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Abstract
Deep ensembles aggregate predictions of diverse
neural networks to improve generalisation and
quantify uncertainty. Here, we investigate their
behavior when increasing the ensemble mem-
bers’ parameter size - a practice typically asso-
ciated with better performance for single mod-
els. We show that under practical assumptions
in the overparametrized regime far into the dou-
ble descent curve, not only the ensemble test loss
degrades, but common out-of-distribution detec-
tion and calibration metrics suffer as well. Rem-
iniscent to deep double descent, we observe this
phenomenon not only when increasing the single
member’s capacity but also as we increase the
training budget, suggesting deep ensembles can
benefit from early stopping. This sheds light on
the success and failure modes of deep ensembles
and suggests that averaging finite width models
perform better than the neural tangent kernel limit
for these metrics.

1. Introduction
Deep neural network ensembles (Lakshminarayanan et al.,
2017) are a scalable and conceptually simple way to im-
prove test set generalisation and obtain reliable uncertainty
quantification. This led to the development of numerous
algorithms (Srivastava et al., 2014; Lee et al., 2015; Gal &
Ghahramani, 2016; Huang et al., 2017; Garipov et al., 2018;
Wen et al., 2020; von Oswald et al., 2021; Rame & Cord,
2021) which share the common goal of finding an ensemble
of models that are functionally diverse but all fit the training
data well. While connections and extensions to Bayesian en-
sembling exist (Pearce et al., 2020; He et al., 2020; Wilson
& Izmailov, 2020), uncertainty estimates of deep ensembles
can still be misleading and insufficient (Zhou et al., 2002;
Fort et al., 2020; Rahaman & Thiery, 2020; Ashukha et al.,
2020; Nixon et al., 2020; Wen et al., 2021).
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Figure 1. An illustration of the bias-variance tradeoff observed
for deep ensembles in commonly used setups. Single models
undergo a double descent with improved generalisation when ca-
pacity increases. Deep ensembles observe a turning point after the
interpolations threshold when members interpolate the data but
variance between members remains high.

Despite these drawbacks, deep ensembles remain attractive
for out-of-distribution detection and uncertainty quantifica-
tion due to their implementation simplicity and scalability
to modern deep learning applications (Ovadia et al., 2019;
Leibig et al., 2017).

Inspired by (Geiger et al., 2020a), in this work we anal-
yse the performance of deep ensembles empirically when
increasing the model capacity of each of its ensemble mem-
bers. This is motivated by the recently observed double-
descent phenomenon (Belkin et al., 2018; Advani & Saxe,
2017; Opper & Kinzel, 1996): when increasing the model
size beyond capacity needed to interpolate the training data,
test loss of neural networks trained with (stochastic) gradi-
ent descent decreases again, often surpassing the optimal
performance reached in the under-parametrized regime (c.f.
Figure 1). This phenomenon can be theoretically studied
and partly explained under the light of the neural tangent
kernel (Jacot et al., 2018; Geiger et al., 2020a) and supports
the large set of evidence as well as the common belief in
support of improved performance as a function of model
size (Nakkiran et al., 2020; Krizhevsky et al., 2012; Brown
et al., 2020).

Surprisingly this picture can change when shifting focus
towards ensembles of deep networks, as reported in (Geiger
et al., 2020a) and reproduced by (Lee et al., 2020). In-
deed, when pushing the capacity of each ensemble member
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Figure 2. Specialist and ensemble over varying hidden layer size H on a low dimensional regression problem. After a certain capacity
HE ≈ 20 ensemble performance starts to decline. Left: High variance of the specialist predictions outside the training is observed
for limited capacity. Center: Specialists coincide within training distribution and show small variance outside. Right: Increased OOD
detection (purple) performance measured by the prediction variance as well as improved MSE for an ensemble (red) of limited capacity
(H = 20). For H →∞ the specialist (blue) and ensemble performance converge.

.
far into the double descent curve, while the ensemble test
loss decreases at first it increases again shortly after the
interpolation threshold in some cases. See Figure 5 for a
reproduction of this finding. Analysed by (Geiger et al.,
2020b), the authors argue for the equivalence of ensembles
and single models when increasing the network layers width
H →∞ for different initialisation schemes leading to lazy
training (Chizat et al., 2019) and the mean-field setting. In
practice, it remains unclear which of the regimes is superior
but evidence exist showing a dependence on the considered
problem and network architecture (Arora et al., 2019; Geiger
et al., 2020b). Here, we focus on deep neural networks
which weights are initialised with variance 1/H , essential
to avoid vanishing and exploding gradients (He et al., 2015;
Glorot & Bengio, 2010). In this regime when H → ∞,
optimisation with gradient descent can be described by a
deterministic neural tangent kernel (NTK), which implicitly
biases models at convergence towards a single functional
solution, independent from the initialization.

We argue for a reversed bias-variance tradeoff for deep
ensembles in this practical setup. In the infinite width
limit, the variance vanishes and the models converge to
the NTK, which empirically performs worse than the high
variance finite-width models. This suggests to avoid the
following two regimes for deep ensembles: the classic un-
derparametrised high bias and the overparametrised modern
interpolation regime when H →∞ (Belkin et al., 2018).

Our contributions are as follows:

1. We extend the findings of (Geiger et al., 2020a) and
show that the benefit of deep ensembles disappears
beyond a certain capacity HE of the ensemble mem-
bers, not only in terms of test loss but also of standard
out-of-distribution (OOD) and calibration metrics, con-
verging to the performance of a single member when
H becomes very large.

2. We follow (Nakkiran et al., 2020) and study test accu-
racy and calibration of deep ensembles with varying en-
semble member capacity during training. Intriguingly,

we observe that also late in training, deep ensemble
accuracy as well as calibration degrades.

We define a neural network function with L layers f =
σL ◦ σL−1 ◦ . . . σ1 as a chain of transformations σl(h) =
σ(Wlh+ bl) with Wl the weight matrix, bl the bias vector
of layer l followed by σ : R → R, a non-linearity applied
elementwise. Throughout our experiments we use σ(x) =
max(0, x) i.e. the rectified linear unit (ReLU). We denote
the width of the layer l byHl,H0 as the input dimension and
HL the output dimension. We use models with the same
width Hl = H across all hidden layers in the following.
We call the ensemble members specialists and denote the
number of specialists by K. Note that to obtain a deep
ensemble throughout this study, we rely solely on different
random weight initialisation via Kaiming (He et al., 2015),
as well the variability introduced by minibatch gradient
descent in the CIFAR-10 experiments.

2. Experiments
2.1. Low dimensional regression problem

We begin with an illustrative example of a 1-dimensional
regression problem to give an intuition on the reduced vari-
ance outside the training data of deep ensembles. We follow
(Gal, 2016) and create a training dataset by sampling uni-
formly N = 20 input data x from [−0.5, 0] ∪ [0.5, 1] while

y = x+ sin(4x) + sin(13x) (1)

with x+ ε and ε ∼ N (0, 0.32). The model is a one-hidden
layer neural network f(x) = σ2 ◦ σ1 with frozen weight of
the first layer (Belkin et al., 2018). We initialise the weights
and bias parameter W1 ∼ N (0, 1) and b1 ∼ N (0, 1) but
scale the variance of the second weight matrix with the
number of hidden units H1 i.e. W2 ∼ N (0, 2/H1) and set
b2 = 0. We train the network for 105 steps by minimising
the mean-squared error loss (MSE) with ADAM (Kingma &
Ba, 2015) which we found to work the best for this problem.
We also scaled the learning rate with the hidden layer size
γ = 0.1

H1
. Note that the trainable parameters are W =
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Figure 3. Ensemble performance on a 2 hidden layer fully-connected neural network with different width H trained with full gradient
decent on a subset of MNIST with the cross-entropy loss. Left & center left: The single specialist as well as the ensemble observe double
descent behaviour in accuracy and test loss (NLL) around H = 10. Right & center right: Expected calibration error (ECE) for the deep
ensemble is lowest roughly around H = 20 but increases consistently for H →∞. Similar behaviour for OOD detection (AUROC) is
obsereved which peaks around H ≈ 10 but degrades for growing capacity to the single models performance.

{W2, b2}. We found our results dependant on the variability
of the data creation and therefore averaged all results over 3
different draws of training data. K is set to 50.

Our results are depicted in Figure 2. In this setup we do not
observe a clear double descent test MSE for the specialist
when varying H . Nevertheless test loss decreases steadily
for H →∞ as predicted by double descent.

A different behaviour for the ensemble when varying H is
observed. While improving upon the specialist performance
over all capacity values H after HE ≈ 15 we see decreas-
ing performance for growing specialist capacity H � HE .
Note that the ensemble and specialist show strong resem-
blance in MSE after H > 1000 as described by (Geiger
et al., 2020a). Intriguingly, when using the variance of the
specialist’s predictions for out-of-distribution data, 1000
data points sampled from [0, 0.5], and 1000 test data sam-
pled from the training distribution, a similar trend occurs.
Ensembles with H ≈ 20 improve upon all other capacity
models notably even when H → ∞.The functional diver-
sity of the ensemble with H = 20 compared to H = 104 is
shown in the left and right panel of Figure 2 resp.

2.2. MNIST

We next study the common classification problem MNIST
(LeCun et al., 2010) to investigate the robustness of the pre-
vious finding. Following (Belkin et al., 2018), we decrease
the training set size to N = 10000 but use the cross-entropy
loss with help of the common softmax operation after the
output layer. K is set to 10.

The fully-connected 2-layer neural network is again opti-
mised with full gradient descent with a learning rate of
0.1 and 10000 epochs for all H . The weights W2,W3 ∼
N (0, 2/H) are initialised with kaiming initialisation. On
top of the negative log likelihood (NLL), we measure the
commonly used expected calibration error (ECE) (Naeini
et al., 2015). Finally, we use the predictive entropy,
which should be low for in-distribution and high for out-
distribution data, for out-of-distrobution detection on Fash-
ionMNIST (Xiao et al., 2017) and permuted MNIST. Per-

formance is summarized through the area under the receiver
operating characteristics curve (AUROC).

We observe a clear and prominent double descent for the
specialist as well as the ensemble, see Figure 3. The NLL
of the ensemble decreases monotonically and stays constant
after H ≈ 100 but we do not observe an advantage for en-
sembles with reduced capacity H . We observe a different
picture for the ECE and OOD. In both cases, the ensemble
performance peaks shortly after the second descent curve
before degrading again. For H → ∞ we observe the en-
semble converging and closely resembling the specialists
performance on all four considered metrics.

2.3. CIFAR-10 and CIFAR-100
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Figure 4. NLL when training a convolutional neural network with
on CIFAR-10 for varying hidden layer width H . NLL for the
specialist and deep ensemble observe a clear double descent while
the ensemble NLL increases again after H ≈ 100. This trend is
preserved over training (epochs). Advantages of early stopping
for the deep ensemble and specialist are clearly visible for all
capacities after the interpolation threshold.

We now focus on the more difficult CIFAR-10 and CIFAR-
100 image classification problem.

For CIFAR-10 the model consists of 3-convolutional layers
followed by one fully-connected layer and is now trained
with stochastic gradient descent with a batch size of 250,
learning rate 0.01 and weight-decay (0.0005) for 1000
epochs for all H . Note that this setup strongly resembles
common neural network training setups. Weight decay sta-
bilizes training around the interpolation threshold but shows
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Figure 5. Specialist and ensemble performance on a 3-convolutional neural network with different width H trained with stochastic gradient
decent on CIFAR-10 with the cross-entropy loss and weight decay (0.0005). Left & Center left: A clear double descent for ensemble and
specialist occurs for NLL and test set accuracy. After an optimal ensemble capacity around HE = 90 the ensemble performance decreases.
Right & Center right: Expected calibration error (ECE) for the ensemble is lowest roughly around HE but increases consistently for
H →∞. This trend is reoccuring for OOD detection which peaks around HE and declines afterwards.

negligible qualitative difference otherwise, see Figure 10 in
the SM. We also show successful optimisation to virtually
zero train loss for H > 10 in the SM Figure 7. In order to
quantify OOD detection of the models trained on CIFAR-10,
we measure the average AUROC of discriminating based on
the predictive entropy between the CIFAR-10 test data and
SVHN, Netzer et al. (2011), LSUN, Yu et al. (2015), Tiny
ImageNet as well as on CIFAR-100 subset. K is set to 8.

As already observed by (Geiger et al., 2020a) a clear picture
arises as shown in Figure 5: deep ensemble NLL reaches a
minimum aroundHe ≈ 60 and increases afterwards. We ex-
tend this finding to the ECE, OOD AUROC and robustness
to data corruption (Figure 13 in the SM), and see this trend
reoccurring. Intriguingly, the optimal capacity for these
metrics roughly coincide and also translates into decreas-
ing test set accuracy after He, see Figure 5. Reminiscent
to observations of (Nakkiran et al., 2020) we also see the
ensemble performance degrading after a certain training
epoch TE ≈ 100. Figure 4 and Figure 6 display NLL and
ODD over the course of training visualised with brighter
colors corresponding to later stages of training (in log scale).
NLL as well as OOD improve during training, peak around
HT ≈ 100 and then degrade. This indicates a clear advan-
tage of early stopping for the ensemble. See SM for similar
behaviour of the ECE (Figure 12). Note that the optimal
capacity over the training duration shifts but performance
always degrades with growing H after a certain threshold.

Results on CIFAR-100 show similar trends and are de-
scribed in detail in the SM.

3. Discussion
We empirically studied deep ensembles under the light of
the double descent phenomenon observed when increas-
ing the ensemble members capacity H → ∞ while using
standard initialization schemes. Our results indicate a clear
trend emerging: after a certain threshold HE , test risk as
well as common calibration, OOD detection and robustness
metrics degrade. After this turning point, we observed deep
ensembles converging to the performance of single mod-
els leading to a negligible effect of model averaging. We

therefore support suggestions by (Geiger et al., 2020a) to
choose the network capacity of ensemble members wisely.
This not only leads to decreased computational overhead
and memory savings but also to performance improvements
on in- and out-of-distribution data. Similar suggestions have
been discussed for large scale neural networks ensembles
under a fixed memory budget (Lobacheva et al., 2020; Wang
et al., 2021; Littwin et al., 2020). Further, deep ensemble im-
provements on CIFAR-10 were obtained by early stopping.
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Figure 6. Out-of-distribution detection (AUROC) when training a
convolutional neural network on CIFAR-10 with varying hidden
layer width H . OOD for the specialist and deep ensemble observe
increase with growing H before a peak around H ≈ 100 for the
deep ensemble is observed. This trend is preserved over training
(epochs) and advantages of early stopping for the deep ensemble
and specialist are clearly visible for almost all model.

The aforementioned findings suggest that recent interest
in economical ensembles is justified. Common techniques
involve parameter sharing and hence reduce the capacity of
single ensemble members. This would result in performance
and calibration improvements if the ensemble is pushed into
a beneficial scarce capacity regime. Further investigations
of deep ensemble uncertainty and calibration performance
in the mean-field regime are left for further study.

We identified success modes of deep ensembling and con-
clude that counter-intuitively increasing the ensemble mem-
bers size can hurt performance of deep ensembles. This
goes against common beliefs in deep learning where in-
creasing model and data set size is typically associated with
performance improvements.
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A. Additional visualisations & results
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Figure 7. Final train loss after 1000 epochs when minimizing the
cross entropy loss in the CIFAR-10 setup. The interpolation thresh-
old can be observed after H = 10 after which the loss becomes
virtually 0.

Mean Corruption Error experiment In order to in-
vestigate the robustness of deep ensembles as a func-
tion of the ensemble members’ complexity, we used
the corruptions dataset proposed by Hendrycks & Di-
etterich (2019), freely available at https://github.
com/hendrycks/robustness. The authors propose
15 noise sources such as random Gaussian noise, spatter
or contrast changes to deform the input data and report the
model test set accuracy on the corrupted dataset under 5
severity levels (noise strengths).

Inspired by the relative mean Corruption Error (mCE) in-
troduced by the authors, we propose a slight variant of the
metric which intuitively captures the relative robustness of
the deep ensemble against single ensemble members when
encountering data corruptions. Formally, given an ensemble
trained on the standard CIFAR-10 dataset, the relative mCE
applied to our setting is computed as

101 102

H

0.5

0.6

0.7

0.8

AU
R

O
C

101

102

103

E
pochs

Figure 8. Out-of-distribution detection (AUROC) when training
a convolutional neural network on CIFAR-10 with varying hid-
den layer width H . OOD for the deep ensemble is computed by
comparing the variance over the softmax values of the ensemble
members on in- and out-of-distribution data. We observe a perfor-
mance increase with growing H before a peak around H ≈ 100
for the deep ensemble throughout all training epochs.

relative mCE =
1

15

∑
ε

relative CEε (2)

where

relative CEε =

∑5
s=1E

Ensemble
s,ε − EEnsembleClean∑5

s=1E
Specialist
s,ε − ESpecialistClean

(3)

with EEnsembleClean , ESpecialistClean resp. the error of the ensemble
and single specialist on the uncorrupted CIFAR-10 test set,
and EEnsembles,ε , ESpecialists,ε the error on the same test set
corrupted by noise source ε with severity s.

A score of 1 would indicate that the rate of performance
degradation against data corruption is similar between the
ensemble and the specialist. See Figure 13 for the relative
mCE as a function of model capacity, computed on the same
ensemble trained in and discussed in section 2.3.
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Figure 9. NLL when training ResNet18 with on CIFAR-100 for
varying hidden layer width H . NLL for the specialist and deep
ensemble observe a clear double descent. Advantages of early
stopping for the deep ensemble and specialist are clearly visible
for all capacities after the interpolation threshold.

CIFAR100 We investigate the phenomenon on the
CIFAR-100 image classification problem using modern
deep learning techniques. As the classification mode, we
use a ResNet18 with varying width as described in (Nakki-
ran et al., 2020). The model is now trained with ADAM
(Kingma & Ba, 2015) on the cross-entropy loss, with a
batch size of 128, learning rate 0.0001 and without weight-
decay for 1500 epochs for all H . Furthermore, the data is
augmented using the standard pytorch RandomCrop(32,
padding=4) and RandomHorizontalFlip transfor-
mations.

With an ensemble of K = 8, we measure the test-set accu-
racy, test-set NLL, ECE as well as the AUROC of discrimi-
nating based on the predictive entropy between the CIFAR-
100 test data and SVHN, Netzer et al. (2011), LSUN, Yu
et al. (2015), Tiny ImageNet as well as on CIFAR-10 subset.
Results for the ensemble as well as specialists are shown in
Fig. 11 and Fig. 9.

https://github.com/hendrycks/robustness
https://github.com/hendrycks/robustness
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Figure 10. Specialist and ensemble performance on a 3-convolutional and one fully-connected layer neural network with different width
H trained with stochastic gradient decent on CIFAR-10 and cross-entropy loss without weight decay. A clear double descent for
ensemble and specialist occurs within accuracy (far left) and NLL. After an optimal ensemble accuracy and NLL around HE = 90
ensemble performance decreases. Right plots: Expected calibration error (ECE) for the ensemble is peaks roughly around 70 but increases
consistently for H → ∞. OOD detection (far right) increases with growing capacity for the specialist and ensemble while the latter
performance peaks around H ≈ 100 and declines afterwards.
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Figure 11. Specialist and ensemble performance on a ResNet18 with different width H trained with ADAM (Kingma & Ba, 2015) on
CIFAR-100 and cross-entropy loss without weight decay. A clear double descent for ensemble and specialist occurs within accuracy (far
left) and NLL. Although the ensemble accuracy and NLL do not degrade after a certain threshold, we observe the discussed negligible
effect of ensembling when measuring ECE and OOD after H ≈ 100 (right & far right).
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Figure 12. Expected-calibration-error (ECE) over the course of
training a convolutional neural network with varying hidden layer
width H . ECE consistently decreases for the with growing H be-
fore a peak around H ≈ 80. A clear advantages of early stopping
H ≈ 80 for the deep ensemble is observed.
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Figure 13. Relative mean corruption error (mCE) in % when train-
ing a convolutional neural network on CIFAR-10 with varying
hidden layer width H . We observe a performance increase for
the deep ensemble wrt. the specialist with growing H before a
peak around H ≈ 100. After this turning point the performance
decreases and no advantage between deep ensemble and specialists
is observed.


