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Abstract

Deep learning models often make unexpected mis-
takes under distribution shifts, preventing their
widespread adoption in safety-critical applica-
tions. In this paper, we investigate whether Deep
Equilibrium (DEQ) Models generalize better un-
der systematic distribution shifts than their fixed-
depth counterparts. We present two sets of exper-
iments to address this question, both of which
indicate that DEQ models enjoy superior out-
of-distribution generalization. We first observe,
on various tasks, that DEQ models spend more
time processing inputs of greater complexity, in
a trend that extends predictably to levels of com-
plexity larger than those observed during training.
We then inspect how the internal representations
of DEQ models derived from out-of-distribution
(OOD) samples change as they approach equi-
libria. We find that the statistics of the internal
representations of OOD samples are drawn closer
to those derived from in-distribution samples in
DEQ models, in sharp contrast to the behavior
of fixed-depth architectures. Based on these re-
sults, we hypothesize that the convergence-based
forward-pass termination criterion of DEQ mod-
els endows them with an inductive bias towards
better out-of-distribution generalization.

1. Introduction

Despite their strong performance on a large variety of appli-
cations, deep learning models often display erratic, unpre-
dictable behaviour when tested under distribution shifts and
can be confident of wrong predictions. (Che et al., 2019; Sas-
try & Oore, 2020) In this work, we investigate whether Deep
Equilibrium Models (Bai et al., 2019), a class of attractor
neural networks, have better out-of-distribution generaliza-
tion properties than their standard, fixed-depth counterparts.
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Instead of explicitly representing a (parametrized) mapping,
attractor neural networks implicitly define a mapping from
inputs to internal representations in the form of a fixed-point
equation. DEQ models explicitly solve for the fixed-point
using root finders.

We present empirical evidence that suggests DEQ models
are more robust against distribution shifts. We establish
that, on various tasks aimed at testing different notions of
OOQOD generalization, DEQ models indeed perform better
than their fixed-depth counterparts. To shed light on this, we
present two addition sets of results: 1) DEQ models spend
more iterations processing inputs of greater complexity, in a
trend that extends predictably to levels of complexity larger
than those observed during training. 2) Each application
of the DEQ root finding operation draws the statistics of
the internal representations of OOD samples closer to those
derived from in-distribution samples in DEQ models. This
is unlike what happens in fixed-depth networks where OOD
inputs result in features whose statistics differ significantly
from those obtained from in-distribution inputs.

Based on these results, we hypothesize that the convergence-
based forward-pass termination criterion of DEQ models
endows them with an inductive bias towards better out-of-
distribution adaptation. We believe implicit models present
a promising avenue towards building architectures that have
better OOD generalization capabilities.

2. Background

Attractor Networks: Attractor networks are a class of
neural network model that treat computing internal rep-
resentations as a fixed-point finding problem. (McClelland
& Rumelhart, 1989) Concretely, letting x € R”+ and
fw @ R%=*"= s R™= stand for an input and the attrac-
tor network function (or “cell”) parametrized by w € R™»
respectively, attractor networks aim to solve for the fixed
point z* € R"= that satisfies z* = fy (x,2*). The cell fy,
might represent anything from a fully connected layer to a
transformer block (Vaswani et al., 2017).

The most straightforward approach to solve for fixed-points
is the fixed point iteration method, which recursively ap-
plies the function fy, on the internal representations z
(i.e. Zer1 = fw(x,2¢)) until it converges to a fixed point:
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z* = fw(x,2z*). Since solving for fixed points exactly is
costly, fixed point iterations are often terminated when the
norm of the difference between subsequent iterates falls
below a pre-selected threshold.

Deep Equilibrium (DEQ) Models: Deep equilibrium
models (Bai et al., 2019) are a type of attractor network
model that solves for fixed points explicitly using black-
box root finders, such as Broyden’s method or Anderson
accelaration (Bai et al., 2019; Kolter et al., 2020). In order
to avoid differentiating through the root-finding procedure,
DEQ models utilize implicit differentiation to compute gra-
dients. Concretely, letting g (x,2*) = fw(x,2*) — z* for
a fixed point z*, the Jacobian of z* with respect to the DEQ
model weights can be given by:

dz* _(8gw(x, z*)

)—1 6fW(X7 Z*)
dw oz* ow

DEQ models have been shown to achieve state-of-the-art
performance on various tasks including language modelling
and image classification. (Bai et al., 2019; 2020)

3. Evaluating OOD-Generalization of DEQ
Models

We consider the following three synthetic tasks to evaluate
different aspects of OOD generalization:

Blurry MNIST Task: The Blurry MNIST dataset is gener-
ated by convolving MNIST images by Gaussian filters of
varying standard deviations. We trained on a uniform mix-
ture of standard deviations 2, 2.5, 3 and 3.5. We generate 8
distinct test sets by varying the standard deviation from 2 up
to 5.5 in increments of 0.5. The first 4 test sets were used to
evaluate in-distribution generalization, while the remainder
were used to evaluate OOD generalization.

Sequence Copy Task: This is the sequence modelling prob-
lem of producing an output sequence identical to a given
source sequence. We trained on sequences of length 10, 20,
30 and 40, and tested, separately, on lengths 10 to 80 (in
increments of 10).

Symbolic Rewrite Task: The symbolic rewrite task, pro-
posed by Wu et al. (2021), is a sequence task that involves
rewriting a base sequence using a given transformation rule.
The following is an example:

source: a+b—c(s) A+ B=B+ A
target: b+ a — ¢

Here, the target rule A + B = B + A is used to rewrite
the a + b pattern in the source sequence as b + a to obtain
the output sequence b + a — c. During training, we varied
the number of rewrite rules between 1 and 4. While testing,
we used between 1 to 8 rewrite rules to test both in and

out-of-distribution generalization. More information about
this task can be found in Appendix A.

The aforementioned tasks allow us to test in and out-of-
distribution generalization performance by systematically
applying varying degrees of distribution shift.

3.1. Models, Baselines and Training Details

For the Blurry MNIST task, we used a one layer fully con-
nected DEQ cell. For the Sequence Copy and Symbolic
Rewrite tasks, we used a transformer-based cell, similar to
that used by Bai et al. (2019). We provide further details
about the models in Appendix A. For each of the tasks de-
scribed above, we trained fixed-depth baseline models. We
tied the weights across different layers and used the same
parametrization as in the corresponding DEQ models to
ensure they have the same number of parameters. We fixed
the depth roughly at the number of root finding operations
the corresponding DEQ models take to converge.

3.2. OOD Generalization Results

Figure 1 shows the in-distribution and out-of-distribution
generalization performance (quantified by accuracy) of both
the DEQ models and their fixed-depth counterparts. Both
models achieve virtually identical in-distribution general-
ization performance. On OOD samples, however, the per-
formance of the fixed-depth models degrades much more
sharply than that of the DEQ models. This is especially
prominent in the Sequence Copy task, where the DEQ mod-
els’ performance remains perfect for a wide range of se-
quence lengths not seen during training.

As we elaborate further in Section 4, it takes a different num-
ber of root-finding iterations for DEQ models to converge
for different inputs. To see if this variable-depth property
alone could reproduce the OOD generalization behaviour
of DEQ models, we also trained a weight-tied (non-DEQ)
model where we varied the depth of the model stochasti-
cally. On the Blurry MNIST task, this in fact lead to a slight
decrease in OOD generalization performance.

4. Adaptive Computation Behaviour

DEQ models have the flexibility to “vary their depth” on
different inputs. This adaptive computation time capability
could be useful for many OOD generalization tasks — espe-
cially in tasks where the network might be given inputs of
varying complexity that are possibly unseen during training.

On the three tasks defined in Section 3, we tested whether
DEQ models did indeed take more time to converge on
examples of larger complexity/ambiguity. On the Blurry
MNIST, Sequence Copy and Symbolic Rewrite tasks, we
used the level of blur, length of sequence and number of
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Figure 1. Generalization results: In-distribution and OOD generalization performance of DEQ models and their fixed-depth counterparts,
on the (a) Blurry MNIST, (b) Sequence Copy and (c) Symbolic Rewrite tasks. On all tasks, while the in-distribution performance (left of
the vertical line) is virtually identical, the DEQ model performs better on OOD examples.

rewrite rules to gauge the “complexity” of processing inputs,
respectively. We computed, for each level of complexity, the
average number of root finding operations the DEQ models
take before converging. The results are shown in Figure
2. The average number of fixed-point iterations do indeed
correlate strongly with the complexity of the inputs.

We also trained a non-DEQ, weight-tied model where we
varied the depth of the model stochastically, in order to
check if the variable-depth property of DEQ models could
explain their strong generalization behaviour. During train-
ing, we sampled the depth uniformly between one and the
depth of the fixed-depth model. During test time, we kept
the depth constant. We found that the stochastic depth model
achieved slightly worse OOD generalization performance
than the fixed-depth one on the Blurry MNIST task.

5. Evolution of OOD Representations in DEQ
Models

We inspected how the statistics of the DEQ internal represen-
tations derived from OOD samples differ from those derived
from in-distribution ones as they approached equilibria. We
used the Gram-OOD method proposed by Sastry & Oore
(2020) to quantify how much these statistics deviated from
one another. We picked the Gram-OOD method as this
approach has been used to achieve state-of-the-art OOD de-
tection results on a variety of domains (Sastry & Oore, 2020)
by only using in and out-of-distribution activation statistics.
The Gram-OOD method works by computing elementwise
min and max values of the Gram matrices computed using
layer-wise activations obtained from the training set. These
are then compared these with those obtained from a test
example to compute a scalar deviation score, which quanti-
fies how “out-of-distribution” the given test example is. We
describe the full Gram-OOD method in Appendix B.

We adjusted the Gram-OOD method slightly when apply-

ing it to DEQ models, as DEQ models don’t have “lay-
ers” in the traditional sense. We did this by computing the
in-distribution min/max statistics by using all of the root-
finding iterates encountered during the forward pass of DEQ
models (i.e. by treating all iterates as if they belong to the
same layer). When given a test example (both in-distribution
and out-of-distribution), we computed how the deviations
changed with each application of the root-finding algorithm
to check if there is indeed a downward trend. We ran the
same analysis on the fixed-depth baseline models to see if
there’s a qualitative difference.

We display our results on how the layer-wise deviations
evolved with depth for both the DEQ and baseline models
on the Blurry MNIST task in Figure 3. Figure 3a shows the
results for in-distribution test examples. For both DEQ mod-
els and the baselines, the deviations decreased substantially
before fluctuating around a constant value. This is unlike the
results we obtained when we used OOD test samples (with
blur level 6) (Figure 3b). While the same downward trend
held for the DEQ model, the deviations actually increased
considerably for fixed-depth baselines. These results imply
that the fixed points derived by DEQ models from OOD
inputs are less likely to be detected as “out-of-distribution’
by the Gram-OOD test as they approach equilibrium. This
is unlike what happens with fixed-depth networks, where
hidden features of OOD inputs are consistently detected as
out-of-distribution throughout the depth of the network. The
evolution of the deviations for other blur levels can be found
in Appendix C.

>

A major difference between DEQ and their fixed models
is that the DEQ models’ forward pass terminates iff the
internal representations reach a fixed point. This constrains
the internal representations to lie on the manifold defined
by the fixed points of the DEQ cell. Consider the following
possibility: DEQ models don’t have spurious equilibria:
All fixed-points of a learned DEQ mapping correspond to
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Figure 2. Adaptive Computation Time: DEQ models naturally take more iterations to find fixed-points on inputs of higher complexity.

internal representations of the inputs that are useful for
classification. If this is (even partially) true, it could help
explain why DEQ models seem to enjoy superior OOD
generalization performance. This conjecture suggests that
when a DEQ model processes an OOD input, its internal
representations will either diverge (in which case no output
can be produced), or be pulled towards the manifold of
equilibria encountered during training. Note that there exist
encouraging results in literature about the lack of spurious
equilibria in attractor networks. (Radhakrishnan et al., 2020)

To check the prevalence of spurious equilibria in DEQ mod-
els, we tested if there are OOD inputs which do converge to a
fixed point, but still have significant deviation. On the Blurry
MNIST task (using blur level 5), we found that only 1.2%
of all fixed-point deviations were outside of 0.1 standard
deviation of the population mean. Excluding these outliers
lead to a mean of 0.0058, which is comparable to the aver-
age in-distribution deviation. This is in line the hypothesis
that DEQ models have (almost) no spurious equilibria.

Our results based on Gram-OOD deviations provide indi-
rect evidence for the no-spurious-equilibria hypothesis. Fur-
ther research is needed to gain a full understanding of the
aforementioned phenomena and rule out other competing
hypotheses. It is also important to investigate under what
the conditions spurious equilibria can arise and disappear.

6. Related Work

Dehghani et al. (2018) show that Universal Transformers,
a variable-depth transformer architecture, can learn func-
tions that have favourable OOD-generalization properties.
The fixed-depth, weight tied baseline models we trained for
the Sequence Copy and Symbolic Rewrite tasks strongly
resemble the Universal Transformer architecture. Kaiser &
Sutskever (2015) also develop methods to train models that
generalize to OOD inputs by training their proposed Neural
GPU architecture to explicitly represent algorithms. Their
approach requires the use of a curriculum. Graves (2016)
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Figure 3. Evolution of deviations with depth on the Blurry
MNIST task: (a) For in-distribution test examples, the statis-
tics of representations differ (quantified by Gram-OOD deviations
on the y axis) less and less from those of the training examples
with increasing depth. (b) For OOD test examples, the deviations
only decrease for the DEQ model. This implies that the internal
representations of DEQ models derived from OOD examples are
pulled towards the manifold of fixed points encountered during
training. No such mechanism exists for fixed-depth networks.

propose an approach to allow recurrent neural networks to
spend varying amounts of time on different outputs. Win-
ston & Kolter (2020) propose training DEQ models with a
known Lipschitz constant to make them more robust against
adversarial attacks.

7. Conclusion

We presented experimental evidence suggesting that DEQ
models enjoy superior out-of-distribution generalization
compared to their fixed-depth counterparts. To explain this
finding, we ran further experiments that showed: 1) DEQ
models take more time to find fixed points corresponding to
inputs of greater complexity. 2) The statistics of the internal
representations of OOD samples are drawn closer to those
derived from in-distribution samples in DEQ models, in
sharp contrast to the behavior of fixed-depth architectures.
Our findings motivate the study of attractor models in the
context of building robust models that generalize more seam-
lessly under distribution shifts than existing architectures.
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A. Dataset, Model and Training Details
A.1. Details of the Symbolic Rewrite Task

The symbols used to generate the sequence to be rewritten
(source) and the rewrite rules are different: We use lower-
case letters (e.g. a, b, c,...) and standard math operators
(e.g., "+ — x = ()&”) to construct the source sequences.
We use capital letters (e.g., A, B, C...) and math operators
to specify the rewrite rules. The difficulty of the problem
instances can be increased by increasing number of rewrite
rules.

In our experiments, we use 40 distinct symbols to construct
the source sequences, and 6 upper case symbols to construct
the target rules. We varied the length of the pattern to be
rewritten between 3 and 5 and varied the number of rewrite
rules between 1 and 7.

A.2. Blurry MNIST Training Details

Model: We parameterized the DEQ cell using a single-layer,
90 units wide fully connected layer with a ReLU activation.
Instead of concatenating the input and the fixed point, we
added them before feeding to the DEQ cell. We linearly
transformed the inputs to have a dimensionality of 90 so that
they could be directly summed with the fixed points. This
way of fusing the input and fixed point was also used by Bai
et al. (2019) in their language modelling experiments.

For solving the fixed points during forward pass, we used the
Anderson root finder (Walker & Ni, 2011) with a memory
size of 5, setting the A and 3 hyperparameters to be le — 4
and 1, respectively. This choice of hyperparameters was
also used by Kolter et al. (2020). We terminated the solver
when the L2 norm of the difference between the subsequent
iterates fell below the threshold le — 3, or the number of
iterations surpassed 30.

Optimizer: We used the Adam optimizer (Kingma & Ba,
2014) with a learning rate of 1le — 3. We varied the learning
rate with a step schedule with a step size of 50 (in epochs)
and decay factor of 0.1. We used a batch size of 500.

We solved for the fixed-point equation that arises when
computing the implicit gradients using the Anderson Solver
with the same hyperparameters that we used for forward
pass. We set the termination threshold to 4.2e — 8.

Regularization: We applied weight decay with a coeffi-
cient of le — 3.

A.3. Sequence Copy Training Details

Model: We parameterized the DEQ cell using the trans-
former decoder block from the GPT?2 architecture (Radford
et al., 2019) We set the embedding dimensionality to 384,
number of heads to 6 and maximum sequence length to

180. We did not apply any dropout through the model. For
solving the fixed points during forward pass, we used the
Anderson root finder (Walker & Ni, 2011) with a memory
size of 5, setting the A and 8 hyperparameters to be le — 4
and 1, respectively.

Data augmentation: Similar to what Dehghani et al. (2018)
do in their Sequence Copy experiments, we start the source
sequence with randomized offsets. This allows the trans-
former to learn position-relative transformations and makes
it possible to learn to to copy longer sequences from a
dataset of shorter sequences.

Optimizer: We used the AdamW optimizer (Loshchilov &
Hutter, 2017) with a learning rate of 1e — 4. We varied the
learning rate with a cosine annealing schedule (Loshchilov
& Hutter, 2016). We used a batch size of 60. We solved
for the fixed-point equation that arises when computing
the implicit gradients using the Anderson Solver with the
same hyperparameters that we used for forward pass. We
set the termination threshold to 3e — 8. When computing
the prediction loss, we masked out the contributions from
predicting the tokens in the source sequence. We trained the
model for 200000 gradient updates.

Regularization: We applied weight decay with a coeffi-
cient of 1e — 3. We found that it was helpful to penalize the
L2 norm of the fixed points to speed up convergence. We
added the regularization term \||z||3 and set \ to be 0.2.

Pretraining: Similar to the results of Bai et al. (2019) on
language modelling, we found pretraining to be quite useful
for stabilizing DEQ training. Following their procedure, we
pretrained the DEQ model, treating it as a six-layer, weight
tied model, for 200k gradient steps.

Tuning: We did a grid search on the learning rate
({107%,1.5-107%,2.5 - 10~*}), weight decay coefficient
({0,0.001}) and the fixed-point L2 penalty coefficient ()
{0,0.1,0.2,0.5}) before settling on the final values.

A .4. Symbolic Rewrite Training Details

Model, Optimizer and Regularization: We used the same
model we used for the Sequence Copy task, with the excep-
tion that the sequence length was set to 160. We used the
same optimizer setup we used for the Sequence Copy task.
We applied weight decay with a coefficient of 1le — 3 and
set the fixed-point L2 penalty coefficient to be 0.2.

Pretraining: we pretrained the DEQ model, treating it as a
two layer, weight tied model, for 20000 gradient steps.

Tuning: We did a grid search on the learning rate
({107%,1.5-107%,2.5 - 10~*}), weight decay coefficient
({0,0.001}) and the fixed-point L2 penalty coefficient ()
{0,0.1,0.2,0.5}) before settling on the final values.



Out-of-Distribution Generalization with Deep Equilibrium Models

B. Outlier Detection using Gram-OOD

Algorithm box 1 describes how the Gram-OOD method
computes the min and max statistic that are used to compute
deviations. The p-th order Gram matrices are computed by

1 . .
GP = (FPFPT)% where F stand for an activation vector.

Element-wise deviations are computed by comparing,
element-by-element, the values of the Gram matrices ob-
tained using a test example with the min/max statistics ob-
tained from the training set, using the following equation:

0 min < value < max

min—value
|min]|

value—max
|max|

d(min, max, value) = value < min

value > max

The total layer-wise deviation scores are finally computed
by summing all elementwise deviations corresponding to all
Gram matrix orders.

Algorithm 1 Compute the minimum and maximum values of feature co-occurrences
for each class, layer and order

Input:
C: Number of output classes
L: Number of Layers in entire network
P: Set of all orders of Gram Matrix to consider
Train: The train data
Output:
Mins, Maxs
1: Mins[C][L][P] [ +— oo

1
max 2T
<I<L

1

=t

2: Maxs[CJ[LJ[P][ ax 7"1(";“)} — —oo

1<I<L

3: for cin [1, C] do

IN

4:  Train. = {D|D € Trains.t. f(D) = c}

5: forD € Train. do

6: for [ in [1, L] do

7: for p in P do

8: stat= GT (D)

9: for 7 in [1, W] do

10: Mins[c][l][p][z] = min(Mins|c] (1] [p][4] stat[])
11: Maxs|c][l][p][¢] = max(Maxs|c][l][p][4],stat[i])

12: return Mins, Maxs

C. Evolution of Deviations with Depth

Figure 4 displays how deviations evolve with depth for
(OOD) blur levels 5, 6, 7 and 8.
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Figure 4. Blue curve shows the layer-wise deviations of the DEQ
Model on the Blurry MNIST task. Orange curve is layer-wise
deviation of 30 layers weight tied network. Top Left: Layer-wise
deviation computed by examples with blur level 5. Top Right: 6.
Bottom Left: 1. Bottom Right: 8.



