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Abstract
Reliability of machine learning (ML) systems
is crucial in safety-critical applications such as
healthcare, and uncertainty estimation is a widely
researched method to highlight the confidence of
ML systems in deployment. Sequential and par-
allel ensemble techniques have shown improved
performance of ML systems in multi-modal set-
tings by leveraging the feature sets together. We
propose an uncertainty-aware boosting technique
for multi-modal ensembling in order to focus on
the data points with higher associated uncertainty
estimates, rather than the ones with higher loss
values. We evaluate this method on healthcare
tasks related to Dementia and Parkinson’s disease
which involve real-world multi-modal speech and
text data, wherein our method shows an improved
performance. Additional analysis suggests that in-
troducing uncertainty-awareness into the boosted
ensembles decreases the overall entropy of the
system, making it more robust to heteroscedastic-
ity in the data, as well as better calibrating each of
the modalities along with high quality prediction
intervals. We open-source our entire codebase
at https://github.com/usarawgi911/Uncertainty-
aware-boosting.

1. Introduction
Rapid developments in machine learning (ML) across a va-
riety of tasks have advanced its deployment in real-world
settings (LeCun et al., 2015). However, recent works have
shown how these models are usually overconfident at pre-
dicting probability estimates representative of the true like-
lihood, and can lead to confident incorrect predictions (Guo
et al., 2017). This is particularly detrimental in real-world
domains as the distribution of the observed data may shift
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and eventually be very different once a model is deployed
in practice, leading to models exhibiting unexpectedly poor
behaviour upon deployment (D’Amour et al., 2020).

Generating confidence intervals or uncertainty estimates
along with the predictions is crucial for reliable and safe
deployment of machine learning systems in safety-critical
settings (such as healthcare) (Amodei et al., 2016; Varshney
& Alemzadeh, 2017; Kumar et al., 2019; Thiagarajan et al.,
2020). It helps mitigate possible risks and biases in decision
making (Gal, 2016), and can also help in designing reliable
human-assisted AI systems for improved and more trans-
parent decision making as the human experts in the process
can account for the confidence measures of the models for
a final decision. Numerous works have proposed a variety
of both Bayesian and non-Bayesian methods to model the
heteroscedasticity introduced by the stochastic data genera-
tion process for predicting the uncertainty estimates along
with the neural network predictions (Gal & Ghahramani,
2016; Hernández-Lobato & Adams, 2015; Wu et al., 2018;
Lee et al., 2017; Pearce et al., 2020; Izmailov et al., 2020;
Osband, 2016; Lakshminarayanan et al., 2017; Dusenberry
et al., 2020; Jain et al., 2020; Sarawgi et al., 2020a; Kay
et al., 1999; Welling & Teh, 2011; Kendall & Gal, 2017;
Shridhar et al., 2018; Snoek et al., 2019; Qiu et al., 2020).
Uncertainty estimation in trees and random forests has been
studied in the past, with multiple methods being proposed
for both classification and regression tasks. (Duan et al.,
2020; Malinin et al., 2021; Wager et al., 2014; Coulston
et al., 2016; Shaker & Hüllermeier, 2020)

Our experience of the world is multi-modal; data tend to
exist with multiple modalities such as images, audio, text,
and more in tandem. Interpreting these signals together by
designing models that can process and relate information
from multiple sources can help leverage different feature
sets together for better understanding and decision making
(Baltrušaitis et al., 2018). Parallel and sequential techniques
are widely used to improve performance by ensembling
weak learners trained with a single data modality (Freund &
Schapire, 1997b;a; Friedman, 2000; Chen & Guestrin, 2016;
Breiman, 1996; Sarawgi et al., 2020b; Zhang & Mahade-
van, 2019; Nakamura et al., 2019). Similarly, base learners
trained with different input modalities can be ensembled
together for performance improvements (Baltrušaitis et al.,
2018; Sarawgi et al., 2020b; Zhang & Mahadevan, 2019).
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Some works have briefly discussed uncertainty estimation in
multi-modal settings and ensembles (Ashukha et al., 2020;
Kendall et al., 2018; Chang et al., 2017; Sarawgi et al.,
2020a; Oviatt et al., 2000; Sen & Stoffa, 1996; Hill et al.,
1993).

We propose a notion of uncertainty-awareness with sequen-
tially boosted ensembling in multi-modal settings. Partic-
ularly, we design an ‘uncertainty-aware boosted ensemble’
for a multi-modal system where each of the base learners
correspond to the different modalities. The ensemble is
trained in a way such that the base learners are sequen-
tially boosted by weighing the loss with the corresponding
data point’s predictive uncertainty (Section 2). We evalu-
ate our method on multi-modal speech and text datasets on
healthcare tasks using different ML models and uncertainty
estimation techniques (Section 3). We perform entropy, cal-
ibration, and prediction interval analyses to highlight the
significance of introducing uncertainty-awareness into the
ensemble (Section 3).

The motivation is to sequentially boost the data points for
which a particular base learner is more uncertain about its
prediction. Multi-modal data, in nature, can be more prone
to noise in particular modalities due to various reasons (such
as the stochastic data generation process at the source). With
uncertainty estimation, the noisy modalities will exhibit
high uncertainty with the predictions. In such situations,
having the base learners pay more attention to such uncertain
predictions can help design a more robust ensemble learner.
This mechanism decreases the overall entropy of the multi-
modal system while generating uncertainty estimates, thus
making it more reliable.

2. Uncertainty-Aware Boosted Ensemble
2.1. Notation and Setup

Let x represent the multi-modal input feature set and y ∈ R
denote the real-valued label for regression. We let xj ∈ Rd
represent a set of d-dimensional input features for the jth

modality, with j = 1 to k, where k is the total number of
modalities.

Let {hj}kj=1 represent the corresponding base learner for
the jth modality. The term base learner is just an abstraction
for any learnt functions that maps an input to an output, for
example, SVM, random forest, neural network, etc.

We subsequently have a training dataset {(xjn, yn)}Nn=1 con-
sisting of N i.i.d. samples for the jth modality i.e.

hj : xjn −→ yn (1)

2.2. Defining Uncertainty-Aware Boosted Ensemble

We first define a ‘vanilla ensemble’ for a fair compar-
ison with our proposed approach. We then define our

‘uncertainty-aware ensemble’ referred to as ‘UA ensemble’,
and its variation referred to as ‘UA ensemble (weighted)’.
Fig. 3 (Appendix A) shows the process diagrams of vanilla
ensemble, UA ensemble, and UA ensemble (weighted)).

2.2.1. VANILLA ENSEMBLE

This makes use of loss values, i.e. mean squared error
(MSE) values for regression, to weight the loss function
during training while sequentially boosting across the base
learners. This means that the MSE values corresponding to
the predictions from the jth base learner are used to weight
the loss function for the corresponding training samples
while training the (j+1)th base learner. Then, the ensemble
computes an average of the predictions {ŷhj}kj=1 of all the
(boosted) base learners for the final prediction ŷ.

2.2.2. UA ENSEMBLE

This makes use of predicted uncertainty estimates σhj to
weight the loss function during training while sequentially
boosting across the base learners. This means that the uncer-
tainty estimates σhj corresponding to the predictions from
the jth base learner are used to weight the loss function
for the corresponding training samples while training the
(j + 1)th base learner. Then, the ensemble computes an av-
erage of the predictions {ŷhj}kj=1 of all the (boosted) base
learners for the final prediction ŷ. We also experiment with
another variation called UA ensemble (weighted), where we
compute a weighted average of all the boosted base learners,
where the weights used are the inverse of the respective
predicted uncertaint estimates σhj . (See Equation (2))

ŷ(xn) =

∑k
j=1

1
σhj (xn)

ŷhj (xn)∑k
j=1

1
σhj (xn)

(2)

Most of the previously proposed boosting methods sequen-
tially boost across different base learners using the same set
of total input features. However, UA ensembles sequentially
boost through different base learners, with each base learner
corresponding to a different input modality. This is because
we want to best leverage each of the modality-wise features
while deriving a strong multi-modal learner using individual
modality-wise base-learners together. It is important to note
that unlike other boosting techniques (Freund & Schapire,
1997a; Friedman, 2000; Chen & Guestrin, 2016), the base
learners here need not be weak learners.

3. Experiments and Results
We test and evaluate our proposed methods on two speech
and language-based multi-modal datasets in healthcare tasks
related to Dementia and Parkinson’s disease (refer to Ap-
pendix B for more details on the datasets). We make use of
different types of machine learning models (Neural Net-
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works and Random Forests) and uncertainty estimation
techniques (Gaussian target distribution (Lakshminarayanan
et al., 2017) and Infinitesimal Jackknife method (Wager
et al., 2014)) for the two datasets.

3.1. Multi-modal Feature Extraction

For the Dementia dataset, we extract multi-modal acoustic,
cognitive and linguistic features from the available speech
samples and their corresponding transcripts, by using the
feature engineering pipeline as developed by Sarawgi et al.
(Sarawgi et al., 2020b), resulting in three input modalities,
namely ‘Disfluency’, ‘Interventions’, and ‘Acoustic’. (Refer
to Appendix C.1 for more details).

In the Parkinson’s dataset, we extract two input modalities
from the available data, referring to them as the ‘Amplitude’
and ‘Frequency’ modalities. (Refer to Appendix C.2 for
more details).

3.2. Model Architecture and Training

3.2.1. DEMENTIA

For a fair comparison with the state-of-the-art, we use al-
most the same NN architecture as used by Sarawgi et al.
(Sarawgi et al., 2020b) for each of the three input modalities.
(Refer to Appendix D.1 for the exact model architecture).
The target distribution is modelled as a Gaussian distribution
phj (yn|xjn) parameterized by the mean µhj and the stan-
dard deviation σhj , predicted at the final layer of the models
(Lakshminarayanan et al., 2017; Snoek et al., 2019; Sarawgi
et al., 2020a). Each of the base learners is trained with their
corresponding input modality features xj and ground truth
labels y using a proper scoring rule, optimizing for the neg-
ative log-likelihood (NLL) of the joint distribution. Each
training run used a batch size of 32 and an Adam optimizer
with a learning rate of 0.00125 to minimize the NLL.

3.2.2. PARKINSON’S DISEASE

We model the probabilistic predictive distribution phj (y|xj)
using a random forest (RF) regressor with parameters hj

and a mean squared error loss function. Each of the RFs
makes use of 300 decision tree estimators. The uncertainty
estimates σhj of each of the data point is estimated as the
confidence interval using the Infinitesimal Jackknife method
(Wager et al., 2014; Wager, 2016).

3.3. Results

For robustness, we repeat every training and test-set evalu-
ation 5 times and report the mean and variance of the root
mean squared error (RMSE) results across the five runs.
We first evaluate each of the modalities (i.e. base learners)
individually and then compare them with the vanilla and

uncertainty-aware ensembles. The order of sequential boost-
ing for the propagation of the uncertainties is chosen in the
order of the test set performance of the individual modalities.
We observe that the uncertainty-aware ensembles perform
better than the vanilla ensemble and the individual modali-
ties. (Tables 1 and 2).

Table 1. Comparison of individual modalities i.e. base learners and
ensemble methods on test set results of the ADReSS dataset.

Model RMSE

Disfluency 5.71 ± 0.39
Interventions 6.41 ± 0.53
Acoustic 6.66 ± 0.30
Vanilla Ensemble 5.17 ± 0.27
UA Ensemble 5.05 ± 0.53
UA Ensemble (weighted) 4.96 ± 0.49

Table 2. Comparison of individual modalities i.e. base learners
and ensemble methods on 5-fold cross validation results of the
Parkinson’s Telemonitoring dataset.

Model RMSE

Amplitude 3.21 ± 0.06
Frequency 3.32 ± 0.10
Vanilla Ensemble 3.18 ± 0.05
UA Ensemble 3.04 ± 0.04
UA Ensemble (weighted) 3.05 ± 0.05

We further use the 65-95-99.7 rule (also called the empirical
rule) to obtain calibration curves for a comprehensive analy-
sis of calibration (Lakshminarayanan et al., 2017; Sarawgi
et al., 2020a). To plot these curves, we first compute the
x% prediction interval for each data point under evaluation
based on Gaussian quantiles using the prediction value and
variance. We then calculate the fraction of data points under
evaluation with true values that fall within this prediction
interval. For a well-calibrated model, the observed fraction
should be close to the x% calculated earlier. To see how our
models perform in this setting, we sweep from x = 10%
to x = 90% in steps of 10. A line lying close to the line
(y = x) would indicate a well-calibrated model. Fig. 1
shows the that calibration the Interventions and Acoustic
modalities become better-calibrated compared to the Dis-
fluency modality. However in case of vanilla ensemble,
the calibration of the Interventions and Acoustic modalities
become worse when compared to the Disfluency modality.
Fig. 2 shows the that calibration the Frequency modality be-
come better-calibrated compared to the Amplitude modality
in the case of UA ensembles, whereas they became worse
calibrated in the case of vanilla ensemble. This highlights
the significance of introducing the notion of uncertainty-
awareness in ensembles to obtain better-calibrated models.
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Figure 1. Calibration curves for the ensemble techniques on the ADReSS dataset.

Figure 2. Calibration curves for the ensemble techniques on the Parkinson’s Telemonitoring dataset.

We also compare our approach on other state-of-the-art
methods on the ADReSS test set and find that it outperforms
the current best approaches (Table 3 in Appendix E.1). Fur-
ther analysis shows that the entropy of each modality as we
sequentially boost shows a drastic reduction in the case of
UA ensembles (Fig. 5 in Appendix E.1). An analysis of
the Mean Prediction Interval Width (MPIW) and the Pre-
diction Interval Coverage Probability (PICP) (see Table 4
in Appendix E.1 and Table 5 in Appendix E.2) shows that
uncertainty-aware boosting results in tighter bounds for the
confidence intervals along with higher PICP values, and
high quality prediction intervals as desired (Pearce et al.,
2018).

4. Discussion and Future Work
We proposed an uncertainty-aware boosted ensembling
method in multi-modal settings, improving the performance
when compared to individual modalities and boosting using
loss values. By focusing more on data points with higher un-
certainty, through uncertainty-weighting of the loss function
(UA Ensemble) and the predictions as well (UA Ensemble
(weighted)), we showed how our ensemble outperforms the
results of state-of-the-art methods. Our experiments showed
that the propagation of the uncertainty sequentially through
the base learners of every modality aids the multi-modal
system to decrease the overall entropy in the system, mak-
ing it more reliable when compared to vanilla ensembles.
Additionally, the modalities indeed become well calibrated
along with high quality prediction intervals when boosted
using uncertainty values, rather than loss values.

Such characteristics are significantly desired in real-world
settings where data tends to exist in multiple modalities to-
gether. Understanding what a machine learning model does
not know is crucial in safety-critical applications. Access
to such information helps with designing a more reliable
and aware decision-making system (Amodei et al., 2016;
Varshney & Alemzadeh, 2017; Kumar et al., 2019; Thiagara-
jan et al., 2020; Gal, 2016). Furthermore, the availability
of predictive uncertainties corresponding to each modality
adds a level of transparency to the machine learning system.
This can assist the user in making more informed decisions,
thereby nurturing the synergy between humans and AI.

There are a lot of interesting possible future research
directions to this work. One could definitely expand the
proposed method itself to account for uncertainty values, as
well as loss values, while boosting the base learners. Our
current experiments make use of speech and text data with
neural networks and random forests as the base learners.
This can be extended to other forms of machine learning
systems, making use of other Bayesian and non-Bayesian
uncertainty estimation techniques and data modalities.
Additionally, we encourage the community to further
evaluate such techniques in other safety-critical tasks and
applications, as well as assess the longitudinal performance
and attributes of these systems, especially in the presence of
noisy data and/or when the observed data distribution tends
to shift over time and eventually becomes very different.
This also opens up avenues to potentially design adaptive
systems which could actively learn from the uncertainty
estimates at deployment time.
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A. Process Diagrams
The process diagrams for Vanilla Ensemble and Uncertainty-
aware ensemble is shown in Fig. 3.

B. Datasets
B.0.1. DEMENTIA

We use the standardized and benchmark ADReSS
(Alzheimer’s Dementia Recognition through Spontaneous
Speech) dataset1 (Luz et al., 2020). This dataset consists
of speech samples (WAV format) and transcripts (CHA for-
mat), and their corresponding ‘MMSE’ (Mini-Mental State
Examination) scores as labels for regression. MMSE scores
(ranging from 0 to 30 and widely used in clinical practice)
offer a way to quantify cognitive function, as well as screen-
ing for cognitive loss by testing the individuals’ attention,
recall, language, and motor skills (Tombaugh & McIntyre,
1992).

The dataset consists of 156 data points, each from a unique
subject, matched for age and gender. A standardized train-
test split of around 70%-30% (108 and 48 subjects) is pro-
vided by the dataset. We further split the train set into
80%-20% train-val sets. The test set was held out for all
experimentation until final evaluation.

B.0.2. PARKINSON’S DISEASE

We use the publicly available Parkinson’s Telemonitoring
dataset2 (Tsanas et al., 2009). This dataset consists of a
range of 16 biomedical voice measurements and their corre-
sponding ‘Total UPDRS’ (Unified Parkinson Disease Rating
Scale) scores as labels for regression. Total UPDRS scores
(ranging from 0 to 199 and widely used as a measure of
severity of the Parkinson’s disease (PD)) offer a way to
quantify the course of PD in patients by testing the individ-
uals’ mentation, behaviour, mood, daily-life activities, and
motor examination (on Rating Scales for Parkinson’s Dis-
ease, 2003).

The dataset consists of 5,875 data points from 42 subjects
with early-stage PD recruited to a six-month trial of a tele-
monitoring device for remote symptom progression monitor-
ing. Since a standardized train-test split is not provided by
the dataset, we use a 5-fold cross validation with consistent
folds across the different methods for a fair evaluation.

1ADReSS dataset can be downloaded from
https://dementia.talkbank.org/ along with an email to obtain the
password for access.

2Parkinson’s Telemonitoring dataset can be downloaded from
https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring.

C. Multi-modal Feature Extraction
C.1. Dementia

we extract multi-modal acoustic, cognitive and linguistic
features from the available speech samples and their cor-
responding transcripts, by using the feature engineering
pipeline as developed by Sarawgi et al. (Sarawgi et al.,
2020b). This results in three input modalities, namely ‘Dis-
fluency’, ‘Interventions’, and ‘Acoustic’ (following the same
terminology as Sarawgi et al. (Sarawgi et al., 2020b)). The
three feature sets - namely ‘Disfluency’, ‘Acoustic’, and ‘In-
terventions’ mentioned in Section 3.1 are explained below:

C.1.1. DISFLUENCY

A set of 11 distinct and carefully curated features from the
transcripts, such as word rate, intervention rate, and different
kinds of pause rates reflecting upon speech impediments
such as slurring and stuttering. These are normalized by the
respective audio lengths and scaled thereafter.

C.1.2. ACOUSTIC

The ComParE 2013 feature set (Eyben et al., 2013) was
extracted from the audio samples using the open-sourced
openSMILE v2.1 toolkit, widely used for affect analyses in
speech (Eyben et al., 2010). This provides a total of 6,373
features that include energy, MFCC, and voicing related low-
level descriptors (LLDs), and other statistical functionals.
This feature set encodes changes in speech of a person and
has been used as an important noninvasive marker for AD
detection (Lopez-de Ipiña et al., 2012; Luz et al., 2020). The
system standardizes this set of features using z-score nor-
malization, and uses principal component analysis (PCA) to
project the 6,373 features onto a low-dimensional space of
21 orthogonal features with highest variance. The number
of orthogonal features was selected by analyzing the per-
centage of variance explained by each of the components.

C.1.3. INTERVENTIONS

Cognitive features reflect upon potential loss of train of
thoughts and context. The system extracts the sequence of
speakers from the transcripts, categorizing it as subject or
the interviewer. To accommodate for the variable length
of these sequences, they are padded or truncated to length
of 32 steps, found upon analysis and tuning of sequence
lengths.

C.2. Parkinsons

The dataset consists of features related to amplitude and fre-
quency. Accordingly, we extract two input modalities from
the available data, referring to them as the ‘Amplitude’ and
‘Frequency’ modalities. Consequently, the list of features in

https://dementia.talkbank.org/
https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring
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Figure 3. Process diagrams of 1) ‘vanilla ensemble’ (left), and 2) ‘uncertainty-aware (UA) ensemble’ / ‘UA ensemble (weighted)’ (right).
The symbols in the diagrams follow from the notation and setup in Section 2.1.

the two input modalities are as below:

• ‘Amplitude’: Shimmer, Shimmer(dB), Shim-
mer:APQ3, Shimmer:APQ5, Shimmer:APQ11,
Shimmer:DDA, NHR, HNR, RPDE, DFA

• ‘Frequency’: Jitter(%), Jitter(Abs), Jitter:RAP, Jit-
ter:PPQ5, Jitter:DDP, PPE

D. Model Architecture
D.1. Dementia

Following from Section 3.1, we have three input modalities
here i.e. j = 1, 2, 3 and k = 3. Now, with a training dataset
{(xjn, yn)}Nn=1 consisting of N i.i.d. samples for each of
the three modalities, we model the probabilistic predictive
distribution phj (y|xj) using a neural network (NN) with
parameters hj .

For a fair comparison with the state-of-the-art, we use al-
most the same NN architecture as used by Sarawgi et al.
(Sarawgi et al., 2020b) for each of the three input modalities.
The Disfluency and Acoustic models make use of multi-
layer perceptrons (MLPs), while the Interventions model
makes use of LSTM, along with regularizers.

The individual model architecture of the base learners used
for each of the three modalities (feature sets) are shown in
Fig. 4.

D.1.1. DISFLUENCY

The disfluency model is a multi-layer perceptron (MLP) that
projects the 11-feature input to a higher dimensional space
for better separability of the features.

D.1.2. ACOUSTIC

The acoustic model is an MLP with a single hidden layer
that adds non-linearity and regularizes the PCA decomposed
feature space.

D.1.3. INTERVENTIONS

The interventions model uses a recurrent architecture to
learn the temporal relations from the sequence of interven-
tions.

For uncertainty estimation, each of the models predicts a tar-
get distribution instead of a point estimate to account for the
heteroscedasticity in data and yields predictive uncertainties
along with the predicted mean value (Lakshminarayanan
et al., 2017; Snoek et al., 2019; Sarawgi et al., 2020a). The
target distribution is modelled as a Gaussian distribution
phj (yn|xjn) parameterized by the mean µhj and the stan-
dard deviation σhj , predicted at the final layer of the models
i.e. yn ∼ N

(
µhj , σ2

hj

)
. It is important to note here that the

prediction ŷhj is the predicted mean µhj , and the predicted
uncertainty estimate is the predicted standard deviation σhj .

Each of the three base learners is trained with their corre-
sponding input modality features xj and ground truth labels
y using a proper scoring rule. We optimize for the negative
log-likelihood (NLL) of the joint distribution phj (yn|xjn)
according to the equation below (3).

− log
(
phj (yn|xjn)

)
=

log
(
σ2
hj

)
2

+
(y − µhj )

2

2σ2
hj

+ constant (3)

We use the boosting methods explained in Section 2.2 to
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Figure 4. Model architecture of the (1) Disfluency (2) Acoustic
and (3) Intervention models (base learners).

train an ensemble with the three base learners (Disfluency,
Acoustic, and Interventions). Each training run used a batch
size of 32 and an Adam optimizer with a learning rate of
0.00125 to minimize the NLL.

D.2. Parkinsons

Following from Section 3.1, we have two input modalities
here i.e. j = 1, 2 and k = 2. Now, with a training dataset
{(xjn, yn)}Nn=1 consisting of N i.i.d. samples for each of
the two modalities, we model the probabilistic predictive
distribution phj (y|xj) using a random forest (RF) regressor
with parameters hj . Each of the RFs makes use of 300
decision tree estimators. This was decided upon sweep-
ing the number of decision trees, from 100 to 1000, as a
hyperparameter.

The two base learners are trained with their corresponding
input modality features xj and ground truth labels y using a
mean squared error (MSE) loss. The uncertainty estimates
σhj of each of the data point is estimated as the confidence
interval using the Infinitesimal Jackknife method (Wager
et al., 2014; Wager, 2016).

We use the boosting methods explained in Section 2.2 to
train an ensemble with the two base learners (Amplitude
and Frequency).



Uncertainty-Aware Boosted Ensembling in Multi-Modal Settings

E. Additional Results
E.1. Dementia

Table 3 compares our uncertainty-aware ensembling ap-
proach with other state-of-the-art approaches on the
ADReSS test set. The best run out of the five discussed
in Section 3.3 is used for reporting our RMSE scores.

Table 3. Comparison of uncertainty-aware ensemble methods with
state-of-the-art results on the ADReSS test set.

Model RMSE

Pappagari et al. (Pappagari et al., 2020) 5.37
Luz et al. (Luz et al., 2020) 5.20
Sarawgi et al. (Sarawgi et al., 2020b) 4.60
Searle et al. (Searle et al., 2020) 4.58
Balagopalan et al. (Balagopalan et al., 2020) 4.56
Rohanian et al. (Rohanian et al., 2020) 4.54
Sarawgi et al. (Sarawgi et al., 2020a) 4.37
UA Ensemble 4.35
UA Ensemble (weighted) 3.93

Fig. 5 shows how the entropy of the modalities change as
we move across the base learners in both vanilla ensemble as
well as UA ensemble. It is clear that as we move sequentially
across the base learners, the entropy of the acoustic and
intervention modalities in UA ensembles reduce drastically
when compared to the vanilla ensemble.

Table 4 shows the MPIW and PICP metrics on a 5-times
repeated test set evaluation.

E.2. Parkinsons

Table 5 shows the MPIW and PICP metrics on a 5-times
repeated test set evaluation.
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Figure 5. Entropy analysis, using kernel density estimation plots, of the base learners in a vanilla ensemble (left) and UA ensemble (right).
UA ensemble shows a decrease in the overall entropy of the system. The increased reduction in the entropy as we sequentially move from
the first base learner to the last base learner of the ensemble further indicates the significance of introducing uncertainty-awareness into
the ensemble.

Table 4. 5-times repeated test set results of Mean Prediction Interval Width (MPIW) and Prediction Interval Coverage Probability (PICP)
for the ensemble techniques on the ADReSS dataset. We report PICP results with the prediction interval (∆) equal to 1, 2, and 3 times the
standard deviation (i.e. 1σ, 2σ, and 3σ). The uncertainty-aware boosting results in tighter bounds for the confidence intervals, along with
higher PICP values, and high quality prediction intervals as desired.

Model Modality MPIW PICP (%)

∆ = 1σ ∆ = 2σ ∆ = 3σ

Vanilla Ensemble
Disfluency 4.47 ± 0.39 61.66 ± 8.29 95.83 ± 2.63 97.50 ± 0.83

Interventions 7.27 ± 0.58 87.50 ± 5.43 99.17 ± 1.02 100.00 ± 1.18
Acoustic 4.50 ± 0.73 59.58 ± 12.54 94.58 ± 2.12 98.75 ± 1.02

UA Ensemble
Disfluency 6.29 ± 0.81 82.91 ± 6.37 97.91 ± 1.31 100.00 ± 0.00

Interventions 5.46 ± 1.57 73.75 ± 14.47 93.33 ± 5.17 97.91 ± 1.86
Acoustic 5.31 ± 1.30 75.41 ± 11.21 96.25 ± 3.06 99.16 ± 1.02

UA Ensemble (weighted)
Disfluency 6.29 ± 0.81 83.33 ± 6.58 97.91 ± 1.31 100.00 ± 0.00

Interventions 5.46 ± 1.57 76.25 ± 13.85 92.50 ± 5.98 96.66 ± 3.11
Acoustic 5.31 ± 1.30 75.83 ± 10.59 95.00 ± 3.86 99.16 ± 1.02

Table 5. 5-fold cross-validation results of Mean Prediction Interval Width (MPIW) and Prediction Interval Coverage Probability (PICP)
for the ensemble techniques on the Parkinson’s Telemonitoring dataset. We report PICP results with the prediction interval (∆) equal to 1,
2, and 3 times the standard deviation (i.e. 1σ, 2σ, and 3σ). The uncertainty-aware boosting results in tighter bounds for the confidence
intervals, along with higher PICP values, and high quality prediction intervals as desired.

Model Modality MPIW PICP (%)

∆ = 1σ ∆ = 2σ ∆ = 3σ

Vanilla Ensemble Amplitude 6.79 ± 1.28 84.56 ± 1.46 98.51 ± 0.58 99.89 ± 0.12
Frequency 8.69 ± 0.59 74.17 ± 8.25 94.28 ± 3.37 98.60 ± 1.18

UA Ensemble Amplitude 6.50 ± 1.76 74.09 ± 9.15 93.70 ± 4.11 98.23 ± 1.47
Frequency 6.91 ± 0.85 77.90 ± 5.28 95.64 ± 2.40 99.33 ± 0.51

UA Ensemble (weighted) Amplitude 6.50 ± 1.76 74.24 ± 8.59 93.71 ± 4.13 97.97 ± 1.66
Frequency 6.91 ± 0.85 77.65 ± 5.67 95.45 ± 2.56 99.18 ± 0.70


