
Learning Invariant Weights in Neural Networks

Tycho F.A. van der Ouderaa 1 Mark van der Wilk 1

Abstract

It is well-known that assumptions about invari-
ances or symmetries in data can seriously increase
the predictive power of statistical models. Many
commonly used models in machine learning have
certain symmetries built-in, such as translation
equivariance in convolutional neural networks,
and incorporation of new symmetry types are ac-
tively being studied. Yet, efforts to learn such
invariances from the data itself are in their early
days and inferring invariances remains an open re-
search problem. It has been shown that marginal
likelihood offers a principled way to learn in-
variances in Gaussian Processes. We propose a
weight-space equivalent to this approach, by min-
imizing a lower bound on the marginal likelihood
to learn invariances in neural networks.

1. Introduction
Intuitively, invariances allow models to extrapolate (or ‘gen-
eralize’) beyond training data (see Figure 1). An invariant
model does not change in output when the input is changed
by transformations to which it is deemed invariant. The
most straightforward way to achieve this is perhaps by en-
larging the dataset with transformed examples: a process
known as data augmentation. A link between invariance and
data augmentation in kernel space has been made by Dao
et al. (2019). In this study, we show that this invariance can
exactly be described as transformations on the weights, sim-
ilar to Cohen & Welling (2016). We then continue and adopt
the principled method of marginal likelihood that has proven
effective in learning invariance in Gaussian Processes (GPs)
(van der Wilk et al., 2018). To allow invariance learning in
neural networks, we propose to optimize a lower bound on
the marginal likelihood, and succesfully learn weights with
the correct amount of rotational invariance when trained on
rotated versions of MNIST.

1Department of Computation, Imperial College London, Lon-
don, United Kingdom. Correspondence to: Tycho F.A. van der
Ouderaa <tycho.vanderouderaa@imperial.ac.uk>.

Presented at the ICML 2021 Workshop on Uncertainty and Robust-
ness in Deep Learning., Copyright 2021 by the author(s).

2. Related Work
Convolutional neural networks (CNNs) have been success-
ful on wide range of problems and have played a key role
in the success of Deep Learning (LeCun et al., 2015). It is
commonly understood that the translational symmetries that
arise from effective weight-sharing in CNNs is an important
driver for its outstanding performance on many tasks.

In Cohen & Welling (2016), a group-theoretical framework
was proposed that extends CNNs beyond translational sym-
metries, and demonstrated this for discrete group actions.
Many studies since have proposed ways to incorporate other
symmetries, such as continuous rotation, scale and trans-
lation, into the weights of neural networks (Worrall et al.,
2017; Weiler et al., 2018; Marcos et al., 2017; Esteves et al.,
2017; Weiler & Cesa, 2019; Bekkers, 2019) and recent ef-
forts allow practical equivariance in neural networks for
arbitrary symmetry groups (Finzi et al., 2021).

Although incorporating the right symmetries in the weights
often results in better performing models, the invariances
(or ‘equivariances’) are typically fixed and must be specified
beforehand. In this study, we aim to learn invariances from
the data itself by optimizing the marginal likelihood: the
common method in Bayesian statistics to perform model
selection, which can be interpret as exhaustive leave-p-out
cross-validation averaged over all values of p and held-out
test sets (Fong & Holmes, 2020).

Some other works have considered learning data augmenta-
tions (Jaderberg et al., 2015; Cubuk et al., 2018), but without
utilizing marginal likelihood (or lower bound thereof) and
require additional validation data. In Schwöbel et al. (2020)
and Benton et al. (2020) a lower bound is considered. Nev-
ertheless, these approaches learn invariance through trans-
formations on the input - thus a type of data augmentation -
rather than through transformations on the weights.

3. On Invariant Modelling
A model f(·) is deemed ‘strictly invariant’ when the out-
put is unaffected by a set of transformations: f(Tg ◦ x) =
f(x),∀g ∈ G,x ∈ X of which each transformation Tg is
governed by a group action g ∈ G forming a group. We
can obtain an invariant model by averaging the outputs over
every transformation Tg . Although group theory introduces

Learning Invariant Weights in Neural Networks

Invariance: 0°.
ELBO: -18.71

Invariance: ±30°.
ELBO: -13.40

Invariance: ±60°.
ELBO: -11.89

Invariance: ±90°.
ELBO: -10.47

Invariance: ±120°.
ELBO: -8.54

Invariance: ±150°.
ELBO: -7.09

Invariance: ±180°.
ELBO: -6.82

1
0

0.0
0.1
0.2
0.3
0.4
0.6
0.7
0.8
0.9
1.0

Figure 1. Illustration of different extrapolating behaviour further away from 2d toy data for models with no invariance (left), some
invariance (middle) up to strict invariance (right). Contour plot shows model prediction, datapoints are shown with ×’s and #’s.

a rigid mathematical framework that is often used to de-
scribe and incorporate symmetries in statistical and machine
learning models, it is restricted in the sense that the set
of transformations that generate a group is always closed,
by definition of a group. To illustrate, imagine the classic
MNIST image recognition problem (LeCun et al., 1998):
here invariance to rotations up to a certain angle allows
for better extrapolation to tilded versions of fitted digits
and thus more robust predictions and increased sample ef-
ficiency. However, invariance to full 360 degree rotations
(all SO(2) group actions) may prohibit us from differentiat-
ing between a ‘6’ and a ‘9’. In an effort to overcome this
issue, we construct our invariant function fθ(x) from non-
invariant function gθ(x) by summing over the orbit with
a compactly supported probability distribution p(T) over
invariant transformations:

fθ(x) =

∫
gθ(T (x))p(T)dT (1)

Hereby, we hope to induce a relaxed notion of invariance on
the model, sometimes referred to as ‘insensitivity’ (van der
Wilk et al., 2018) or ‘soft-invariance’ (Benton et al., 2020)
upon the model, of which ‘strict invariance’ is the special
case where we take the orbit over the entire group.

3.1. Invariant Neural Network Set-up

To ensure we parameterize invariance such that it can au-
tomatically be learned from data, we start by considering
a two-layer neural network that is an approximate (exact
in the inifitely wide limit) weight-space equivalent of the
Gaussian Process that has proven capable of learning invari-
ance with marginal likelihood in (van der Wilk et al., 2018).
In this case, our neural network would look like:

fθ(x) = ET∼p(T) [W2 ◦ φ (W1 ◦ T ◦ x)]

p(y|θ,D) = σ
(
ET∼p(T) [W2 ◦ φ (W1 ◦ T ◦ x)]

)
(2)

where σ(·) is the soft-argmax function, x is the input, first
layer weightsW1 and bias1 are initialized as random Fourier

1In our experiments, we include bias weights, which can be
implemented by concatenating the input features with an additional
’one’-element and is omitted in notation for clarity.

features (RFF) (Rahimi et al., 2007), non-linearity φ =
cos(·) is chosen to be element-wise cosine function, and
we learn a Bayesian posterior estimate of weight matrix
W2 with bias1. Later in the study, we also try learning
invariances in a more common neural network with a ReLU
activation function φ = max(0, x) where both layers are
learned and observe that the constraints may not always be
necessary to obtain a tight enough bound on the marginal
likelihood to learn invariance.

Note that in this set-up (W T
1 ◦ T) ◦ x = W T

1 ◦ (T ◦ x)
are equal, by associtivity of matrix transformations. In
other words, first applying transformation T on the weights,
similar to the typical construction of equivariant layers, and
first applying them to the input, which could be interpret as
built-in data augmentation, are mathematically equivalent.
In practice, however, differences between the two could
still arise from approximations required when applying T
(e.g. interpolation for rotation in discrete grid-space). In our
experiments we will consider transforming the weights to
demonstrate that invariance can be ‘built into’ the model.

3.2. Variational Inference

Calculating the exact marginal likelihood is often intractable
for neural networks. Therefore, we utilize stochastic varia-
tional inference (Hoffman et al., 2013) to derive and op-
timize an evidence lower bound of the marginal likeli-
hood and minimize the DKL-divergence between a full-
covariance variational Gaussian distribution qθ(W2|µ,Σ)
and the true posterior. We assume a Gaussian prior
N (wc

2|0, Iα) on wc
2 for each class c. We obtain a Monte

Carlo estimate by sampling L times from the variational
distribution, utilizing the reparameterization trick (Kingma
& Welling, 2013), and minimize the following loss function:

L =

Closed-form KL︷ ︸︸ ︷
DKL(qθ(W2|µ,Σ)||p(W2))+

1

L

L∑
l

[Cross-entropy︷ ︸︸ ︷
− log p(D|w)

]
where we can choose L = 1 given a sufficiently large
batch size with Stochastic Gradient Variational Bayes
(SGVB) loss estimate −NM

∑M
i=1 L̃(θ, {xi}, {yi}) (Kingma

& Welling, 2013). Full derivations in Appendix A.

Learning Invariant Weights in Neural Networks

0 20000 40000
Iteration

0

45

90

135

180
Le

ar
ne

d
In

va
ria

nc
e

Fully rotated MNIST

0 20000 40000
Iteration

Partially rotated MNIST

0 20000 40000
Iteration

Regular MNIST

Initialized at 5°
Initialized at 45°
Initialized at 90°
Initialized at 135°
Initialized at 175°

Figure 2. Predicted invariance over training iterations for models with degrees of invariance at initialization trained on variations of
MNIST that have been randomly rotated to varying degree: full rotations (left), half rotations (middle) and original dataset (right).

3.3. Lie Group Reparameterization

We utilize the re-parameterization trick (Kingma & Welling,
2013) to parameterize a Lie Group, by scaling its infitesimal
generator A(t) with a Uniform distribution U [−v, v], simi-
lar to re-parameterizations of Lie Groups in (Falorsi et al.,
2019). Hereby, we obtain a distribution over invariant trans-
formations pv(T) parameterized by scalar v from which we
can obtain N differentiable samples:

{eA(t1), eA(t2), · · · eA(tN)}, ti ∼ U [−v, v] (3)

We also consider deterministically sampling ti from linearly
spaced grid [−v, v;N] of N values between −v and v:

{eA(t1), eA(t2), · · · eA(tN)}, ti ∈ [−v, v;N] (4)

This study focuses on a particular reparameterization of
the Lie Group of 2d rotations SO(2), defined by the scaled
infinitesimal generator and corresponding Lie exponential:

A(t) =

(
0 −tπ
tπ 0

)
, eA(t) =

(
cos(tπ) − sin(tπ)
sin(tπ) cos(tπ)

)
(5)

By learning v, we can effectively interpolate from no-
invariance for v = 0 to full rotational invariance at v = 1.

4. Experiments and Results
We implemented our method in PyTorch (Paszke et al.,
2017), and show results on toy problem with different de-
grees of rotational invariance in Figure 1 with 1024 RFF
features and σ = 5.0, and T applied on the weights.

In the rest of the paper, we will perform experiments on
MNIST by using bilinear grid resampling as described
in Jaderberg et al. (2015) in combination with small 0.1
sigma Gaussian blur to limit high frequencies to apply trans-
formations T on the weights. For optimization, we used
Adam (Kingma & Ba, 2014) with a learning rate of 0.001
(β1 = 0.9, β2 = 0.999) cosine annealed (Loshchilov &
Hutter, 2016) to zero. We initialize parameters µc = 0,
Lc = I for all c, σ = 0.3, and α = 1.0. Furthermore, we
use 32 samples from p(T), L = 1 and a batch size of 128.

4.1. On the Necessity of a Bayesian Approach

Lastly, we try training the parameters directly with standard
SGD and cross-entropy, opposed to our VI approach, by re-
placing the variational distribution qθ with a point-estimate
and omitting the DKL-term in the loss function. As can be
seen in Figure 3, we found that the resulting model was com-
pletely incapable of learning the correct invariance. This
result substantiates the use of marginal likelihood (or a lower
bound thereof) for hyper-parameter selection for neural net-
works, and invariance learning in particular. More broadly
speaking, it proves a convincing case for probabilistic ma-
chine learning models, such as Bayesian neural networks,
beyond their oft-cited use for uncertainty estimation.

0 20000 40000
Iteration

0

45

90

135

180

Le
ar

ne
d

In
va

ria
nc

e

Fully rotated MNIST

Point-estimate
Variational Inference

Figure 3. Predicted invariance over training iterations with non-
Bayesian point-estimate and approximate Bayesian inference. The
model is incapable of learning the correct invariance without VI.

4.2. Identifying Invariance with ELBO

In our first experiment, we evaluate whether the ELBO is
capable of identifying the apt level of invariance, as speci-
fied by parameter v. We train our model on three versions of
MNIST on which we artifically imposed different amounts
of invariance by rotating images: In ‘Fully rotated MNIST’,
we rotate every image with a random uniformly sampled
angle θ ∈ [−180, 180], in ‘Partially rotated MNIST’ im-
ages are rotated with a random angle of θ ∈ [−90, 90],
and in ‘Regular MNIST’ we consider the dataset without
alterations. In addition, we evaluate a model where the
invariance parameter v is learned, rather than kept fixed.

From Table 1, we observe that models with the best ELBO
and test accuracy correspond with the invariance that we
imposed on the dataset, indicating that the ELBO can cor-
rectly identify the required level of invariance with best

Learning Invariant Weights in Neural Networks

Ep
oc

h
1

Initial Invariance: ±5° Base filter

Ep
oc

h
5

Learned Invariance: ±81°

Ep
oc

h
7

Learned Invariance: ±115°

Fin
al

 E
po

ch

Learned Invariance: ±179°

(a) Feature bank #1 over training iterations.

Ep
oc

h
1

Initial Invariance: ±5° Base filter

Ep
oc

h
5

Learned Invariance: ±81°

Ep
oc

h
7

Learned Invariance: ±115°

Fin
al

 E
po

ch

Learned Invariance: ±179°

(b) Feature bank #2 over training iterations.

Figure 4. Illustration of converging filter banks of two features. Features are initialized randomly with almost no invariance and converge
to particular filters with practically full (±179°) rotational invariance when trained on fully rotated MNIST training data.

test generalization. On regular MNIST we observe that
a small amount of invariance yields better ELBO than no
invariance, which could be explained by some intrinsic rota-
tional variation in the dataset. Furthermore, we find that the
ELBO obtained after learning invariance corresponds with
the optimal ELBO in the set of models with fixed invariance.
Additional results can be found in Appendix C.

ELBO Test Accuracy

Model
Fully rotated

MNIST
Partially rotated

MNIST
Regular
MNIST

Fully rotated
MNIST

Partially rotated
MNIST

Regular
MNIST

Fixed 5° -1.07 -0.80 -0.36 79.29 86.71 96.00
Fixed 45° -0.63 -0.49 -0.26 87.35 91.13 95.93
Fixed 90° -0.52 -0.44 -0.30 90.33 91.69 94.69

Fixed 135° -0.45 -0.45 -0.36 91.19 91.04 92.13
Fixed 175° -0.43 -0.47 -0.45 91.57 90.47 90.97

Learned -0.43 -0.42 -0.26 91.72 92.34 96.40

Table 1. Table containing ELBO and Test Accuracy scores after
training for experiments with RFF neural network.

4.3. Recovering Invariance from Initial Conditions

In Figure 2, we repeat the last experiment where we automat-
ically learn invariances for different initial invariances: [5°,
45°, 90°, 135°, 175°]. For most initial conditions we find
that the model was able to succesfully recover the amount
of invariance imposed on the dataset. One exception be-
ing initial 175° degrees on partially rotated dataset, which
suggests that training with low initial invariance could be
advantageous in practice. Nevertheless, we conlude that we
can recover invariance relatively robustly independent of
initial conditions.

4.4. Learning Invariance in ReLU Network

So far, we have only considered the set-up where we learn
the second layer and keep the first layer initialized as fixed
RFF-features with a particular cos(·) activation function.
We chose this fixed basis function model to ensure a suffi-
ciently tight bound on marginal likelihood where the only
source of looseness is the non-Gaussian likelihood. Now,
we will let loose of these constraints and consider a gen-

eral two-layer neural network with ReLU non-linearity
φ(x) = max(x, 0) with Xavier (Kumar, 2017) initialized
weights and 1024 hidden layers, where we learn both two
layers. We optimize the model using the same variational
inference procedure.

We find that we are also able to learn invariance in this
setting (full comparison in Appendix C). In Figure 4, we
show an illustration of a feature bank (row vector inW1 for
range [−v, v; 7]) over training iterations. As can be seen,
the features in the experiment are randomly initialized with
almost no rotational invariance. After training on a fully
rotated MNIST dataset, the features converge to a particular
filter with practically full ±179° rotational invariance.

5. Discussion and Conclusion
In this paper, we propose a method to learn invariant weights
in neural networks from data itself. We follow what is
common in Bayesian statistics and optimize the marginal
likelihood to perform Bayesian model selection: a method
that has been proven capable to learn invariances in GPs. We
propose a lower bound to allow optimization of the marginal
likelihood in neural networks and demonstrate the approach
by automatically learning rotationally invariant weights in a
two-layer neural network on rotated versions of MNIST.

The marginal likelihood is a general way of doing model se-
lection and is parameterization independent. Therefore, we
can expect it to work on other invariances and other model
architectures. For deeper models, however, we should ask
the question whether the bound on the marginal likelihood
will stay sufficiently tight (Dutordoir et al., 2021; Ober &
Aitchison, 2020; Immer et al., 2021).

To conclude, we hope our findings inspire other works to
allow neural networks that automatically learn invariances
from data.

Learning Invariant Weights in Neural Networks

References
Bekkers, E. J. B-spline cnns on lie groups. arXiv preprint

arXiv:1909.12057, 2019.

Benton, G., Finzi, M., Izmailov, P., and Wilson, A. G.
Learning invariances in neural networks. arXiv preprint
arXiv:2010.11882, 2020.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In International conference on machine learn-
ing, pp. 2990–2999. PMLR, 2016.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le,
Q. V. Autoaugment: Learning augmentation policies
from data. arXiv preprint arXiv:1805.09501, 2018.

Dao, T., Gu, A., Ratner, A., Smith, V., De Sa, C., and
Ré, C. A kernel theory of modern data augmentation.
In International Conference on Machine Learning, pp.
1528–1537. PMLR, 2019.

Dutordoir, V., Hensman, J., van der Wilk, M., Ek, C. H.,
Ghahramani, Z., and Durrande, N. Deep neural networks
as point estimates for deep gaussian processes. arXiv
preprint arXiv:2105.04504, 2021.

Esteves, C., Allen-Blanchette, C., Zhou, X., and Dani-
ilidis, K. Polar transformer networks. arXiv preprint
arXiv:1709.01889, 2017.

Falorsi, L., de Haan, P., Davidson, T. R., and Forré, P. Repa-
rameterizing distributions on lie groups. In The 22nd
International Conference on Artificial Intelligence and
Statistics, pp. 3244–3253. PMLR, 2019.

Finzi, M., Welling, M., and Wilson, A. G. A practi-
cal method for constructing equivariant multilayer per-
ceptrons for arbitrary matrix groups. arXiv preprint
arXiv:2104.09459, 2021.

Fong, E. and Holmes, C. On the marginal likelihood and
cross-validation. Biometrika, 107(2):489–496, 2020.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
Stochastic variational inference. Journal of Machine
Learning Research, 14(5), 2013.

Immer, A., Bauer, M., Fortuin, V., Rätsch, G., and
Khan, M. E. Scalable marginal likelihood estimation
for model selection in deep learning. arXiv preprint
arXiv:2104.04975, 2021.

Jaderberg, M., Simonyan, K., Zisserman, A., and
Kavukcuoglu, K. Spatial transformer networks. arXiv
preprint arXiv:1506.02025, 2015.

Kingma, D. P. Variational inference & deep learning: A
new synthesis. 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kumar, S. K. On weight initialization in deep neural net-
works. arXiv preprint arXiv:1704.08863, 2017.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Marcos, D., Volpi, M., Komodakis, N., and Tuia, D. Rota-
tion equivariant vector field networks. In Proceedings of
the IEEE International Conference on Computer Vision,
pp. 5048–5057, 2017.

Ober, S. W. and Aitchison, L. Global inducing point varia-
tional posteriors for bayesian neural networks and deep
gaussian processes. arXiv preprint arXiv:2005.08140,
2020.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Rahimi, A., Recht, B., et al. Random features for large-scale
kernel machines. In NIPS, volume 3, pp. 5. Citeseer,
2007.

Schwöbel, P., Warburg, F., Jørgensen, M., Madsen,
K. H., and Hauberg, S. Probabilistic spatial transform-
ers for bayesian data augmentation. arXiv preprint
arXiv:2004.03637, 2020.

van der Wilk, M., Bauer, M., John, S., and Hensman, J.
Learning invariances using the marginal likelihood. arXiv
preprint arXiv:1808.05563, 2018.

Weiler, M. and Cesa, G. General e(2)-equivariant steerable
cnns. arXiv preprint arXiv:1911.08251, 2019.

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and
Cohen, T. 3d steerable cnns: Learning rotationally
equivariant features in volumetric data. arXiv preprint
arXiv:1807.02547, 2018.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., and
Brostow, G. J. Harmonic networks: Deep translation
and rotation equivariance. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 5028–5037, 2017.

Learning Invariant Weights in Neural Networks

Appendix A: Detailed Derivation of Variational Inverence
Applying Variational Inference (VI) (Hoffman et al., 2013), we maximize the marginal likelihood w.r.t. parameters θ by
minimizing the DKL(·||·)-divergence between approximate posterior qθ(W2|µ,Σ) and true posterior distribution of weights
p(W2|D), by minimizing the negative evidence lower bound (ELBO) denoted by L:

argmin
θ

DKL(qθ(W2|µ,Σ)||p(W2|D))

= argmin
θ

Eqθ(W2|µ,Σ)

[
log

p(W2|µ,Σ)

p(W2|D)

]
= argmin

θ
Eqθ(W2|µ,Σ)

[
log

p(W2|µ,Σ)

p(W2)p(D|w)

]
+ log p(D)

= argmin
θ

Eqθ(W2|µ,Σ)

[
log

p(W2|µ,Σ)

p(W2)p(D|w)

]
= argmin

θ
Eqθ(W2|µ,Σ) [log p(W2|µ,Σ)− log p(W2)− log p(D|W2)]

= argmin
θ

Eqθ(W2|µ,Σ) [log p(W2|µ,Σ)− log p(W2)]− Eqθ(W2|µ,Σ) [log p(D|W2)]

= argmin
θ

DKL(p(W2|µ,Σ)||p(W2)) + Eqθ(W2|µ,Σ)[− log p(D|W2)]

= argmin
θ

∑
c

DKL(N (wc
2|µc,Σc)||p(wc

2)) + Eqθ(W2|µ,Σ)[− log p(D|W2)]

= argmin
θ

L

We independently model the weight wc
2 for each class c with a full co-variance multivariate Gaussian distribution

N (wc
2|µc,Σc), parameterized by mean vector µc and lower-triangular (Cholesky) decomposition of the co-variance

Lc =
√

Σc to avoid computational issues, similar to Kingma (2017). We can view the variational posterior qθ(W2|µ,Σ)
as multi-variate Gaussian over all classes with concatenated mean and block-diagonally stacked covariances from which we
sample flattened matrixW2 in one go, or -equivalently- sample row vectorswc

2 for each class separately and concatenate
them to obtain matrixW2. By sampling L times from variational approximationW (1)

2 ,W
(2)
2 . . .W

(L)
2 ∼ qθ(W2|µ,Σ)

we obtain a Monte Carlo estimate of Eqθ(W2|µ,Σ) yielding the final negative ELBO loss L(θ,D):

L(θ,D) = Eqθ(W2|µ,Σc)[− log p(D|W2)] +
∑
c

DKL(N (wc
2|µ,Σc)||p(wc

2))

= Eqθ(W2|µ,Σc)[− log p(D|W2)] +
∑
c

DKL(N (wc
2|µ,Σc)||N (0;Σp))

=

Regular Average Cross-entropy︷ ︸︸ ︷
L∑
l

N∑
i

− log σ
y
(i)
c

(
ET∼p(T)

[
W2 ◦ φ

(
W1 ◦ T ◦ x(i)

)])
+

Closed-form KL Regularizer︷ ︸︸ ︷∑
c

1

2

[
log
|Σc|
|Σp|

−D + tr {ΣpΣ
c}+ µTΣ−1p µ

]

for every input x(i), log soft-argmax output σyc for class of corresponding label y(i)c , fixed first layer weights W1, prior
weights Σp = Iα, input dimensionality D, and trace tr(·). To allow for mini-batching, we use the Stochastic Variational
Bayes Estimate (SGVB) from Kingma & Welling (2013) of the negative ELBO loss L̃(θ,D):

L̃(θ,D) = N

Regular Batch Averaged Cross-entropy︷ ︸︸ ︷
1

M

L∑
l

M∑
i

− log σ
y
(i)
c

(
ET∼p(T)

[
W2 ◦ φ

(
W1 ◦ T ◦ x(i)

)])
+

Closed-form KL Regularizer︷ ︸︸ ︷∑
c

1

2

[
log
|Σc|
|Σp|

−D + tr {ΣpΣ
c}+ µTΣ−1p µ

]

where we can choose L = 1 if we use a sufficiently large batch size.

Learning Invariant Weights in Neural Networks

Appendix B: Additional Weight Visualizations
Ep

oc
h

1

Initial Invariance: ±5° Base filter

Ep
oc

h
5

Learned Invariance: ±81°

Ep
oc

h
7

Learned Invariance: ±115°

Fin
al

 E
po

ch

Learned Invariance: ±179°

(a) Feature #1 over training iterations

Ep
oc

h
1

Initial Invariance: ±5° Base filter

Ep
oc

h
5

Learned Invariance: ±81°

Ep
oc

h
7

Learned Invariance: ±115°

Fin
al

 E
po

ch

Learned Invariance: ±179°

(b) Feature #2 over training iterations

Ep
oc

h
1

Initial Invariance: ±5° Base filter

Ep
oc

h
5

Learned Invariance: ±81°

Ep
oc

h
7

Learned Invariance: ±115°

Fin
al

 E
po

ch

Learned Invariance: ±179°

(c) Feature #3 over training iterations

Ep
oc

h
1

Initial Invariance: ±5° Base filter

Ep
oc

h
5

Learned Invariance: ±81°

Ep
oc

h
7

Learned Invariance: ±115°
Fin

al
 E

po
ch

Learned Invariance: ±179°

(d) Feature #4 over training iterations

Ep
oc

h
1

Initial Invariance: ±5° Base filter

Ep
oc

h
5

Learned Invariance: ±81°

Ep
oc

h
7

Learned Invariance: ±115°

Fin
al

 E
po

ch

Learned Invariance: ±179°

(e) Feature #5 over training iterations

Ep
oc

h
1

Initial Invariance: ±5° Base filter

Ep
oc

h
5

Learned Invariance: ±81°

Ep
oc

h
7

Learned Invariance: ±115°

Fin
al

 E
po

ch

Learned Invariance: ±179°

(f) Feature #6 over training iterations

Figure 5. Illustration of the features banks over training iterations. Features are randomly initialized with almost no rotational invariance
and converge to particular filters with full rotational invariance when trained on fully rotated MNIST data.

Learning Invariant Weights in Neural Networks

Appendix C.1: Additional Results for RFF Neural Network

0 20000 40000
Iteration

0

45

90

135

180

Le
ar

ne
d

In
va

ria
nc

e

Fully rotated MNIST

0 20000 40000
Iteration

Partially rotated MNIST

0 20000 40000
Iteration

Regular MNIST

Initialized at 5°
Initialized at 45°
Initialized at 90°
Initialized at 135°
Initialized at 175°

Figure 6. Predicted invariance over training iterations for different initial invariances for RFF neural network.

ELBO Test Accuracy

Model
Fully rotated

MNIST
Partially rotated

MNIST
Regular
MNIST

Fully rotated
MNIST

Partially rotated
MNIST

Regular
MNIST

Fixed 5° -1.07 -0.80 -0.36 79.29 86.71 96.00
Fixed 45° -0.63 -0.49 -0.26 87.35 91.13 95.93
Fixed 90° -0.52 -0.44 -0.30 90.33 91.69 94.69

Fixed 135° -0.45 -0.45 -0.36 91.19 91.04 92.13
Fixed 175° -0.43 -0.47 -0.45 91.57 90.47 90.97

Learned (5° Init) -0.43 -0.42 -0.26 91.72 92.34 96.40
Learned (45° Init) -0.43 -0.42 -0.26 91.65 92.31 96.42
Learned (90° Init) -0.43 -0.42 -0.26 91.65 92.37 96.40

Learned (135° Init) -0.43 -0.42 -0.26 91.66 92.37 96.10
Learned (175° Init) -0.43 -0.43 -0.26 91.68 91.69 95.64

Table 2. Table containing ELBO and Test Accuracy scores after training for experiments with RFF neural network.

Appendix C.2: Additional Results for ReLU Neural Network

0 20000 40000
Iteration

0

45

90

135

180

Le
ar

ne
d

In
va

ria
nc

e

Fully rotated MNIST

0 20000 40000
Iteration

Partially rotated MNIST

0 20000 40000
Iteration

Regular MNIST

Initialized at 5°
Initialized at 45°
Initialized at 90°
Initialized at 135°
Initialized at 175°

Figure 7. Predicted invariance over training iterations for different initial invariances of ReLU neural network with both layers trained.

ELBO Test Accuracy

Model
Fully rotated

MNIST
Partially rotated

MNIST
Regular
MNIST

Fully rotated
MNIST

Partially rotated
MNIST

Regular
MNIST

Fixed 5° -0.28 -0.20 -0.02 87.21 90.68 96.76
Fixed 45° -0.09 -0.06 -0.02 95.24 96.46 98.13
Fixed 90° -0.07 -0.06 -0.03 96.50 97.11 98.14

Fixed 135° -0.06 -0.06 -0.04 97.15 97.31 97.79
Fixed 175° -0.07 -0.06 -0.06 97.53 97.30 97.15

Learned (0° Init) -0.07 -0.06 -0.02 97.34 97.13 98.40
Learned (45° Init) -0.07 -0.05 -0.02 97.23 97.36 98.27
Learned (90° Init) -0.07 -0.06 -0.02 97.28 97.22 98.19

Learned (135° Init) -0.06 -0.05 -0.02 97.45 97.29 98.33
Learned (175° Init) -0.06 -0.06 -0.03 97.23 97.23 98.03

Table 3. Table containing ELBO and Test Accuracy scores after training for experiments of ReLU neural network with both layers trained.

