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Abstract
Uncertainty estimation is an essential step in the
evaluation of the robustness for deep learning
models in computer vision, especially when ap-
plied in risk-sensitive areas. However, most state-
of-the-art deep learning models either fail to ob-
tain uncertainty estimation or need significant
modification (e.g., formulating a proper Bayesian
treatment) to obtain it. Most previous methods
are not able to take an arbitrary model off the
shelf and generate uncertainty estimation without
retraining or redesigning it. To address this gap,
we perform a systematic exploration into training-
free uncertainty estimation for dense regression,
an unrecognized yet important problem, and pro-
vide a theoretical construction justifying such
estimations. We propose three simple and scal-
able methods to analyze the variance of outputs
from a trained network under tolerable perturba-
tions: infer-transformation, infer-noise, and infer-
dropout. They operate solely during the inference,
without the need to re-train, re-design, or fine-tune
the models, as typically required by state-of-the-
art uncertainty estimation methods. Surprisingly,
even without involving such perturbations in train-
ing, our methods produce comparable or even
better uncertainty estimation when compared to
training-required state-of-the-art methods.

1. Introduction
Deep neural networks have achieved remarkable or even
super-human performance in many tasks (Krizhevsky et al.,
2012; He et al., 2015; Silver et al., 2016). While most pre-
vious work in the field has focused on improving accuracy
in various tasks, in several risk-sensitive areas such as au-
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tonomous driving (Chen et al., 2015) and healthcare (Zhang
et al., 2019), reliability and robustness are arguably more
important and interesting than accuracy.

Recently, several novel approaches have been proposed to
take into account an estimation of uncertainty during train-
ing and inference (Huang et al., 2018). Some use proba-
bilistic formulations for neural networks (Graves, 2011;
Hernández-Lobato & Adams, 2015; Wang et al., 2016;
Shekhovtsov & Flach, 2018) and model the distribution
over the parameters (weights) and/or the neurons. Such for-
mulations naturally produce distributions over the possible
outputs (Ilg et al., 2018; Yang et al., 2019). Others utilize
the randomness induced during training and inference (e.g.,
dropout and ensembling) to obtain an uncertainty estima-
tion (Gal & Ghahramani, 2016; Lakshminarayanan et al.,
2017; Kendall et al., 2015).

All methods above require specific designs or a special train-
ing pipeline in order to involve the uncertainty estimation
during training. Unfortunately, there are many cases where
such premeditated designs or pipelines cannot be imple-
mented. For example, if one wants to study the uncertainty
of trained models released online, retraining is not always
an option, especially when only a black-box model is pro-
vided or the training data is not available. Moreover, most
models are deterministic and do not have stochasticity. A
straightforward solution is to add dropout layers into proper
locations and finetune the model (Gal & Ghahramani, 2016).
However, this is impractical for many state-of-the-art and
published models, especially those trained on large datasets
(e.g. ImageNet (Deng et al., 2009)) with a vast amount of
industrial computing resources. In addition, models that
have already been distilled, pruned, or binarized fall short
of fitting re-training (Han et al., 2015; Hou et al., 2016).

To fill this gap, we identify the problem of training-free
uncertainty estimation: how to obtain an uncertainty estima-
tion of any given model without re-designing, re-training,
or fine-tuning it. We focus on two scenarios: black-box
uncertainty estimation (BBUE), where one has access to
the model only as a black box, and gray-box uncertainty
estimation (GBUE), where one has access to intermediate-
layer neurons of the model (but not the parameters). Our
work is a systematic exploration into this unrecognized yet
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Figure 1. Method description of our training-free uncertainty estimation: apply infer-transformation T (left) and infer-noise or infer-
dropout P (right) to a trained neural network F during inference.

important problem.

In our paper, we focus on regression tasks. We note that for
classification tasks, the softmax output is naturally a distri-
bution. Methods that use entropy for uncertainty estimation
qualify as a training-free method and have outperformed
MC-Dropout (Bahat & Shakhnarovich, 2018; Gal & Ghahra-
mani, 2016; Hendrycks & Gimpel, 2016; Wang et al., 2019)
(See Appendix for experiment results). Regression tasks are
more challenging than classification problems since there is
no output distribution. Our major contributions are:

1. We perform a systematic exploration of training-free
uncertainty estimation for regression models and provide
a theoretical construction justifying such estimations.

2. We propose simple and scalable methods, infer-
transformation, infer-noise and infer-dropout, using a
tolerable perturbation to effectively and efficiently esti-
mate uncertainty.

3. Surprisingly, we find that our methods are able to gen-
erate uncertainty estimation comparable or even better
than training-required baselines in real-world large-scale
dense regression tasks.

2. Methodology
Three Cases on Parameter Accessibility. We distinguish
among three cases based on accessibility of the original
model. 1. Black-box case: the model is given as a trained
black box without any access to its internal structure. 2.
Gray-box case: the internal representations (feature maps)
of the model is accessible (while the parameters are not)
and can be modified during inference. 3. White-box case:
the model is available for all modifications (e.g. its weights
can be modified, which requires training). In this paper we
focus on the black-box and gray-box cases, for which we
offer, correspondingly, two classes of methods in Fig. 1.

2.1. Black-Box Uncertainty Estimation:
Infer-Transformation

Given a black-box model, we explore the behavior of the out-
puts for different transformed versions of the input. Specifi-
cally, we transform the input with tolerable perturbations,

e.g. perturbations that do not cause significant increase in
the loss (see Sec. 2.3 for details), and then use the variance
of the perturbed outputs as estimated uncertainty. Here we
focus on transformations that preserve pertinent characteris-
tics of the input, such as rotations, flips, etc. Formally, given
an input image X, our measured uncertainty is defined as
V[Z] = VT [T

′ ◦ F ◦ T (X)], where T ∈ T is a transforma-
tion, T ′ is T ’s inverse operation, and F is a function repre-
senting the black-box neural network. Z = T ′ ◦ F ◦ T (X)
is a sample from the perturbed output distribution. Note that
it is possible to sample Z = F (X), where P happens to be
a 360-degree rotation.

2.2. Gray-Box Uncertainty Estimation: Infer-Noise
and Infer-Dropout

Given a gray-box model, we consider another class of meth-
ods for generating multiple outputs from a distribution: ran-
domly perturbing latent codes. Compared with the black-
box case, this provides finer granularity on modulating the
perturbation strength to ensure tolerability. Specifically we
propose infer-noise, which introduces Gaussian noise at an
intermediate layer of the trained model, and infer-dropout,
which uses dropout instead. For infer-noise, the noise will
be added to the feature maps of a certain layer. This noise is
randomly sampled multiple times during inference to form
a set of diverse outputs. For infer-dropout, random dropout
is performed for multiple forwards to generate output sam-
ples, the variance of which are then used as uncertainty
estimation. Formally, given an input image X, our measured
uncertainty is defined as V[Z] = VP [F2 ◦ P ◦ F1(X)],
where P is sampled from a perturbation set P (e.g. Gaus-
sian noise with σ = 1). F1 is the function of network layers
before the perturbation P , F2 represents network layers
after P , and F2 ◦ F1(X) is the gray-box network F (X).
Z = F2 ◦ P ◦ F1(X) is a sample from the perturbed output
distribution. Note that it is possible to sample Z = F (X),
where P happens to be a perturbation noise of all zeros.

2.3. Sensitivity as a Surrogate Measure

The idea at the core of our approach is to impose tolera-
ble perturbations on the original trained model’s input or
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Figure 2. Visualization of block-wise and pixel-wise uncertainty (variance) maps (log scale) generated by infer-transformation, infer-
dropout, MC-dropout (Gal & Ghahramani, 2016), using SRGAN (Ledig et al., 2017) for the super resolution task. L1 loss map (log scale)
is also provided for comparison. Correlation between the L1 loss map and the uncertainty map is also presented.

intermediate representations (feature maps). Given a pertur-
bation output sample Z and ground truth Y , the perturbation
tolerability is defined using C = |E[Z]− Y | ≤ ε, where ε
denotes the perturbation error threshold; smaller ε indicates
better tolerability. Such perturbations generate a sensitivity
map V[Z] as a surrogate measure of the model’s uncertainty.
Note that our method involves no sacrifice in the predictive
performance of original model. One can use our method to
produce uncertainty estimation while still use the original
model to make predictions.

Lemma 2.1 (Chebyshev’s Inequality). Let Z be any ran-
dom variable with variance V[Z] <∞. Then for a constant
margin t ≥ 0, P(|Z − E[Z]| ≥ t) ≤ V[Z]/t2.

Variance and Sensitivity. If Z is the model prediction, the
probability P(|Z − E[Z]| ≥ t) translates to ‘how possible
the model prediction Z deviates from E[Z] by a margin
larger than t′ and therefore measures the ‘model sensitivity’.
Such sensitivity is bounded by a scaled variance V[Z]/t2
(where t2 is a constant). Therefore, Lemma 2.1 connects our
output variance V[Z] to model sensitivity.

Theorem 2.1. Let Y be the ground truth andZ be a random
variable representing the model prediction, where random-
ness comes from our perturbation. We have that

P(|Z − Y | ≥ t) ≤ V[Z]/(t− C)2, (1)

for any constant margin t ≥ C, where C = |E[Z]− Y | is
the prediction error for E[Z].
Variance and Uncertainty. Similar to Lemma 2.1, P(|Z−
Y | ≥ t) in Theorem 2.1 translates to ‘how possible the
model prediction Z deviates from the ground truth Y by
a margin larger than t’ and therefore measures the ‘uncer-
tainty’. Theorem 2.1 establishes V[Z]/(t−C)2 as an upper
bound for the ‘uncertainty’. In practice, we directly use

V[Z] since C is the unknown ground-truth prediction error.
In Sec. 3, we empirically show that V[Z] as a rough approx-
imation for V[Z]/(t− C)2 can already obtain uncertainty
estimation on par with or even better than state-of-the-art
baselines. Moreover, to eliminate the effect of t, one could
integrate t out on both sides and get the summary of ‘uncer-
tainty’ over different thresholds ‘t’.∫ ∞

t=0

P(|Z − Y | ≥ t) ≤ C + 2
√

V(Z). (2)

We can see that the variance is an upper bound for such a
summary of ‘uncertainty’ over different thresholds.

Why We Need Tolerability. (1) Wider valid region: The
upper bound in Eqn. 1 is valid only when t ≥ C; therefore
since C ≤ ε by definition, better tolerability (i.e. lower ε)
leads to smaller C, giving the bound a wider valid region
w.r.t. the margin t. (2) Tighter bound: Better tolerability
also guarantees smaller C and V[Z], making V[Z]/(t−C)2
smaller and consequently a tighter bound given a constant
margin t (see Sec. 3.1 and Fig. 3 for details). From Eqn. 2,
we can also see that smaller C leads to a tighter bound on
the summary uncertainty.

Epistemic Uncertainty. The uncertainty estimated in our
approach is epistemic uncertainty. Assuming the model
perfectly fits infinite data – all variants of augmented “data”
(including both data inputs and intermediate features) ap-
plied with different perturbations – we will get zero variance,
meaning zero epistemic uncertainty.

3. Experiments
In this section, we evaluate our three proposed approaches
in two representative real-world large-scale dense regression
tasks, super resolution and depth estimation. More results
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SRGAN model: Super Resolution
Condition Training Free (Ours) Training Required
Prediction Original Output Outputs Mean

Method Infer-trans Infer-drop Infer-noise MC-drop1 MC-drop2 Ensemble LLM
Samples 4 8 8 32 8 32 8 32 8 32 4 8 0

AUSE

mean L1 0.006 0.006 0.013 0.013 0.016 0.016 0.008 0.009 0.007 0.007 0.018 0.020 0.035
patch L1 0.021 0.022 0.029 0.030 0.040 0.039 0.029 0.029 0.025 0.025 0.033 0.033 0.044
block L1 0.023 0.023 0.032 0.031 0.044 0.043 0.030 0.029 0.028 0.028 0.033 0.033 0.042
pixel L1 0.128 0.121 0.154 0.141 0.173 0.162 0.141 0.131 0.137 0.129 0.152 0.144 0.137

Corr

mean L1 0.931 0.930 0.884 0.882 0.774 0.780 0.942 0.943 0.938 0.936 0.692 0.694 0.484
patch L1 0.765 0.770 0.722 0.731 0.590 0.598 0.748 0.755 0.734 0.741 0.674 0.677 0.565
block L1 0.757 0.767 0.717 0.730 0.579 0.592 0.735 0.747 0.698 0.710 0.651 0.664 0.588
pixel L1 0.367 0.394 0.323 0.376 0.245 0.288 0.339 0.390 0.330 0.379 0.290 0.326 0.393

NLL 17.910 9.332 4.889 4.804 4.899 4.791 6.804 6.013 6.365 5.541 11.520 5.994 1.320

Table 1. Mean/patch-wise/block-wise/pixel-wise AUSE and correlation between L1 loss and uncertainty, and NLL on SR benchmark
dataset Set 14. Our infer-transformation, infer-dropout and infer-noise are compared with MC-dropout (Gal & Ghahramani, 2016), deep
ensemble (Lakshminarayanan et al., 2017) and log likelihood maximization (LLM) (Zhang et al., 2019). MC-drop1 uses the output of
the original model as prediction while MC-drop2 uses the mean of output samples from the re-trained model (with added dropout) as
prediction. Models evaluated: SRGAN.

Figure 3. Visualization of probability P(|Z−Y | ≥ t) (solid) and the upper bound V[Z]/(t−C)2 (dashed) (only valid when t ≥ C). The
increasing area between curves (looser bound) is caused by the larger perturbation strength (dropout rate), which violates the condition of
tolerability (i.e. small C).

related to depth estimation are in Appendix.

3.1. Experiment Results

Qualitative Results. Fig. 2 shows some qualitative results
for an example image in the SR task. We can see that
the variance maps generated in our task are consistent to
the level of ambiguity. Specifically, in our methods, high
variance occurs in areas with high randomness and high
frequency. As expected, these high-variance areas usually
correspond to large prediction error.

Comparable Performance with Training-required Base-
lines. We report correlation, AUSE and NLL using the
optimal hyper-parameters in different methods in Table 1.
Meanwhile, we report the evaluation on other tasks in Ta-
ble 2 and Table 3 in Appendix. Based on these metrics, our
methods infer-transformation, infer-dropout and infer-noise
could provide comparable or even better results than the
training-required state-of-the-art baselines. Even a small
number of samples are able to guarantee sufficient quality.
For the super-resolution task, we find infer-transformation
achieves the highest performance and even outperforms
training-required baselines. For depth estimation, infer-
noise outperforms other baselines.

The Role of Tolerable Perturbations. Tolerable perturba-
tions play a crucial role in obtaining effective uncertainty

estimation. Better tolerability means smaller decrease in
accuracy after perturbation (i.e. smaller ε in Sec. 2.3). Fig. 5
in Appendix shows the optimal cases to generate uncertainty
maps with high correlation require that C should remain
small after perturbation (high tolerability).

Theorem 2.1 and Performance Bound. Theorem 2.1 es-
tablishes V[Z]/(t− C)2 as an upper bound for the ‘uncer-
tainty’ P(|Z − Y | ≥ t). Correspondingly, Fig. 3 shows
V[Z]/(t − C)2 (dashed lines) and P(|Z − Y | ≥ t) (solid
lines) versus t for three representative pixels, empirically
verifying the validity of V[Z]/(t− C)2 as the uncertainty’s
upper bound. Note that as the perturbation strength (i.e.
dropout rate) gets larger, both V[Z] and C increase and
consequently loosen the bound (as mentioned in Sec. 2.3);
reflected in Fig. 3, we can see the area between the probabil-
ity curve and the bound curve of each pixel also gets larger
from Fig. 3 (left) to Fig. 3 (right), which leads to worse
performance (lower average pixel-wise correlation). This
highlights the need for tolerable perturbations (i.e. low ε and
C in Sec. 2.3). Note that this is also consistent with Eqn. 2
since the area under each curve (in the valid region t > C)
corresponds to the integration over t. Table 4 in Appendix
shows correlation and AUSE for methods compared to the
oracle (performance bound) V[Z]/(t− C)2. Our methods,
especially infer-transformation, are reasonably close to the
oracle and compare favorably with baselines.
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A. Proof of Theorem 3.1.
Proof. Replacing t in Lemma 3.1 with (t−C) where t ≥ C,
we have P(|Z−E[Z]|+C ≥ t) ≤ V[Z]/(t−C)2, meaning
that P(|Z − E[Z]|+ C < t) > V[Z]/(t− C)2. Notice the
triangle inequality:

|Z − Y | ≤ |Z − E[Z]|+ |E[Z]− Y | = |Z − E[Z]|+ C.

We therefore have P(|Z − Y | < t) > V[Z]/(t − C)2,
which is equivalent to P(|Z − Y | ≥ t) ≤ V[Z]/(t − C)2,
completing the proof.

B. Related Work
Probabilistic Neural Networks for Uncertainty Estima-
tion. Probabilistic neural networks consider the input and
model parameters as random variables which take effect as
the source of stochasticity (Nix & Weigend, 1994; Welling
& Teh, 2011; Graves, 2011; Hernández-Lobato & Adams,
2015; Wang et al., 2016). Traditional Bayesian neural net-
works model the distribution over the parameters (weights)
(MacKay, 1992; Hinton & Van Camp, 1993; Graves, 2011;
Welling & Teh, 2011) and obtain the output distribution
by marginalizing out the parameters. Even with recent im-
provement (Balan et al., 2015; Hernández-Lobato & Adams,
2015), one major limitation is that the size of network at
least doubles under this assumption, and the propagation
with a distribution is usually computationally expensive.
Another set of popular and efficient methods (Gal & Ghahra-
mani, 2016; Teye et al., 2018) formulate dropout (Srivastava
et al., 2014) or batch normalization (Ioffe & Szegedy, 2015)
as approximations to Bayesian neural networks. For exam-
ple, MC-dropout (Gal & Ghahramani, 2016) injects dropout
into some layers during both training and inference (Tsym-
balov et al., 2019). Unlike most models that disable dropout
during inference, MC-dropout feed-forwards the same ex-
ample multiple times with dropout enabled, in order to form
a distribution on the output. Meanwhile, other works (Wang
et al., 2016; Shekhovtsov & Flach, 2018) propose sampling-
free probabilistic neural networks as a lightweight Bayesian
treatment for neural networks.

Non-probabilistic Neural Networks for Uncertainty Es-
timation. Other strategies (Zhao et al., 2020) such as deep
ensemble (Lakshminarayanan et al., 2017; Huang et al.,
2017a; Ashukha et al., 2020) train an ensemble of neu-
ral networks from scratch, where some randomness is in-
duced during the training process, i.e. the initial weight is
randomly sampled from a distribution. During inference,
these networks will generate a distribution of the output.
Though simple and effective, training multiple networks
costs even more time and memory than Bayesian neural
networks. Another efficient method log likelihood maxi-
mization (LLM) is to train the network to have both original
outputs and uncertainty predictions, by jointly optimizing

both (Zhang et al., 2019; Poggi et al., 2020). Besides the
methods above focusing on uncertainty in classification
models; there are also works investigating uncertainty in
regression models (Kuleshov et al., 2018; Song et al., 2019;
Zelikman et al., 2020). However, all methods above requires
re-training, introduces heavy implementation overhead, and
sometimes makes the optimization process more challeng-
ing.

C. Experiment details
In this section, we evaluate our three proposed approaches
in two representative real-world large-scale dense regression
tasks, super resolution and depth estimation.

C.1. Single Image Super Resolution

The task of Single Image Super Resolution (SR) is to recon-
struct a high-resolution (HR) image from a low-resolution
(LR) input. Here we focus on analyzing the state-of-the-
art SRGAN model (Ledig et al., 2017), which can restore
photo-realistic high-quality images. SRGAN always outputs
deterministic restorations since the conditional GAN (Mirza
& Osindero, 2014) used in this model involves no latent vari-
able sampling. However, we can still evaluate its uncertainty
with our proposed methods.

We apply our methods to estimate uncertainty in one open-
source version of this work (Dong et al., 2017). The package
provides two models trained with different loss functions: 1)
SRresnet model with L2 loss and 2) SRGAN model with a
combination ofL2 loss and adversarial loss. We evaluate our
methods on both models in the black-box/gray-box settings.

Infer-Transformation. For infer-transformation, we apply
rotation of K × 90 degrees (K = 0, 1, 2, 3) as well as
horizontal flip to the LR input, feed it into the trained model
during the inference, and apply the inverse transformation
to its output. We could generate at most 8 samples using
this strategy, and then calculate the pixel-wise variance.

Infer-Noise. In infer-noise, we take the trained model and
add a Gaussian-noise layer, which has standard deviation
σ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5} and mean 0, at differ-
ent locations (layers). We choose 4 different locations for
noise injection, including the layers right after the input and
some intermediate layers (see details in Sec. F). For each
experiment, we only add the noise into one layer with a
specific σ value. Sample numbers of 8 and 32 are evaluated.

Infer-Dropout. In infer-dropout, we take the trained
model and add a dropout layer with varied dropout
rates. We choose the dropout rate ρ from the set
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5} and use the same set of lo-
cations as the infer-noise. For each experiment, we only add
the layer into one location with one specific dropout rate.
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Sample numbers of 8 and 32 are evaluated.

Baselines. We compare our methods with three
training-required baselines. The first baseline is MC-
dropout (Gal & Ghahramani, 2016) with a dropout rate
ρ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. For each experiment,
we add dropout layer only into one location with one dropout
rate during training. The same dropout rate is used for sam-
pling during inference. We try different sample numbers of
8 and 32. The second baseline is deep ensemble (Lakshmi-
narayanan et al., 2017). We follow (Lakshminarayanan et al.,
2017) to train ensembles as 4 and 8 networks, respectively.
We train these networks with the same number of epochs un-
til they converge. During inference, each of them generates
a single deterministic output, with 4 or 8 samples generated
in total. The third baseline is a sampling-free method log
likelihood maximization (LLM) (Zhang et al., 2019; Poggi
et al., 2020), where a network is trained to predict a output
distribution with log likelihood maximization.

C.2. Monocular Depth Estimation

For depth estimation (Postels et al., 2019; Kendall & Gal,
2017), we use one of the commonly applied models based on
fully convolutional residual network (FCRN) (Laina et al.,
2016). We directly use the trained model released by the
original author; this is consistent with the scenarios of black-
box and gray-box cases, since the code for training is not
released.

We evaluate the model on NYU Depth Dataset V2. For infer-
transformation, we avoid applying 90-degree rotation to
input, since the orientation is a strong prior to predict depth
which can violate the tolerability, and only apply horizontal
flip to generate 2 samples for uncertainty estimation. For
infer-dropout, we choose two locations (intermediate layers)
to add the dropout layer. For infer-noise, we choose three
locations to add the noise layer (two intermediate layers
and one layer before the final FC layer). Then we conduct
similar experiments as described in the SR task. For the
baseline MC-dropout, note that the model has a dropout
layer before the final fully connected (FC) layer during
training, we directly perform sampling from the existing
dropout layer. Sample numbers of 2 and 8 are evaluated for
both infer-dropout and infer-noise.

D. Evaluation Metrics
Evaluation Metrics. Commonly used metrics to evalu-
ate uncertainty estimation include Brier score (BS), ex-
pected calibration error (ECE), and negative log-likelihood
(NLL) (Lakshminarayanan et al., 2017; Guo et al., 2017).
However, BS and ECE are for classification tasks only and
hence not applicable in our setting. We therefore use the fol-
lowing metrics for evaluations: (1) NLL, which is defined

in regression tasks by assuming a Gaussian distribution.
However, note that NLL depends on not only the quality
of uncertainty estimation but also the prediction accuracy
itself. Therefore contrary to previous belief, we argue that it
is not an ideal metric for evaluating uncertainty estimation.
(2) Area Under the Sparsification Error (AUSE), which
quantifies how much uncertainty estimation coincides with
the true errors (Ilg et al., 2018). (3) Correlation between
the estimated uncertainty and the error. Here we define four
variants of correlation (see details in Sec. G): pixel-wise,
mean, block-wise, and patch-wise correlations to evaluate
performance at the pixel, image, block, and patch levels,
respectively. The intuition is that in many situations it is
more instructive and meaningful when uncertainty is visu-
alized in each region (e.g. a region with a possible tumor
for a medical imaging application). Note that block-wise
correlation depends on specific segmentation algorithms,
while patch-wise correlation defines regions in an algorithm-
independent way. Similarly we also define four evaluation
forms for AUSE.

For our training-free methods, these metrics are computed
between uncertainty and the error from the original model
(without perturbation), because we will still use the original
model for prediction. For training-required methods such as
MC-dropout (i.e. MC-drop2 in Table 3) (Gal & Ghahramani,
2016), deep ensemble (Lakshminarayanan et al., 2017) and
log likelihood maximization (LLM) (Zhang et al., 2019;
Poggi et al., 2020), the mean of output samples are used
as prediction. Meanwhile, we also evaluate another MC-
dropout variant, denoted as MC-drop1, where the output of
the original model is used as prediction, to be consistent
with training-free methods.

E. Tolerability & Peformance
Comparable Performance with Training-required Base-
lines. For the qualitative evaluation on depth estimation task
shown in Fig. 4, high variance usually occurs in the area
with high spatial resolution and large depth. The quantitative
evaluation results using metrics described above are shown
in Table 3 and Table 2. Note that SRGAN has a higher
correlation than the SRresnet model. For depth estimation,
we find that using infer-noise in the intermediate layers
outperforms other methods. For baseline MC-dropout, we
perturb right before the last convolutional layer – the only
dropout layer during the original model training, and there-
fore produce a highly localized variance map with poor
correlation, shown in Fig. 4. If we are allowed to perform
MC-dropout in intermediate layers and re-train the model, a
correlation value comparable to that of infer-dropout should
be expected.

The Role of Tolerable Perturbations. Tolerable perturba-
tions play a crucial role in obtaining effective uncertainty



Training-Free Uncertainty Estimation for Dense Regression: Sensitivity as a Surrogate

Figure 4. Visualization of pixel-wise uncertainty (variance) maps from infer-transformation, infer-dropout, MC-dropout (Gal & Ghahra-
mani, 2016) compared with the L1 loss map in depth estimation task. Correlation between the L1 loss map and the uncertainty map is
also presented.

FCRN model: Depth Estimation
Condition Training Free (Ours) Training Required
Prediction Original Output Outputs Mean

Method Infer-trans Infer-drop Infer-noise MC-drop1 MC-drop2

Samples 2 2 8 2 8 2 8 2 8

AUSE

mean L1 0.051 0.044 0.041 0.046 0.041 0.062 0.062 0.060 0.062
patch L1 0.106 0.109 0.092 0.108 0.091 0.127 0.126 0.122 0.125
block L1 0.056 0.057 0.047 0.053 0.045 0.065 0.065 0.063 0.065
pixel L1 0.165 0.168 0.135 0.167 0.134 0.208 0.193 0.207 0.193

Corr

mean L1 0.596 0.630 0.677 0.651 0.708 0.473 0.471 0.469 0.469
patch L1 0.324 0.306 0.409 0.312 0.411 0.258 0.268 0.266 0.269
block L1 0.354 0.354 0.449 0.364 0.447 0.215 0.220 0.220 0.221
pixel L1 0.208 0.182 0.284 0.188 0.288 0.075 0.134 0.076 0.134

NLL 8.634 8.443 4.889 3.526 1.006 12.365 9.842 12.503 9.866

Table 2. Mean/patch-wise/block-wise/pixel-wise AUSE and correlation between L1 loss and uncertainty, and NLL on NYU Depth Dataset
V2. Our infer-transformation, infer-dropout and infer-noise are compared with MC-dropout (Gal & Ghahramani, 2016). MC-drop1 uses
the output of the original model as prediction while MC-drop2 uses the mean of output samples from the re-trained model (with added
dropout) as prediction. Models evaluated: FCRN model.

estimation. Better tolerability means smaller decrease in
accuracy after perturbation (i.e. smaller ε in Sec. 2.3). Fig. 5
shows the correlation for different amount of perturbations
(noise or dropout) in different locations, and the correspond-
ing predictive performanceC = |E[Z]−Y | (evaluated asL1

loss) after perturbations. As we can see, the optimal cases to
generate uncertainty maps with high correlation require that
C should remain small after perturbation (high tolerability).
Generally, our experiments suggest that perturba-tions lead-
ing to less than 20% relative drop of performance work well
for uncertainty estimation. Interestingly, different methods
have different ways of achieving high tolerability: (1) For
MC-dropout, involving dropout during training increases
the robustness of model against perturbations, keeping the
loss relatively small after adding dropout layer in most loca-
tions during inference; (2) for infer-dropout, adding dropout
layer in intermediate locations (i.e. location 2 and location
3) where the information is the most redundant (He et al.,
2014), can effectively alleviate disturbance; (3) for infer-
noise, adding noise with small standard deviation effectively

limits the perturbation level. More interestingly, we further
find that for both MC-dropout and infer-dropout, adding
perturbation in intermediate layers are usually the optimal
choices for uncertainty estimation. Applying infer-dropout
in these intermediate layers, we could achieve compara-
ble or even better correlation compared to training-required
baselines. For infer-noise, locations do not have similar
effect; one can therefore further tune the noise strength σ
to achieve higher correlation. The conclusion above is also
consistent with the evaluation of other models.

Fig. 5 shows the perturbation on the SRGAN. We plot the
correlation between different amount of perturbations (noise
or dropout) in different locations and the corresponding
predictive performance (evaluated as L1 loss) after pertur-
bations. For SRresnet model, We find that for both MC-
dropout and infer-dropout, adding perturbation in interme-
diate layers is usually the optimal choice for uncertainty
estimation. For infer-noise, locations do not have similar
effect; one can therefore further tune the noise strength σ to
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SRresnet model: Super Resolution
Condition Training Free (Ours) Training Required
Prediction Original Output Outputs Mean

Method Infer-trans Infer-drop Infer-noise MC-drop1 MC-drop2 Ensemble LLM
Samples 4 8 8 32 8 32 8 32 8 32 4 8 0

AUSE

mean L1 0.044 0.044 0.042 0.043 0.067 0.066 0.041 0.047 0.036 0.039 0.073 0.066 0.036
patch L1 0.045 0.044 0.048 0.047 0.055 0.055 0.046 0.045 0.040 0.041 0.066 0.066 0.037
block L1 0.047 0.045 0.049 0.048 0.062 0.061 0.048 0.046 0.041 0.042 0.073 0.070 0.031
pixel L1 0.164 0.153 0.165 0.155 0.190 0.181 0.163 0.152 0.150 0.144 0.194 0.185 0.133

Corr

mean L1 0.340 0.359 0.401 0.404 0.056 0.055 0.408 0.379 0.527 0.512 0.016 0.048 0.622
patch L1 0.501 0.520 0.508 0.518 0.371 0.385 0.535 0.545 0.547 0.542 0.323 0.361 0.648
block L1 0.462 0.486 0.498 0.509 0.358 0.370 0.505 0.521 0.531 0.529 0.274 0.286 0.673
pixel L1 0.237 0.269 0.258 0.303 0.172 0.216 0.264 0.309 0.288 0.322 0.184 0.206 0.393

NLL 107.243 43.071 5.155 4.955 4.941 4.788 8.430 7.221 8.018 6.688 13.559 7.906 1.422

Table 3. Mean/patch-wise/block-wise/pixel-wise AUSE and correlation between L1 loss and uncertainty, and NLL on SR benchmark
dataset Set 14. Our infer-transformation, infer-dropout and infer-noise are compared with MC-dropout (Gal & Ghahramani, 2016), deep
ensemble (Lakshminarayanan et al., 2017) and log likelihood maximization (LLM) (Zhang et al., 2019). MC-drop1 uses the output of
the original model as prediction while MC-drop2 uses the mean of output samples from the re-trained model (with added dropout) as
prediction. Models evaluated: SRresnet.

achieve higher correlation. For FCRN model, when infer-
dropout or infer-noise is applied, intermediate layers are
also usually the optimal choices for uncertainty estimation.
The results are consistent with that of SRGAN model.

F. Details on Network Noise/Dropout
Injection Locations

To perform uncertainty estimation using infer-noise, infer-
dropout, and baseline MC-dropout on both SRGAN model
and SRresnet model, we choose 4 different locations for
noise injection, including the layers right after the input, as
well as some intermediate layers, as shown in Fig. 7.

To perform uncertainty estimation using infer-noise and
infer-dropout on FCRN model, we choose 3 different loca-
tions for noise injection, including the layers right before
the output, as well as some intermediate layers, as shown
in Fig. 8. For baseline MC-dropout, we choose location
3 where the dropout layer added during training for the
original model.

G. Details on Evaluation Metrics
In this section, we provide the details for our pro-
posed correlation-based evaluation metrics. Assuming we
have N outputs given the same input x from our infer-
transformation, infer-drop and infer-noise, each output is
represented by Yw. Given the output image with the size
of H ×W , the error we define for regression task is pixel-
wise L1 loss and L2 loss, represented by L1,ij and L2,ij ,
where i, j is the corresponding coordinates of the pixel Pij

in the output image. The uncertainty (variance) estimated
in these methods is also a pixel-wise value, represented by
Vij =

∑N
w=1(Yw,ij−Y ij)

2

N . The pixel-wise L1 correlation is

defined as corr({Vij}, {L1,ij}). The second metric is mean

correlation, the mean L1 error L1,z =
∑W

i=1

∑H
j=1 L1,ij

W×H is
defined as the average error of a single image z, correspond-

ingly, the mean variance is defined as V z =
∑W

i=1

∑H
j=1 Vij

W×H ,
the mean L1 correlation is defined as corr({V z}, {L1,z}).
This metric has been used in (Zhang et al., 2019). The third
metric for evaluation is the block-wise correlation – a new
metric we propose in this work. To compute block-wise
correlation, we need to firstly apply a local segmentation
algorithm to the output of the trained model to cluster pix-
els with similar low-level context. Here we use the local-
center-of-mass approach (Aganj et al., 2018) to perform
segmentation. We denote each cluster as Ci. The variance
of KCi

pixels inside each cluster (block) Ci is then aver-

aged and replaced with the mean value Ṽi =
∑KCi

Pij∈Ci
Vij

KCi
.

The block-wise L1 loss L̃1,i can be calculated similarly.
After that, we calculate the pixel-wise correlation of each
pixels with the updated value as the L1 block-wise correla-
tion corr({Ṽi}, {L̃1,i}). For the fourth metric, patch-wise
correlation, where the segmentation clusters in block-wise
correlation are replaced by patches. In our analysis, each
image is divided into 10× 10 patches. And then the patch-
wise correlation is calculated with following the same rule
as block-wise correlation. Besides correlation, we also de-
fine four similar metrics in terms of AUSE. More details
related with the definition of AUSE are in (Ilg et al., 2018).

Meanwhile, as illustrated in Fig. 6, we find that sparsifica-
tion error has a strong association with correlation, when
the oracle sparsifications of different methods are the same.
As a result, when AUSE of infer-dropout and MC-dropout
(defined as MC-drop1 here) is nearly identical, correlation
is almost the same.
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Figure 5. Top: L1 loss of perturbed model for MC-dropout (Gal & Ghahramani, 2016), infer-dropout and infer-noise. Various dropout
rates and noise levels have been evaluated. Location 0 is right after the input; location 1, 2, 3 are intermediate layers. Bottom: Correlation
between error and variance with different locations and perturbation strength. For infer-dropout, note that location 2 and 3 cause minimal
increase in the L1 loss after perturbation (i.e. high tolerability), leading to high correlation.

Figure 6. Left: The sparsification error plot using the mean of uncertainty and L1 loss of each image sample for infer-dropout and
MC-dropout, the values of AUSE are also presented. Right: The scatter plot using the mean of uncertainty and L1 loss of each image
sample, the values of mean L1 correlation are also presented.

Method MC-drop1 MC-drop2 Ensemble LLM Infer-trans Infer-drop Infer-noise
Baselines Proposed PB Proposed PB Proposed PB

AUSE

mean L1 0.009 0.007 0.020 0.035 0.006 0.004 0.013 0.002 0.016 0.002
patch L1 0.029 0.025 0.033 0.044 0.022 0.021 0.031 0.024 0.043 0.027
block L1 0.029 0.028 0.033 0.042 0.023 0.020 0.030 0.024 0.039 0.022
pixel L1 0.131 0.129 0.144 0.137 0.121 0.097 0.141 0.085 0.162 0.106

Corr

mean L1 0.943 0.936 0.694 0.484 0.930 0.938 0.882 0.956 0.780 0.966
patch L1 0.755 0.741 0.677 0.565 0.770 0.766 0.731 0.794 0.598 0.746
block L1 0.747 0.710 0.664 0.588 0.767 0.765 0.730 0.789 0.592 0.745
pixel L1 0.390 0.379 0.326 0.393 0.394 0.424 0.376 0.590 0.288 0.583

Table 4. Comparison of our methods and baselines as well as performance bound (PB). We mark the best performance bound in bold face
and the best method by underlining. Model evaluated: SRGAN.

H. Details on Performance Bound
The oracle (performance bound) is calculated with a empiri-
cally chosen constant margin t = 5σ, where σ2 is average
of V[Z] for all the pixels across the entire image.

I. Applications Benefit from Uncertainty
Estimation

We find the several applications can be benefited from the
uncertainty estimated in our methods. The first application
is to improve the quality of SR results. We propose a novel
and efficient method which takes the pixel-wise uncertainty
map as a weight term for the regression loss, while keeping
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Figure 7. Different locations for infer-noise and infer-dropout in SRGAN and SRresnet for super resolution. For each experiment, the
noise or dropout is injected at a single location with one perturbation level.

Figure 8. Different locations for noise or dropout injection in the FCRN model for depth estimation.

Method SSIM PSNR L1

original 0.772 23.841 11.623
random 0.773 23.616 12.344

high uncertainty 0.790 23.942 11.497

Table 5. Using active learning on our generated uncertainty maps
can provide a higher data efficiency. Here we select samples with
high uncertainty yields better results than select randomly.

the original adversarial loss; this could provide a more photo-
realistic SR output with finer structures and sharper edges
Another application is active learning (Gal et al., 2017),
which aims to use uncertainty to choose next batch of data
for annotation. Our result shows that active learning based
on our generated uncertainty maps can provide a higher data
efficiency.

The first application is to improve the quality of SR results.
We propose a novel and efficient method which takes the
pixel-wise uncertainty map as a weight term for the regres-
sion loss, while keeps the original adversarial loss, which
could provide a more photo-realistic SR output with finer
structures and sharper edges, shown in Fig. 9.

Another application is active learning (Gal et al., 2017),
which aims to use uncertainty to guide annotations, then
only a small subset of data are required to improve training.
We find active learning based on our generated uncertainty
maps can improve the performance with more efficiency,

shown in Table 5.

J. Evaluations on Classification Tasks
We compare the simple training-free method using entropy
and the training-required method MC-dropout on classifica-
tion tasks. For classification tasks, the most straightforward
and commonly used method is to calculate the entropy of
output probability as uncertainty, which already qualifies as
a training-free method. We then compare it with a sampling-
based and training-required method – MC-dropout, tuned on
different locations and using 8 samples. Here we conduct
three experiments: the first one is multi-class segmenta-
tion task using Densenet (Huang et al., 2017b) on CamVid
dataset; the second one is a binary segmentation task using
UNET (Ronneberger et al., 2015) on a biomedical pub-
lic benchmark dataset from the SNEMI3D challenge; and
the third one is a classification task on CIFAR100 using
ResNet (He et al., 2016). We calculate the correlation be-
tween the entropy of softmax output and the cross-entropy
loss. We find that using entropy outperforms MC-dropout
based on the correlation metric, as shown in Table 6.

K. Visualization of Uncertainty Maps
The uncertainty maps generated using infer-transformation,
infer-dropout, infer-noise compared with MC-dropout, and
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Figure 9. The first application using uncertainty map estimated in our methods to improve the quality of SR results. We compare SR
results that use L2 loss re-weighted by variance map (middle) and that do not (right). HR (left) represents high resolution image. Results
evaluated in Set 14.

Densenet UNET Resnet
Entropy MC-drop Entropy MC-drop Entropy MC-drop

Mean Correlation 0.928 0.718 0.964 0.881 0.669 0.537
Pixel-wise Correlation 0.502 0.209 0.789 0.317 – –

Table 6. Correlation of uncertainty and cross-entropy loss, comparing using entropy with the baseline MC-dropout, models evaluated
are Densenet for the segmentation on CamVid dataset, UNET for segmentation on SNEMI3D dataset and Resnet for classification on
CIFAR100 dataset.

the corresponding error maps for images are shown in
Fig. 10 for the super-resolution task, and in Fig. 11 for
the depth estimation task.

One interesting observation is that MC-dropout tends to cap-
ture local variance and ignore high-level semantics, partially
because the dropout layer is always at the end of the net-
work. As a result, it is difficult for MC-dropout to produce
uncertainty estimates in detail-rich regions. For example,
the input image in the bottom row of Fig. 11 contains a lot
of details with chairs and desks. Unfortunately MC-dropout
tends to ignore these details and only produce high variance
in the upper half of the image (region with large depth),
leading to poor correlation.
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Figure 10. Visualization of uncertainty maps (log scale) and error map (log scale) from infer-transformation, infer-dropout, infer-noise
compared with the baseline MC-dropout, evaluated on the SRGAN model on Set14 dataset for super-resolution task.
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Figure 11. Visualization of uncertainty maps and the error map from infer-transformation, infer-dropout, infer-noise compared with the
baseline MC-dropout, evaluated on the FCRN model on NYU depth dataset V2 for the depth estimation task.


