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Abstract

Multi-attribute classification generalizes classi-
fication, presenting new challenges for making
accurate predictions and quantifying uncertainty.
We build upon recent work and show that architec-
tures for multi-attribute prediction can be reinter-
preted as energy-based models (EBMs). While ex-
isting EBM approaches achieve strong discrimina-
tive performance, they are unable to generate sam-
ples conditioned on novel attribute combinations.
We propose a simple extension which expands
the capabilities of EBMs to generating accurate
conditional samples. Our approach, combined
with newly developed techniques in energy-based
model training, allows us to directly maximize
the likelihood of data and labels under the unnor-
malized joint distribution. We evaluate our pro-
posed approach on high-dimensional image data
with high-dimensional binary attribute labels. We
find our models are capable of both accurate, cal-
ibrated predictions and high-quality conditional
synthesis of novel attribute combinations.

1. Introduction
Multi-attribute classification is a more general form of classi-
fication where each data example has a set of labels. Models
for multi-attribute prediction can be implemented similarly
to models for single-attribute prediction, but face additional
difficulties. Some attributes may be rare, causing issues re-
lated to severe class-imbalance. Attributes may be missing
or only a subset may be observed for each example in the
dataset. In these settings, making calibrated predictions and
quantifying uncertainty is especially important.

Energy-Based Models (EBMs) present a flexible approach
for representing uncertainty. Multi-attribute classifiers can
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be interpreted as Joint Energy-Based Models (JEM) (Grath-
wohl et al., 2019). JEM re-purposes existing state-of-the-art
classifier architectures to define an energy-based model of
the joint distribution p(x, y) of continuous images x and
discrete, 1-dimensional class labels y. JEM gives improved
calibration, out-of-distribution detection, and adversarial ro-
bustness while retaining strong discriminative performance.
Grathwohl et al. (2019) exploit the structure of the energy-
function to marginalize out the label y to uncover an EBM
for log p(x) and a normalized log p(y|x) model. Then, the
model can be trained to maximize the factorized likelihood
log p(x, y) = log p(x) + log p(y|x). Techniques for train-
ing EBMs on continuous data are used to maximize the
first term and the second term is optimized to minimize
cross-entropy.

However, training JEM this way presents challenges in con-
ditional sampling, especially if we want to condition on rare
or novel attribute combinations. We propose a simple al-
ternative approach to training JEM that directly maximizes
the joint distribution log p(x, y). This requires sampling
from the joint which can be challenging given the mixed
continuous-discrete nature of the sampling problem. Lever-
aging recent improvements in EBM training (Nijkamp et al.,
2020a; Du & Mordatch, 2019; Du et al., 2020b), we find
that we are able to directly train the joint model of data
and labels. Training in this way retains the benefits of joint
modelling such as accurate discriminative performance and
improved calibration, while also enabling these models to
generate high-quality conditional samples of rare and novel
attribute combinations.

2. Energy-Based Models
An EBM parameterizes a probability distribution as

pθ(x) =
efθ(x)

Z(θ)
(1)

where fθ : RD → R fully specifies the model and Z(θ) =∫
efθ(x)dx is the normalizing constant.

While the flexibility of EBMs make them appealing, this
flexibility comes with the cost of making sampling and like-
lihood evaluation difficult. EBMs are typically trained with
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gradient-based optimization using the following estimator
for the gradient of the maximum likelihood objective:

∇θ log pθ(x) = ∇θfθ(x)− Epθ(x′)[∇θfθ(x′)]. (2)

Use of this estimator requires generating samples from
pθ(x). Since exact sampling is intractable, we resort to
using approximate samples generated with MCMC (Tiele-
man, 2008). Fortunately, a host of techniques have been
developed to make training with MCMC efficient when us-
ing deep neural networks to define the energy-function (Du
& Mordatch, 2019; Du et al., 2020b; Nijkamp et al., 2019;
2020a; Xie et al., 2016).

The preferred sampling approach for continuous data is
Langevin Dynamics (Welling & Teh, 2011) which updates
samples with

xt+1 = xt +
ε2

2λ
∇xfθ(x) + εα, α ∼ N(0, I) (3)

where the step-size ε, and the temperature λ are hyperpa-
rameters. Common values for image data are ε = 0.01,
λ = 1

20,000 . The low temperature is necessary to generate
samples quickly enough for efficient training.

3. Joint Energy-Based Models
We are given data in the form of pairs (x, y) where
x ∈ RD and y ∈ {0, 1}K . Multi-attribute pre-
diction models parameterize the conditional distribution
as pθ(y|x) =

∏K
k=1 pθ(yk|x). A parametric function

fθ(x) : RD → RK×2 defines

pθ(yk|x) =
exp(fθ(x)[k][yk])

exp(fθ(x)[k][0]) + exp(fθ(x)[k][1])
(4)

where fθ(x)[k][0], fθ(x)[k][1] are the logits for attribute k
taking values 0 and 1, respectively. Following Grathwohl
et al. (2019), we can use this same function fθ to define
an unnormalized model of the joint distribution over data
points x and attributes y:

pθ(x, y) =

∏K
i=1 exp(fθ(x)[k][yk])

Z(θ)
(5)

where Z(θ) is the unknown normalizing constant. From this
joint modeling interpretation, the form of pθ(y|x) remains
the same.

3.1. Factored Energy-Based Models

We can analytically marginalize out the labels y in Equation
5 to obtain the unconditional distribution pθ(x). Factoring
the joint probability as pθ(x, y) = pθ(x)pθ(y|x), we can
train the first term with Equation 2 and the second term
with standard cross-entropy (Grathwohl et al., 2019). Ide-
ally, training with this factorization or maximizing the joint

log-likelihood directly would be identical, but since MCMC
does not give exact samples, our gradient estimator is biased.
This bias encourages the implicit distribution of the approxi-
mate MCMC sampler toward the data distribution (Nijkamp
et al., 2020b). Thus, the distribution to which we apply
Equation 2 will impact the final model.

In particular, using the factorization from (Grathwohl et al.,
2019) impacts the final model by making the attribute-
conditional distribution pθ(x|y) hard to sample from di-
rectly. Grathwohl et al. (2019) circumvent this issue by
relying on pθ(x|y) ∝ pθ(x)pθ(y|x) to generate attribute-
conditional samples. While this approach works for low-
dimensional y, it does not scale when y is high-dimensional
or highly structured. This is problematic if we wish to con-
dition on a y which is rare or, perhaps, does not appear in
the training data, as we may never generate an x where y
will be sampled from pθ(y|x).

3.2. Directly Training the Joint Energy-Based Model

To avoid these issues we propose to train by applying Equa-
tion 2 directly to the joint distribution pθ(x, y) as

∇θ log pθ(x, y) = ∇θfθ(x, y)− Epθ(x′,y′)[∇θfθ(x′, y′)]

We find that training this way allows us to directly sample
x ∼ pθ(x|y), allowing us to condition on rare and even
novel attribute combinations. Of course, joint sampling
from high-dimensional, unnormalized distributions is an
incredibly difficult task but recent advances in gradient-
based sampling and EBMs (Welling & Teh, 2011; Du et al.,
2020c; Grathwohl et al., 2019; 2021) have demonstrated that
accurate samples can be generated from large-scale EBMs.
The main difficulty lies in generating samples from the joint
distribution, which we describe in the following section.

4. Training
When x is held fixed, pθ(y|x) is tractable and can be sam-
pled from exactly. When y is held fixed, notice that

log pθ(x|y) = log pθ(x, y)− log pθ(y)

= fθ(x, y)− C(y) (6)

where C(y) is a constant that does not depend on x. Thus,
pθ(x|y) is an EBM defined on continuous x given by evalu-
ating fθ(x, y) with y fixed to the conditioning value. In this
setting Langevin Dynamics has been successfully applied
to generate samples.

We now introduce our approach to sample from pθ(x, y)
which we call Langevin-Within-Gibbs (LWG). LWG works
similarly to Gibbs sampling where we iteratively sample
yt+1 ∼ pθ(y|xt) and then xt+1 ∼ pθ(x|yt+1). We can up-
date our current sample yt exactly since pθ(y|xt) is tractable.
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However, the attribute-conditional distribution pθ(x|yt+1)
is unnormalized and intractable. Instead of sampling exactly
from this conditional, we update our current sample xt us-
ing a Markov transition kernel applied to pθ(x|yt+1), which
we denote Tc(xt+1|xt, yt+1). In practice, this amounts to
holding yt+1 fixed and apply one step of Langevin dynamics
to sample xt+1.

It is likely that more involved approaches (Zhou, 2019)
could lead to improved performance or more efficient sam-
pling but we found this simple approach to work well for
our applications. Pseudo-code for our proposed joint sam-
pler can be seen in Algorithm 1. We name our approach
Gibbs-JEM, which involves sampling from JEM with LWG.

Algorithm 1 Joint Sampling

Input: EBM pθ(x, y) ∝ efθ(x,y), initial distribution
p0(x), number of steps T
Output: Approximate samples xT , yT ∼ pθ(x, y)
Initialize samples x0 ∼ p0(x)
t = 0
while t < T do

Sample yt+1 ∼ pθ(yt+1|xt) {Categorical}
Sample xt+1 ∼ Tc(xt+1|xt, yt+1) {Langevin, Eq. 3}
t = t+ 1

end while
Return xT , yT

5. Experiments
We train models on 64 × 64 images of shoes from UT
Zappos50K (Yu & Grauman, 2014; 2017) and faces from
CelebA (Liu et al., 2015). We train a supervised baseline
with cross-entropy, and a JEM baseline trained as in Grath-
wohl et al. (2019). Both baselines and Gibbs-JEM use the
same architecture; the models only differ in how they are
trained. Training details are available in Appendix B.

5.1. Prediction

In Table 1 we examine the predictive performance of our
model. We find that JEM and Gibbs-JEM achieve com-
petitive accuracy and F1 scores while giving notably more
calibrated predictions, and superior AUROC and AUPRC.
We plot calibration diagrams and the Receiver Operating
Characteristic and Precision-Recall curves of our model
against the supervised baseline in Figures 1 and 2 respec-
tively. Additional evaluations and explanation of micro and
macro averages are available in Appendix C.

5.2. Conditional Synthesis

In addition to predictive performance, we find our models
are also capable of high-quality conditional synthesis. We
use a modified LWG sampler for conditional generation on
a subset of the possible attributes, described in Appendix A.

Figure 1. Calibration (micro-averaged) on CelebA. Supervised
(left) vs. Gibbs-JEM (right). ECE is Expected Calibration Er-
ror (Guo et al., 2017).

Figure 2. Micro-averaged Receiver Operating Characteristic (left)
and Precision-Recall (right) curves on CelebA.

In Figures 3 and 4, we demonstrate the quality of our
model’s samples when conditioning on successively more
attributes. We compare the quality of these samples to those
from the JEM baseline and examine the quality of other
samples in more detail in Appendix D.

Next, we trained a Gibbs-JEM model on CelebA while hold-
ing out several attribute combinations. In Figure 5, we plot
samples from this model, conditioning on the held out at-
tribute combinations. While sample quality has degraded,
we find that the model is able to synthesize conditional sam-
ples of attributes it has seen separately, but never together,
during training. A more thorough investigation of the model
samples on held out attribute combinations is available in
Appendix D.

6. Related Work
Structured prediction problems have been a key application
of EBMs. In this setting we wish to make predictions of
highly structured y given inputs x. To capture complex
correlations, this is often phrased in an energy-minimization
framework (Gygli et al., 2017; Belanger et al., 2017) which
has many similarities to the MCMC sampling we use. We
believe our approach could be applied to these applications
to add many of the benefits reported in Grathwohl et al.
(2019).

Next are works that explore the unique capabilities of EBMs
for challenging tasks such as continual learning (Li et al.,
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UTZappos CelebA

Accuracy F1 AUPRC AUROC ECE Accuracy F1 AUPRC AUROC ECE

Supervised 91.87 82.74 88.19 95.97 26.39 84.53 77.07 82.77 90.89 32.39
JEM 90.05 78.68 86.73 94.32 7.428 85.35 77.29 88.06 92.27 0.6987
Gibbs-JEM 91.81 82.07 91.53 96.60 0.2503 84.14 74.64 86.39 91.17 2.838

Table 1. Predictive performance of Gibbs-JEM versus baselines. AUPRC is computed using Average Precision. ECE is Expected
Calibration Error. F1, AUPRC, AUROC, and ECE are micro-averaged over attributes; macro-averages have the same rank-order and are
available in Appendix C.

Figure 3. Conditional samples on UT Zappos50K.

2020) and compositional generation (Du et al., 2020a). We
believe the techniques and architectures presented in this
work could extend the range of problems these ideas can be
applied to.

7. Conclusion
In this work we developed an approach to model the joint
distribution of data and high-dimensional supervision using
EBMs. We have demonstrated that our approach simulta-
neously achieves accurate and calibrated predictions and
can perform high-quality conditional sampling, including of
novel attribute combinations. Next steps include extending
our approach to new data domains and settings with limited
or partial supervision.
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Figure 4. Conditional samples on CelebA.

Figure 5. Samples of novel attribute combinations on CelebA.
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F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Ramachandran, P., Zoph, B., and Le, Q. V. Swish:
a self-gated activation function. arXiv preprint
arXiv:1710.05941, 7:1, 2017.

Tieleman, T. Training restricted boltzmann machines using
approximations to the likelihood gradient. In Interna-
tional Conference on Machine Learning, pp. 1064–1071,
2008.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In Proceedings of the 28th
international conference on machine learning (ICML-11),
pp. 681–688. Citeseer, 2011.

Xie, J., Lu, Y., Zhu, S.-C., and Wu, Y. A theory of gener-
ative convnet. In International Conference on Machine
Learning, pp. 2635–2644. PMLR, 2016.

Yu, A. and Grauman, K. Fine-grained visual comparisons
with local learning. In Computer Vision and Pattern
Recognition (CVPR), Jun 2014.

http://proceedings.mlr.press/v70/guo17a.html
http://proceedings.mlr.press/v70/guo17a.html
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2


Directly Training Joint Energy-Based Models for Conditional Synthesis and Calibrated Prediction of Multi-Attribute Data

Yu, A. and Grauman, K. Semantic jitter: Dense supervision
for visual comparisons via synthetic images. In Inter-
national Conference on Computer Vision (ICCV), Oct
2017.

Zhou, G. Mixed hamiltonian monte carlo for mixed
discrete and continuous variables. arXiv preprint
arXiv:1909.04852, 2019.

A. Joint Energy-Based Models
A.1. Conditional Sampling

After holding fixed the attributes we’d like to condition on,
we are left with the problem of drawing joint samples of the
data and the remaining “free” attributes. We refer to this
as semi-conditional sampling. Semi-conditional sampling
can be seen as a form of unconditional sampling once we’ve
fixed the attributes to be conditioned on. There are two
approaches to unconditional sampling from our joint models.
Thus there are two approaches to semi-conditional sampling.
The first approach involves drawing joint samples x, y and
then discarding the unneeded attributes y. We refer to this
approach as “resampling”, since the attributes y are being
re-sampled. This form of sampling is how the model is
trained. The other approach involves marginalizing out y
and drawing unconditional samples from pθ(x). We refer
this approach as “marginalizing” since the attributes y are
marginalized out. When applying these two approaches to
unconditional sampling and semi-conditional sampling, the
only difference lies in which attributes are “free”, as those
are the ones which can be resampled or marginalized out.

In the following, let c be the set of attribute indices we’d like
to condition on, c its complement, yc the attribute vector
y with conditioned attributes c, and yc the attribute vector
y with free attributes c. For example, suppose we’d like
to condition on attributes 1 and 3 set to 1 and attribute
4 set to 0, and there are 5 attributes in total. Then c =
{1, 3, 4}, c = {2, 5} and yc[1] = yc[3] = 1, yc[4] = 0, and
yc[i] is undefined for any i 6∈ c, yc is undefined for any
i ∈ c.

Resampling In Algorithm 2, we describe in more detail
the procedure for semi-conditional sampling via resampling.

Marginalizing Instead of resampling the attributes y
which aren’t being conditioned on, we can instead marginal-
ize them out. We sample from the following distribution:

Algorithm 2 Semi-conditional Sampling (Resampling)

Input: EBM pθ(x, y) ∝ efθ(x,y), initial distribution
p0(x), number of steps T , conditioning information yc
Output: Approximate samples xT , yT ∼ pθ(x, yc|yc)
Initialize samples x0 ∼ p0(x)
t = 0
while t < T do

for i ∈ c do
Copy yt+1[i] = yc[i] {Conditioning attributes}

end for
for i /∈ c do

Sample yt+1[i] ∼ pθ(yt+1[i]|xt) {Free attributes}
end for
Sample xt+1 ∼ Tc(xt+1|xt, yt+1) {Langevin, Eq. 3}
t = t+ 1

end while
Return xT , yT

p(x, yc|yc) ∝
(∏
i∈c

exp(fθ(x)[i][yc[i]]

)
·(∏

i6∈c

exp(fθ(x)[0]) + exp(fθ(x)[i][1])

)
(7)

where the constant of proportionality is the normalizing
constant. We write T c(xt+1|xt) for the Markov transition
kernel which updates our current sample xt with one step
of Langevin Dynamics according to the energy in Equation
7. We outline the sampling procedure for semi-conditional
sampling via marginalizing in Algorithm 3.

Algorithm 3 Semi-conditional Sampling (Marginalizing)

Input: EBM pθ(x, y) ∝ efθ(x,y), initial distribution
p0(x), number of steps T , conditioning information yc
Output: Approximate samples xT , yT ∼ pθ(x, yc|yc)
Initialize samples x0 ∼ p0(x)
t = 0
while t < T do

Sample xt+1 ∼ T c(xt+1|xt) {Langevin, Eq. 3}
t = t+ 1

end while
Return xT , yT

A.2. JEM for Multiple Attributes

We introduce JEM (Grathwohl et al., 2019) for classifiers of
multiple binary attributes. We used a softmax parameteriza-
tion for ease of notation, but this can be extended to use a
single logit for each binary attribute instead of the two that
we use.
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Following Equation 5, we analytically marginalize out the
binary attributes y to obtain the unconditional distribution:

pθ(x) =
∑

y1,...,yK

p(x, y1, . . . , yK)

∝
∑

y1,...,yK

K∏
k=1

exp fθ(x)[k][yk]

∝
∑
y1

· · ·
∑
yK

exp fθ(x)[1][y1] · · · · · exp fθ(x)[n][yK ]

∝
∑
y1

exp fθ(x)[1][y1] · · · · ·
∑
yK

exp fθ(x)[n][yK ]

∝
K∏
k=1

∑
yk

exp fθ(x)[k][yk]

where the constant of proportionality is Z(θ) from Equation
5.

We can check that this joint interpretation gives the same
parameterization of pθ(y|x).

pθ(y|x) =
pθ(x, y)

pθ(x)

=

K∏
k=1

exp fθ(x)[k][yk]∑
yk

exp fθ(x)[k][yk]

=

K∏
k=1

pθ(yk|x)

This is the same as is given in Equation 4, so we are done.

B. Experimental Details
B.1. Training

We use the Adam optimizer with default parameters β1 =
0.9, β2 = 0.999 (Kingma & Ba, 2014) throughout our ex-
periments. We used a learning rate of 10−4 throughout our
experiments. We found that the standard hyperparameters
of ε = 0.001 and λ = 1

20,000 worked well across datasets.

Sampling During training, we use Persistent Contrastive
Divergence (PCD) and a replay buffer with a standard size
of 10000 and replacement rate of 5% throughout all of our
experiments (Du & Mordatch, 2019). At each sampling step,
we clamp the sample to remain in the unit interval where
the data lies, following Du et al. (2020b).

Sampling Noise The initial distribution for Langevin dy-
namics is uniform with bounds equal to the per-dimension
minimum and maximum values of one batch of data.

Exponential Moving Average We keep an exponential
moving average (EMA), as in Du et al. (2020b), of the train-
ing parameters θ being optimized by applying the following
update after each training iteration:

θ̂ = µ · θ̂ + (1− µ) · θ.

We initialize θ̂0 = θ0 and set µ = 0.999 in our experiments.
At test time we use the parameters θ̂.

Augmenting Sampling Chains Following Du et al.
(2020b), we apply data augmentations to buffer samples
when sampling during training. We applied blurring when
training on UT Zappos50k, and blurring and flipping trans-
forms on CelebA. We use the same transforms with the
same parameters and probability of application as in Du
et al. (2020b).

At test-time, for CelebA we apply augmentations every 60
steps. For UT Zappos50K we did not find data augmenta-
tions affected test-time sampling.

Missing Gradient Term in Contrastive Divergence We
add the missing gradient term in contrastive divergence, as
described in Du et al. (2020b). We estimate this loss term
following Du et al. (2020b) by backpropagating through the
final step of Langevin dynamics. We weight the KL loss
term with the standard weighting of 0.3. We found that
including this loss term greatly increases the diversity and
quality of samples, especially when sampling from noise.

Reservoir Buffer Instead of the standard replay buffer,
we use the reservoir buffer from Du et al. (2020b). Samples
from the reservoir buffer approximate uniform samples from
the model over the course of its entire training, in contrast
to the replay buffer, whose samples are biased towards more
recent training iterations. We used the reservoir buffer when
training on UT Zappos50K. We found that it increased the
stability of sampling at the cost of slowing down learning.

Joint Persistent Contrastive Divergence Persistent Con-
trastive Divergence initializes sampling chains from a reser-
voir of past samples. Since we are training our models
with joint samples, we likewise maintain a buffer of joint
samples. This involves maintaining a parallel buffer which
tracks the predicted attribute configurations of each corre-
sponding sample in the buffer. We can then use this buffer
of joint samples to conditionally initialize sampling chains
at test-time to the desired attribute combination.

Number of Langevin Steps in Langevin-Within-Gibbs
We found that increasing the number of Langevin steps used
with Langevin-Within-Gibbs significantly increased the sta-
bility of joint sampling during training, at the cost of slightly
decreasing discriminative performance. In particular, we
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used 2 steps instead of 1 step when training on CelebA, and
reduced the number of Langevin-Within-Gibbs steps by half
so as to keep the total number of Langevin steps constant.
We used 40 Langevin steps for both UT Zappos50K and
CelebA.

Initializing Langevin-Within-Gibbs We track the at-
tributes in our replay buffer and initialize samples from
buffer over the joint of images and labels. We also found
it very important for stability to first sample the attributes
conditioned on the data. Sampling the data conditioned
on the random attributes we found to be significantly less
stable.

Stability Training these models was still less stable than
ideal. Regularizing the norm of the energies of data and
generated samples has been found to be useful for improving
stability and allowing for the use of larger step sizes past (Du
& Mordatch, 2019; Du et al., 2020b). In our experiments
we were unable to regularized the norm of the energies of
data and generated samples without severely impairing the
performance of the model. We suspect that energy norm
regularization prevents the discriminative performance of
the model from improving. We were also unable to use
large step sizes as used in Du et al. (2020b), as this caused
our models to diverge very fast, even when regularizing the
energy norms. For this reason, we used a step size of 1
throughout our experiments. We believe that figuring out
how to make the use of larger step sizes more stable is
crucial for improving the quality of our model’s samples.

Optimization We trained models and kept the weights
which had the largest accuracy on a held-out set. For JEM
and Gibbs-JEM models, we additionally checked that sam-
pling had not diverged. Interestingly, we found that occa-
sionally model accuracy would improve after sampling had
diverged, and the model themselves would diverge shortly
thereafter. We had limited success restarting Gibbs-JEM
models with lower learning rates or increased number of
steps after divergence. Interestingly, in contrast to results
from Grathwohl et al. (2019), we found JEM models to be
quite stable in training. We suspect this is due to the new
training techniques we applied that were developed in Du
et al. (2020b).

Architecture We use a variant of the convolutional archi-
tecture with 64 filters for 64x64 images from Nijkamp et al.
(2020b). We modified the final layer to be fully-connected
and output logits according to the number of attributes. We
replaced Leaky ReLU activations with the Swish activa-
tion (Hendrycks & Gimpel, 2016; Elfwing et al., 2018; Ra-
machandran et al., 2017), which is named SiLU in PyTorch.
We used the following architecture for CelebA. The same
architecture is used for UTZappos, except there are 38 out-

puts in the final layer (since UTZappos has 19 attributes,
while CelebA has 23).

(cnn): Sequential(
(0): Conv2d(3, 64,

kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1))

(1): SiLU(inplace=True)
(2): Conv2d(64, 128,

kernel_size=(4, 4),
stride=(2, 2),
padding=(1, 1))

(3): SiLU(inplace=True)
(4): Conv2d(128, 256,

kernel_size=(4, 4),
stride=(2, 2),
padding=(1, 1))

(5): SiLU(inplace=True)
(6): Conv2d(256, 512,

kernel_size=(4, 4),
stride=(2, 2),
padding=(1, 1))

(7): SiLU(inplace=True)
(8): Conv2d(512, 512,

kernel_size=(4, 4),
stride=(2, 2),
padding=(1, 1))

(9): SiLU(inplace=True)
(10): Conv2d(512, 64,

kernel_size=(1, 1),
stride=(1, 1))

(11): Flatten(start_dim=1,
end_dim=-1)

)
(mlp): Sequential(
(0): Linear(in_features=1024,

out_features=128,
bias=True)

(1): SiLU(inplace=True)
(2): Linear(in_features=128,

out_features=128,
bias=True)

(3): SiLU(inplace=True)
(4): Linear(in_features=128,

out_features=46,
bias=True)

)

Compute We used PyTorch (Paszke et al., 2019) and
NumPy (Harris et al., 2020) throughout our experiments.
We used NVIDIA T4 GPUs throughout our experiments.
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B.2. Data Processing

We applied standard dequantization

x̃ =
x ∗ 255 + u

256
, u ∼ U [0, 1]

followed by adding Gaussian noise with standard deviation
of 0.001, and clamping to the interval [0, 1] to both UT
Zappos50K and CelebA. We split 5000 random examples
into a held out validation set for evaluation on both datasets.

On UT Zappos50K we filtered to attributes which had at
least 10% frequency of positivie examples in the dataset,
while in CelebA we filtered to 13%. On UT Zappos50K
we also dropped the attributes “HeelHeight”, “Insole”, and
“ToeStyle” as they had too many missing attributes. After
dropping these attributes, attributes “Gender”, “Material”,
“Closure”, “Category”, and “SubCategory” had some miss-
ing values. We dropped any examples in the dataset which
had missing values for these attributes. Many attributes
in UT Zappos50K are categorical. We binarized these at-
tributes by treating a 1−of−K one-hot categorical attribute
as K binary attributes.

For the held-out combinations experiment on CelebA, we
held-out 11 paired-attribute combinations. This resulted in a
held out set of 42,803 examples. The held out combinations
were as follows:

• Male AND Bangs

• Male AND Blond Hair

• Beard AND Bangs

• Beard AND Brown Hair

• Bangs AND Old

• Bangs AND Black Hair

• Bangs AND Brown Hair

• Bangs AND Blond Hair

• Old AND Black Hair

• Old AND Brown Hair

• Old AND Blond Hair

C. Evaluation Metrics
C.1. Averaging Across Attributes

We used two approaches to average metrics across at-
tributes. Macro-averaging computes the metric over
each attribute separately, and then computes the av-
erage over attributes. Micro-averaging treats all at-
tributes as the same attribute, and computes the

metric as if there were number of examples ×
number of attributes examples. See Lipton et al.
(2014) for further discussion.

C.2. Additional Evaluations

We report macro-averaged metrics for both baselines and
Gibbs-JEM in Table 2.

C.3. Additional Plots

We show calibration diagrams, Receiver Operating Charac-
teristic (ROC) curves and Precision-Recall (PR) curves for
individual attributes on CelebA and UT Zappos50K, and
micro-averagred on UT Zappos50K.

We found that the supervised baselines were notably less cal-
ibrated across attributes and datasets. We hypothesize that
it is much easier for the supervised baseline to be overconfi-
dent in its predictions. We tuned the model performance by
taking the weights with the best accuracy on the validation
set. We found that supervised baselines needed to be trained
for significantly more iterations to converge to the best vali-
dation accuracy. We also tried weighting the cross-entropy
loss according to the frequencies of attributes in the training
set, but this decreased accuracy.

We also find that the ROC and PR curves for supervised
baselines are slightly misleading in some regions. Many
predictions of the supervised baseline have confidence nu-
merically 1, as is expected given the poor calibration of
these models. Thus, in the PR curves, using a threshold
very close to 1, for example 1− 10−7, does not result in the
model achieving a recall of 0. In these cases, the plots lin-
early interpolate the PR curve in the region between where
recall is 0 and the recall where the largest threshold less than
1 is used. Since there are many predictions with confidence
1, this recall value is often very large (we’ve observed values
greater than 0.5). Thus, where this occurs in some plots care
should be taken in how they are interpreted.

Figure 6. Calibration (micro-averaged) on UT Zappos50K. Super-
vised (left) vs. Gibbs-JEM (right).



Directly Training Joint Energy-Based Models for Conditional Synthesis and Calibrated Prediction of Multi-Attribute Data

UTZappos CelebA

F1 AUPRC AUROC ECE F1 AUPRC AUROC ECE

Supervised 78.85 82.16 93.54 25.31 69.93 72.35 86.73 32.03
JEM 72.00 76.86 90.61 11.53 66.84 75.64 88.16 1.421
Gibbs-JEM 75.84 84.14 94.09 0.9106 60.50 74.60 87.24 3.391

Table 2. Macro-averaged metrics.

Figure 7. Calibration on attribute “Men’s” on UT Zappos50K. Su-
pervised (left) vs. Gibbs-JEM (right).

Figure 8. Calibration on attribute “Girls’” on UT Zappos50K. Su-
pervised (left) vs. Gibbs-JEM (right).

D. Additional Samples
D.1. Data Samples

In Figures 16 and 17, we plot random data samples from
both datasets used in our experiments.

D.2. Samples from the Buffer vs. from Noise

During training with Persistent Contrastive Divergence
(PCD), sampling chains are initialized from a replay buffer
of chains. At test-time, we have the option of initializing
samples from fresh noise, or from samples in the replay
buffer used during training.

In Figures 18 through 21, we plot unconditional samples
from our model from fresh noise and the buffer. We find
that samples from fresh noise are of slightly lower quality
and slightly less diverse than samples from the buffer, espe-
cially in the backgrounds of the images. We found that the
techniques from Du et al. (2020b) significantly improved
the quality and diversity of samples from noise. In Figures

Figure 9. Calibration on attribute “Arched eyebrows” on CelebA.
Supervised (left) vs. Gibbs-JEM (right).

Figure 10. Calibration on attribute “Bags under eyes” on CelebA.
Supervised (left) vs. Gibbs-JEM (right).

22, 23, we compare fresh and buffer samples when condi-
tioning on attributes. One approach we found useful for
mitigating diverged samples was to filter samples using the
model’s likelihood. In particular, for a desired batch size
N of samples, we generate 10N samples, then score each
sample using the conditional pθ(yc|x) of our model, where
yc are the conditioning attributes. We then take the top N
samples with the highest scores.

An important question to consider when initializing chains
from the buffer for conditional sampling is whether there are
samples of the desired attribute combination are available.
We use a buffer of size 10, 000 throughout our experiments
here, but CelebA has many more unique attribute combina-
tions than there are samples in the buffer. Thus we cannot
always rely upon initializing from the buffer to performing
conditional sampling. On the other hand, samples gener-
ated from the buffer tend to be more diverse and of higher
quality. so one question to ask is whether we can initialize
unconditionally from the buffer for conditional sampling.
That is, we take samples from the buffer without filtering to
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Figure 11. Micro-averaged Receiver Operating Characteristic (left)
and Precision-Recall (right) curves on UT Zappos50K.

Figure 12. Receiver Operating Characteristic (left) and Precision-
Recall (right) curves on UT Zappos50K for attribute “Women’s”.

samples with the conditioned attributes. This way, we can
retain the benefits of improved sample quality while also
conditioning on attributes not in the buffer. To accomplish
this, we would need a model and sampling procedure which
effectively mixes between modes with different attribute
settings.

In Figures 24, 25. we examine conditional sampling when
sampling conditionally and unconditionally from the buffer,
respectively. We find that sampling is unable to consistently
to mix well between modes with different attributes.

D.3. Conditional Sampling via Resampling vs.
Marginalization

As discussed in Appendix A, we can draw conditional sam-
ples either by resampling or marginalizing out the free at-
tributes y. In Figures 27, 26, 29, 28, we compare each
sampling method on both fresh noise and resampling. One
surprising result is that both sampling methods gives decent
sample quality. In particular it is surprising that the bias
in MCMC sampling as reported in Nijkamp et al. (2020b)
does not cause sampling via marginalization to diverge, de-
spite resampling being the sampling approach used during
training. It is apparent however that marginalizing and re-
sampling give qualitatively different samples. We found
both sampling methods to work well for our application,
and used both methods in different conditioning settings. In
contrast, in Figure 30, we find that JEM is unable to generate
conditional samples using marginalizing. We observed simi-
lar results when using resampling. This confirms our earlier

Figure 13. Receiver Operating Characteristic (left) and Precision-
Recall (right) curves on UT Zappos50K for attribute “Mesh Mate-
rial”.

Figure 14. Receiver Operating Characteristic (left) and Precision-
Recall (right) curves on CelebA for attribute “Attractive”.

claim that the only reliable method to generate conditional
samples is via the factorization pθ(x|y) ∝ pθ(x)pθ(y|x).
That is, we can generate conditional samples from JEM
only by sampling unconditionally from the model, and then
classifying the samples using the pθ(y|x) model.

D.4. How accurate is conditional sampling?

One sanity check for conditional sampling is to ensure
that conditional samples agree with the conditional pθ(y|x).
That is, if we generate samples conditioned on attributes
yc via pθ(x|yc), how do we know those samples have the
attribute yc? The main method we used for determining
this was visual inspection of the samples. A slightly better
approach would be to use the supervised baseline to clas-
sify conditional samples, and measure the accuracy. Here
we verify that the conditional samples are internally consis-
tent. That is, we verify that when we generate samples via
pθ(x|yc), our model classifies the samples as belong to yc
when using classifier of the same model pθ(yc|x). In partic-
ular, when conditioning on pairs of attributes, our model’s
conditional samples were classified correctly according to
the model with an accuracy of > 97% over 100 samples for
each pair conditioning. We found this result held across sam-
pling from noise and from the buffer, and using resampling
or marginalization for sampling.
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Figure 15. Receiver Operating Characteristic (left) and Precision-
Recall (right) curves on CelebA for attribute “Blond Hair”.

Figure 16. Unconditional data from UT Zappos50K.

D.5. Synthesizing Novel Attribute Combinations

One of the main motivations for our work is the ability of
our model to synthesize novel attribute combinations. Here
we investigate in more detail the performance of our model
on this task.

As discussed previously, traditional Factored JEM models
can only generate conditional samples by sampling uncon-
ditionally and then classifying the resulting samples. This
method becomes very inefficient when we wish to sample
attribute combinations not seen during training. On the 11
paired attribute combinations we held out during training,
all novel attribute combinations occurred in less than 1%
of samples. Similarly, we found that the held out attribute
combinations occurred in less than 1% of samples in the
buffer. While rare, we still have samples of novel attribute
combinations in the buffer. We find however that these sam-
ples are not useful for initializing sampling chains and lead
to poor sampling quality. We suspect this is because the
samples from the buffer with the novel attributes have either

Figure 17. Unconditional data from CelebA.

diverged or are incorrectly classified by the model.

We refer to CelebA with the held-out attribute combina-
tions as Celeba-novel. In Figures 31 through 34 we show
samples for the individual attributes whose combinations
are held-out for test-time. We found that sample quality
differed more significantly here between resampling and
marginalization, and chose the option which looked the best
for each attribute combination. In Figures 35 through 37,
we show samples on novel attribute combinations.
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Figure 18. Unconditional samples from noise on UT Zappos50K.

Figure 19. Unconditional samples from buffer on UT Zappos50K.

Figure 20. Unconditional samples from noise on CelebA.

Figure 21. Unconditional samples from buffer on CelebA.



Directly Training Joint Energy-Based Models for Conditional Synthesis and Calibrated Prediction of Multi-Attribute Data

Figure 22. Conditional samples from noise on the attribute “Bangs”
on CelebA.

Figure 23. Conditional samples from buffer on the attribute
“Bangs” on CelebA.

Figure 24. Conditional samples initialized conditionally from
buffer on the attribute “Smiling” on CelebA.

Figure 25. Conditional samples initialized unconditionally from
buffer on the attribute “Smiling” on CelebA.
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Figure 26. Conditional samples via resampling from noise on the
attribute “Bangs” on CelebA.

Figure 27. Conditional samples via marginalization from noise on
the attribute “Bangs” on CelebA.

Figure 28. Conditional samples via resampling from buffer on the
attribute “Bangs” on CelebA.

Figure 29. Conditional samples via marginalization from buffer on
the attribute “Bangs” on CelebA.
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Figure 30. JEM conditional samples via marginalization from
noise on the attribute “Smiling” on CelebA.

Figure 31. Conditional samples via marginalization from noise on
the attribute “Bangs” on CelebA-novel.

Figure 32. Conditional samples via resampling from noise on the
attribute “Brown Hair” on CelebA-novel.

Figure 33. Conditional samples via marginalizing from noise on
the attribute “Male” on CelebA-novel.
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Figure 34. Conditional samples via marginalizing from noise on
the attribute “Beard” on CelebA-novel.

Figure 35. Conditional samples via resampling from noise on the
held-out attributes “Bangs” and “Brown Hair” on CelebA-novel.

Figure 36. Conditional samples via marginalizing from noise on
the held-out attributes “Bangs” and “Male” on CelebA-novel.

Figure 37. Conditional samples via marginalizing from noise on
the held-out attributes “Beard” and “Brown Hair” on CelebA-
novel.


