learning, 2020.

Wenzel, F., Snoek, J., Tran, D., and Jenatton, R. Hyperparameter
ensembles for robustness and uncertainty quantification, 2021.

Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G.-J., Tian, Q., and Xiong,
H. Pc-darts: Partial channel connections for memory-efficient
architecture search. arXiv preprint arXiv:1907.05737, 2019.

Zagoruyko, S. and Komodakis, N. Wide residual networks, 2017.

Zaidi, S., Zela, A., Elsken, T., Holmes, C., Hutter, F., and Teh,
Y. W. Neural ensemble search for performant and calibrated
predictions, 2020.

Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., and Hutter,
F. Understanding and robustifying differentiable architecture
search. In International Conference on Learning Representa-
tions, 2020. URL https://openreview.net/forum?
id=H1gDNyrKDS.

Zhou, H., Yang, M., Wang, J., and Pan, W. Bayesnas: A bayesian
approach for neural architecture search, 2019.

Zhou, T., Wang, S., and Bilmes, J. A. Diverse ensemble evolution:
Curriculum data-model marriage. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R. (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. URL https:
//proceedings.neurips.cc/paper/2018/file/
3070e6addcd702cb58de5d7897bfdae1-Paper.
pdf.

Zoph, B. and Le, Q. V. Neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1611.01578, 2016.

https://openreview.net/forum?id=9FWas6YbmB3
https://openreview.net/forum?id=9FWas6YbmB3
https://openreview.net/forum?id=H1gDNyrKDS
https://openreview.net/forum?id=H1gDNyrKDS
https://proceedings.neurips.cc/paper/2018/file/3070e6addcd702cb58de5d7897bfdae1-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3070e6addcd702cb58de5d7897bfdae1-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3070e6addcd702cb58de5d7897bfdae1-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3070e6addcd702cb58de5d7897bfdae1-Paper.pdf


Multi-headed Neural Ensemble Search

A. Experiment Details
The models were implemented with a WideResNet-40-2
(Zagoruyko & Komodakis, 2017) backbone. The final block
of the WideResNet is replaced with heads from the search
space. All algorithms were implemented in PyTorch 1.7.1
and run on NVIDIA RTX 2080 GPUs. All the final evalua-
tion networks were trained for 100 epochs with mini-batch
size of 128 using SGD with initial learning rate η = 0.1, mo-
mentum 0.9 and weight decay 3× 10−4. The learning rate
was decayed by a cosine annealing schedule (Loshchilov &
Hutter, 2017) towards 0.

The one-shot model of the differentiable search methods is
trained for 50 epochs with a batch size of 64 using SGD
with the same optimizer settings as the final evaluation
for the network parameters. The architecture parameters
were initialized uniformly around zero. We used Adam
optimizer (Kingma & Ba, 2017) with initial learning rate
η = 3 × 10−4, β1 = 0.5, β2 = 0.999 and weight decay
10−3. Similar to (Liu et al., 2019), learnable affine param-
eters were disabled during search to avoid rescaling the
outputs of the candidate operations. In PC-DARTS, the par-
tial channel parameter K was set to 4. For DrNAS, we use a
two stage progressive learning approach, 25 iterations each.
In in the first stage, the partial channel parameter K = 4
and all 7 operations are used. For the second stage, half
the candidate operations are pruned (i.e., 4 remain) and the
network is widened by increasing K to 2. To avoid bias
towards non-parametric operations, we warmstart the one-
shot model by not updating the architecture parameters for
the first 15 epochs for PC-DARTS and 10 epochs for each
stage in DrNAS, following the original implementation.

All experiments are an aggregation of 3 independent runs
and the results show the mean and standard deviation, unless
specified otherwise. For search methods, an independent
run includes one search and one evaluation phase.

A.1. Baselines

• DeepEns (Sample) - Deep Ensembles (Lakshmi-
narayanan et al., 2016) train M different initializations
of a randomly sampled head (M = 1) from the search
space.

• DeepEns (RS) is a deep ensemble built using a the
optimal configuration from random search for M = 1.

• NES-RS - The ensemble pool is constructed by sam-
pling single-headed networks from our search space.
Then, we run forward selection on the pool to select the
ensemble members based on the validation set. This
approach can be seen as an adaptation of Neural En-
semble Search (Zaidi et al., 2020) to just the last block.
We sampled 25 single-headed configurations to build
the ensemble pool.

• HyperDeepEns (RS) - Hyperparameter Ensembles
(Wenzel et al., 2021) use the same networks as Deep-
Ens (RS) but train them with two varying hyperpa-
rameters: label smoothing and weight decay along
with random initializations to build the ensemble pool.
Forward selection is used to select the final ensemble
members. We sampled 25 configurations to build the
ensemble pool.

• MHE-Sample is a random sample from the multi-head
search space.

• MHE-RS is the final configuration from random
search. We randomly sample 25 multi-headed con-
figurations from the search space and choose the best
configuration based on the validation NLL.

A.2. Hyperparameter optimization of search
parameters

Since this is a fairly new domain for differentiable search
methods, we optimize the hyperparameters of the search
phase using BOHB (Falkner et al., 2018), a multi-fidelity
Bayesian optimization method that uses an efficient surro-
gate model to search for good hyperparameter configura-
tions.

The hyperparameters optimized were: network learning rate,
network weight decay, architecture learning rate, architec-
ture weight decay, backbone layers and width. We included
the number of backbone layers and widening factor to search
for a proxy one-shot model that can search faster without
compromising on the optimal configuration performance.
The incumbent configuration from BOHB was later used to
run PC-DARTS and DrNAS for all multi-headed settings.

B. Additional Results

Table 2. Performance and computation cost of different search
methods for ensemble size M = 3 on CIFAR-100.

Method # Params Search Error ECE
(M) (GPU hours)

DeepEns (Sample) 4.1 20.52±0.12 0.019±0.001

DeepEns (RS) 4.2 15.2 19.58±0.03 0.018±0.001

HyperDeepEns (RS) 4.2 28.7 20.11±0.18 0.019±0.003

NES-RS 4.0 15.2 19.75±0.27 0.021±0.001

MHE-RS 2.4 27.2 20.03±0.12 0.015±0.001

MHE (PC-DARTS) 2.6 5.8 20.23±0.04 0.017±0.002

MHE (DrNAS) 2.7 5.0 19.65±0.09 0.017±0.001

MHE (RandomNAS) 2.6 8.1 19.86±0.08 0.015±0.001

B.1. Ensemble Performance for larger ensembles

On larger ensembles, the multi-headed methods see signif-
icant improvements in ensemble performance and calibra-
tion, as shown in Figure 6. However, the configurations



Multi-headed Neural Ensemble Search

18.0

18.5

19.0

19.5

20.0

En
se

m
bl

e 
Er

ro
r

0.012

0.018

0.024

0.030

En
se

m
bl

e 
EC

E

31

32

33

34

En
se

m
bl

e 
Er

ro
r

0.016

0.024

0.032

0.040

0.048
En

se
m

bl
e 

EC
E

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Tiny-ImageNet

DeepEns (Sample)
DeepEns (RS)
HyperDeepEns (RS)
NES-RS
MHE-Sample
MHE-RS
MHE (PC-DARTS)
MHE (DrNAS)
MHE (RandomNAS)

Figure 6. Ensemble performance comparison for M = 5 (mean ±
std.dev.)

identified by DARTS-based methods, PC-DARTS and Dr-
NAS, deteriorate and perform only as good as a random sam-
ple from the search space on CIFAR-100 and even worse
on Tiny-ImageNet. The sub-optimal configurations can
be attributed to the low variance regime and the increased
search space size, which makes them get stuck in a local
optima. RandomNAS, the one-shot search method that is
based on randomly sampled architectures, is more robust
and achieves the best ensemble error for M = 5.

B.2. Ensemble Performance under Dataset Shift

1 3 5
Corruption Severity

1

2

3

4

5

6

En
se

m
bl

e 
NL

L

CIFAR-100

1 3 5
Corruption Severity

3

4

5

6

7

En
se

m
bl

e 
NL

L

Tiny-ImageNet

DeepEns (Sample)
NES-RS
MHE-Sample
MHE-RS
MHE (DrNAS)
MHE (RandomNAS)

Figure 7. Ensemble performance comparison for M = 3 across
different shift severities

The results shown in Figure 7 shows how the ensembles
perform on shifted data. The multi-headed search methods
mostly outperform the deep ensemble baseline and are even
on par with NES on CIFAR-100.

C. Analysis of DARTS methods
Figure 8 shows the performance of both gradient-based
search methods PC-DARTS and DrNAS using the incum-
bent configuration. Following RobustDARTS (Zela et al.,
2020), we plot the dominant eigenvalue of the Hessian of
validation loss (∇2Lvalid), which serves as a proxy for
sharpness, for each search epoch and the corresponding test
NLL for 1, 3 and 5 heads.

Table 3. Performance of different search methods for one head on
CIFAR-100 dataset. WideResNet block is the baseline block used
in the original network.

Method NLL Error

WideResNet block 1.089±0.006 24.41±0.08
Random Sample 0.983±0.020 24.12±0.21
Random Search 0.927±0.015 23.17±0.08

PC-DARTS 0.923±0.008 23.20±0.10
DrNAS 0.908±0.007 23.61±0.21

Both PC-DARTS and DrNAS found good single-head con-
figurations that performed at least as well as random search,
as shown in Table 3. The DARTS search space is so tuned
that random search can offer comparable performance to
differentiable methods (Li & Talwalkar, 2020). If we in-
clude early stopping based on the dominant eigenvalue like
DARTS-ES (Zela et al., 2020), PC-DARTS produces an
even better configuration. However, for more heads, the dif-
ferentiable methods fail to offer much more than a random
sample on in-distribution performance. The Hessian norm
indicates that this is not a result of architecture over-fitting
in the one-shot model.

0 10 20 30 40 50
Search epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Do
m

in
an

t E
ig

en
 V

al
ue

M=1
M=3
M=5

0 10 20 30 40 50
Search epoch

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Te
st

 N
LL

(a) PC-DARTS

0 10 20 30 40 50
Search epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Do
m

in
an

t E
ig

en
 V

al
ue

M=1
M=3
M=5

0 10 20 30 40 50
Search epoch

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Te
st

 N
LL

(b) DrNAS

Figure 8. (left) Trajectory of the Hessian norm i.e., dominant Eigen-
value of∇2Lvalid for PC-DARTS and DrNAS. (right) Test NLL
of the optimal architectures by the search methods. All experi-
ments conducted on CIFAR-100.

We build a t-SNE (Van der Maaten & Hinton, 2008) vi-
sualization of the head architectures, as shown in Figure
10 to visualize the validation NLL across the architecture
search space. We convert the architecture into a vector of
edges (operators) for all heads and visualize them using
t-SNE with hamming distance as the distance measure. The
assumption is that cells that share similar edges would be
closer to each other than cells with different operators and
this should translate into their performance.

As we can see in Figure 10, the architecture space when
M = 1 is defined with bright and dark subspaces, indi-



Multi-headed Neural Ensemble Search

1 2 3 5 10
# Heads

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Va
lid

at
io

n 
NL

L

5 10 15 20
# Evaluations

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Va
lid

at
io

n 
NL

L 
Re

gr
et

Heads
1
2
3
5
10

Figure 9. (left) Distribution of validation NLL from 60 samples
across 3 random search runs. (right) Validation NLL Regret from
optimal configuration of random search (mean ± std.dev.). All
results on Tiny-ImageNet.

60 40 20 0 20 40
t-SNE axis 1

60

40

20

0

20

40

60

t-S
NE

 a
xi

s 2

M=1

40 30 20 10 0 10 20 30 40
t-SNE axis 1

30

20

10

0

10

20

30

40

t-S
NE

 a
xi

s 2

M=3

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

Figure 10. t-SNE visualization of 60 different configurations sam-
pled randomly for ensemble sizes 1 and 3 on CIFAR-100. The
regions are coloured based on the validation NLL Regret. Lighter
colour indicates better performance. The pervasiveness of bright
regions for ensembles implies more well-performing regions in the
architecture space.

cating the clear distinction in the quality of architectures.
Moreover, the well-performing subspaces are fewer and far
between, leading to more informative gradients. Even for a
small ensemble M = 3, while there are still the occasional
dark subspaces, the bright spaces become more pervasive,
highlighting the similar performance levels across most con-
figurations. The validation NLL regret is predominantly less
than 0.04-0.06, which is 3× smaller than the regret in single
heads.

D. Ablation Studies
D.1. Diversity Term in Architecture Search

Figure 11 compares the performance of PC-DARTS and
DrNAS with and without the diversity constraint on the
default search configurations, before hyperparameter op-
timization. In PC-DARTS, it is clear that the additional
constraint improves the performance of final configuration.
The dominant eigenvalue of ∇2Lvalid is more regulated,
indicating a more stable search. The optimal configuration
has a better test performance and diversity performance,
demonstrating the benefits of using the diversity term dur-
ing search. There is no clear winner for DrNAS. While the

diversity term regulated the dominant eigenvalues and led
to better early configurations, the final configuration did not
improve the diversity or accuracy in the predictions over the
unconstrained objective.

0 10 20 30 40 50
Search epoch

0

2

4

6

8

10

12

Do
m

in
an

t E
ig

en
 V

al
ue

Default
ArchJSD

0 10 20 30 40 50
Search epoch

0.72

0.74

0.76

0.78

0.80

0.82

Te
st

 N
LL

0 10 20 30 40 50
Search epoch

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Te
st

 O
ra

cle
 N

LL

(a) PC-DARTS

0 10 20 30 40 50
Search epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Do
m

in
an

t E
ig

en
 V

al
ue

Default
ArchJSD

0 10 20 30 40 50
Search epoch

0.74

0.76

0.78

0.80

Te
st

 N
LL

0 10 20 30 40 50
Search epoch

0.49

0.50

0.51

0.52

0.53

0.54

0.55

Te
st

 O
ra

cle
 N

LL

(b) DrNAS

Figure 11. (left) Trajectory of the Hessian norm (dominant eigen-
value of∇2Lvalid) during search. (middle) Test NLL of optimal
architectures from the search phase. (right) Oracle Ensemble NLL
(Zaidi et al., 2020) of the optimal architectures during search. All
experiments run on CIFAR-100 with an ensemble size M = 3.
Default configurations were used for the search methods. (mean
± std.dev.)

D.2. Deep Ensembles vs MHE for Similar
Architectures

3 5 10
Ensemble Size

18.0

18.5

19.0

19.5

20.0

En
se

m
bl

e 
Er

ro
r

NES-RS
DeepEns (RS)
MHE-FS
MHE-Uniform (RS)

3 5 10
Ensemble Size

0.015

0.020

0.025

0.030

0.035

0.040

0.045
En

se
m

bl
e 

EC
E

Figure 12. In-distribution performance of independent and multi-
headed ensembles on CIFAR-100 dataset. MHE-Uniform (RS)
and DeepEns (RS) have same uniform ensemble configuration.
NES-RS and MHE-FS have the same ensemble configuration with
varying member architectures.

Figure 12 compares the ensemble error and ECE of deep
ensembles and multi-headed ensembles on CIFAR-100 for
increasing ensemble sizes. Both MHE methods are better
calibrated compared to deep ensembles, which is clearly
evident for larger values of M . For M = 3, MHE with
varying configurations does not perform as well as the other
methods. A good uniform configuration can perform better
than varying configurations for smaller ensembles, even for
deep ensembles. The effect of varying architectures shows
only for medium to large ensembles, when M ≥ 5.


