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Abstract
Deep neural networks achieve high prediction ac-
curacy when the train and test distributions coin-
cide. In practice though, various types of corrup-
tions can deviate from this setup and cause severe
performance degradations. Few methods have
been proposed to address generalization in pres-
ence of unforeseen domain shifts. In this paper,
we propose a misclassification-aware Gaussian
smoothing approach for improving robustness of
image classifiers against a variety of corruptions
while still maintaining high clean accuracy. With
additional diverse data augmentations, we show
that our method improves upon the state-of-the-
art in robustness and uncertainty calibration on
several image classification tasks.

1. Introduction
Deep neural networks are increasingly being used in com-
puter vision and have achieved state-of-the-art performance
on image classification (Krizhevsky et al., 2012; He et al.,
2015; Huang et al., 2019). However, when the test dis-
tribution differs from the train distribution, performance
can suffer as a result even for mild image corruptions and
transformations (Hendrycks & Dietterich, 2019b). In fact,
models have unrealistic behavior when faced with out-of-
distribution inputs that arise from synthetic corruptions
(Hendrycks & Dietterich, 2019b), spatial transformations
(Engstrom et al., 2019), and data collection setups (Torralba
& Efros, 2011; Recht et al., 2019). Although the mismatch
between train and test distributions is common in practice,
the problem has not been thoroughly studied yet. Thus,
designing models that provide robustness to unforeseen cor-
ruptions or deviations from the train distribution is highly
desirable.
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The natural approach to defending against a particular fixed
distribution shift is to explicitly incorporate such data into
the training process, see e.g. (Kang et al., 2019). However,
this paradigm has drawbacks including over-fitting to one
type of corruption (Geirhos et al., 2018), e.g., in (Kang
et al., 2019) it was shown that `∞ robustness provides poor
generalization to unforeseen attacks. Furthermore, the em-
pirical study in (Chun et al., 2019) shows that several ex-
pensive methods improve robustness at the cost of lower
clean accuracy and there are large trade-offs in corrupt and
clean accuracies for a variety of regularization methods.
Data augmentation policies have been proposed to increase
clean accuracy (Cubuk et al., 2019) based on reinforcement
learning but are computationally expensive. Recent work
(Hendrycks et al., 2020) proposes randomized and diverse
augmentations coupled with a consistency loss to improve
robustness against corruptions while maintaining clean ac-
curacy. However, the performance gap between clean and
corrupt accuracy can be further improved.

In this work, we introduce a misclassification-aware con-
sistency loss coupled with Gaussian noise regularization
and a corresponding training algorithm. It is shown ex-
perimentally that using this approach in conjunction with
diverse data augmentations achieves state-of-the-art (SOTA)
generalization performance against a large variety of im-
age corruptions for several image classification tasks and
architectures.

2. Background and Related Work
We assume labeled data of the form (x, y) ∼ D drawn
from distribution D. The labels y correspond to C classes.
Neural network function fθ(·) maps inputs into logits, and
θ are the model parameters. The softmax layer is used to
map logits into class probability scores given by pc(x) =
efθ,c(x)/

∑
l e
fθ,l(x).

Standard Training. The standard criterion for training
deep neural networks is empirical risk minimization (ERM):

min
θ

E
(x,y)∼D

[L(fθ(x), y)] (1)

where the loss is chosen to be the cross-entropy function
L(fθ(x), y) = −yT log pθ(x). While training using the
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criterion (1) yields high accuracy on clean test sets, the
network generalization performance to a variety of data
shifts may suffer.

Robust Training against `p adversary. Adversarial train-
ing (AT) (Madry et al., 2018) is one of the most effective
defenses against Lp perturbations which minimizes the ad-
versarial risk,

min
θ

E
(x,y)∼D

[
max
‖δ‖p≤ε

L(fθ(x+ δ), y)

]
(2)

During the training process, adversarial attacks are com-
puted at inputs x that solve the inner maximization problem.
The inner maximization may be solved iteratively using
projected gradient descent (PGD) for norms p ∈ {2,∞},
i.e., δ(k+1) = PBp(ε)(δ(k) + α∇δL(x + δ(k), y)) where
PBp(ε)(z) = argminu∈Bp(ε) ‖z − u‖22 is the orthogonal
projection onto the constraint set. Another robust training
approach that trades-off the natural and robust error using
smoothing is TRADES (Zhang et al., 2019):

min
θ

E
(x,y)∼D

[L(fθ(x), y) + λD(p(x; θ) ‖ p(x+ δ′; θ))]

(3)
where D denotes the Kullback-Leibler divergence D(p ‖
q) =

∑
c pc log

pc
qc

and δ′ is the adversarial perturbation
computed using PGD that solves the maximization problem
max‖δ‖p≤εD(p(x; θ) ‖ p(x + δ; θ)). In the context of ad-
versarial robustness, a random self-ensemble (RSE) method
has been proposed (Liu et al., 2018) based on noise injection
at the input layer and each layer of neural networks and was
demonstrated to provide good levels of robustness against
white-box attacks. Considering noise at the input layer only,
the RSE training criterion is:

min
θ

E
(x,y)∼D

[
E

δ∼N (0,σ2I)
L (fθ(x+ δ), y)

]
(4)

and predictions are ensembled at inference time as ŷ(x) =
argmaxc

1
n

∑n
i=1 pc(x+ δi) where δi ∼ N(0, σ2I).

Robustness against Domain Shifts. A recently proposed
data augmentation technique, AugMix (Hendrycks et al.,
2020), was shown to achieve SOTA performance against
unforeseen corruptions by enforcing a consistency loss cou-
pled with a data augmentation scheme:

min
θ

E
(x,y)∼D

[
L (fθ(x), y) (5)

+ λJS(pθ(x); pθ(xa,1); pθ(xa,2))
]

where JS(p1; p2; p3) = 1
3 (DKL(p1 ‖ pmix) + DKL(p2 ‖

pmix)+DKL(p3 ‖ pmix)) is the Jensen-Shannon divergence,
pmix = 1

3 (p1 + p2 + p3), and xa,1, xa,2 are augmented
variants of x formed by mixing composition chains con-
sisting of a finite number of augmentation operations such

as rotate, posterize, shear, translate, solarize, etc. Using
diversity and randomness in choosing these operations and
mixing weights at different levels of severity during train-
ing, this data augmentation method is empirically shown to
significantly improve robustness against unforeseen corrup-
tions in comparison to CutOut (DeVries & Taylor, 2017),
MixUp (Zhang et al., 2017; Tokozume et al., 2018), CutMix
(Yun et al., 2019), and AutoAugment (Cubuk et al., 2018)
schemes.

3. Misclassification-Aware Gaussian Noise
Training

We propose a training algorithm to improve generalization
against a variety of corruptions while fitting in existing
pipelines with minimal changes. The idea is to introduce
a misclassification-aware consistency loss that embeds rep-
resentations of clean data samples and diversified noise-
corrupted versions similarly. Our proposed training criterion
is:

min
θ

E
(x,y)∼D

[
L (fθ(x), y)

+ λ1[pθ(x)]y E
σ∼U([0,σmax])

E
δ∼N (0,σ2)

D(pθ(x) ‖ pθ(x+ δ))
]

(6)

The classification loss L in (6) is the standard term that max-
imizes accuracy on clean examples. Our regularizer forces
clean examples and random noisy perturbed data to have
similar output distributions. Weighting is also applied using
the true class confidence level [pθ(x)]y which allows for
the network training to regularize more on high-confidence
correct predictions and focus more on the classification loss
when the predictions are incorrect. To increase resiliency
against a variety of Gaussian noise distributions, we di-
versify the perturbation statistics by choosing a random
noise level σ uniformly in the range [0, σmax] and then gen-
erating the random perturbation δ. Interestingly, training
with diverse Gaussian noise augmentations coupled with
the misclassification-aware weighting provides robustness
not only against Gaussian noise but also against a variety of
weather, blur, noise and digital corruptions, as evidenced in
our results.

We call our approach Misclassification-Aware Gaussian
Noise (MAGN) smoothing, and Algorithm 1 depicts our
training procedure. A single stochastic draw is used to
approximate the MAGN regularizer to maintain low compu-
tational complexity during training, while multiple stochas-
tic draws of σ and corresponding δ could also be used to
improve performance at the expense of increased training
time.

Mathematical analysis of the effect of Gaussian noise reg-
ularization in the small noise regime is provided in the
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Algorithm 1 MAGN pseudocode
Input: Training data {(xi, yi)}, Network fθ, Training
epochs T , Batch size |B|, learning rate schedule ηt, hy-
perparameters (λ1, λ2, σmax)
Result: Trained network fθ
for t=0 to T − 1 do

for each batch (x, y) ∼ D do
Generate σ ∼ U(0, σmax) for each batch example
Generate δ ∼ N (0, σ2I) for each batch example
xδ = x+ δ
LT (xi, yi) = L(xi, yi) + λ1[pθ(xi)]yiD(pθ(xi) ‖
pθ(xi,δ))
θ = θ − ηt 1

|B|
∑
i∈B ∇θLT (xi, yi)

end for
end for

Supplementary Material section. This analysis is used to
understand the effect of the MAGN regularizer on the lo-
cal loss landscape and motivate our misclassification-aware
modification.

4. Experimental Results
Datasets. The datasets used in this experimental results are
CIFAR-10 and CIFAR-100, both containing color images
of size 32 × 32 × 3 spanned across 50, 000 train images
and 10, 000 test images. Robustness against data shifts is
measured by evaluating on CIFAR-10-C and CIFAR-100-C
respectively (Hendrycks & Dietterich, 2019a). Each of these
corrupted datasets contain a total of M = 18 corruptions at
J = 5 severity levels. The ‘gaussian noise’ corruption is
excluded from our evaluations.

Training Details. The MAGN training method is demon-
strated on deep residual network architecture ResNet-18
(He et al., 2016), densely connected convolutional architec-
ture DenseNet-121 (Huang et al., 2017), and Inception-V3
(Szegedy et al., 2015). The learning rate is started at 0.1 and
decays every 50 epochs by a factor of 10. Pre-processing
steps include standard random cropping, random horizon-
tal flips, color jitter (0.25) and random rotation (2 degrees)
prior to additional noise perturbations or histogram changes.
Training was performed for 150 epochs using SGD with
Nesterov momentum 0.9 and weight decay 0.0005. A noise
standard deviation σ = 0.1 was chosen to achieve a high
mCA experimentally for the RSE method with n = 10 test
evaluations, and for the MAGN regularizer σmax = 0.2 was
used for all experiments for consistency.

Baselines. The baseline methods considered include
standard training, adversarial training (AT), tradeoff-
inspired adversarial defense via surrogate-loss minimization
(TRADES), random self-ensemble (RSE), and data aug-
mentation method to improve robustness (AugMix). The

adversarial models AT and TRADES were trained against an
`∞ adversary using ε = 8/255 and 7 PGD steps with step
size 2.5ε/7 to allow sufficient exploration of the constraint
set’s boundary.

Performance Metrics. Classification performance on
the clean dataset is measured using test accuracy, i.e.,
1
n

∑n
i=1 1{yi=ŷi}. Robustness against domain shifts is mea-

sured using accuracy on a corrupted validation set for dif-
ferent severity levels j. For a specific corruption type m ∈
{1, . . . ,M} and severity level j ∈ {1, . . . , J}, let Am,j de-
note the corresponding accuracy. The mean corruption accu-
racy (mCA) is defined as: AM = 1

MJ

∑M
m=1

∑J
j=1Am,j .

Classifier calibration refers to the problem of true empirical
correct likelihood matching the predicted confidence metric.
This leads to trustworthy probability estimates of the model
predictions. Uncertainty calibration performance is mea-
sured using the root-mean-square (RMS) calibration. Con-
sider a partition of nB bins {Bi} that correspong to increas-
ing levels of confidence. Then, RMS calibration error, which
measures the discrepancy between the empirical accuracy
and the prediction confidence level, is computed as: Ec =√∑nB

i=1
|Bi|
n

(
1
|Bi|

∑
j∈Bi 1{yj=ŷj} −

1
|Bi|

∑
j∈Bi cj

)2
.

Robustness Results. Classification accuracy results on the
clean and corrupted CIFAR-10 test sets are shown in Table
1 for a variety of deep learning methods on the ResNet-
18 architecture. In comparison to the ’Standard’ baseline
trained with (1), our misclassification-aware Gaussian noise
smoothing (MAGN) achieves 8.5% mCA absolute improve-
ment. Furthermore, when combined with AugMix, MAGN
+ AugMix achieves 13.2% mCA improvement over stan-
dard training, outperforming the previous SOTA method
AugMix which obtained a smaller 9.9% improvement, ad-
versarial training and random self-ensemble baselines by a
significant margin. In particular, MAGN achieves the best
corrupt accuracy for certain challenging noise corruptions
such as shot noise and speckle noise for which AugMix lags
behind. We further note that MAGN maintains a high clean
accuracy, unlike the adversarial training methods AT and
TRADES, and does not require ensembling at test time as in
RSE. Including both the MAGN and AugMix consistency
losses regularizes the model in complementary ways and
improves generalization to a variety of corruptions.

Classification accuracy results on additional architectures
are shown in Table 2 which continue to support that the
combination of our MAGN approach with AugMix achieves
SOTA performance on CIFAR-10-C and CIFAR-100-C with
average mCA improvements of 14.5% and 16.7%, respec-
tively, over the standard models.

Uncertainty Calibration Results. Calibration perfor-
mance is measured on the clean and corrupted CIFAR-10
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Corruption Standard AT TRADES RSE AugMix MAGN MAGN+AugMix
Clean 94.74 85.71 85.12 91.00 94.26 93.19 94.66

Brightness 94.02 84.07 83.13 89.78 93.65 91.95 94.09
Contrast 84.66 51.22 42.95 63.55 90.36 70.89 91.72

Defocus Blur 81.70 81.42 78.68 85.55 92.40 85.55 93.17
Elastic Transform 84.00 79.89 77.01 84.18 89.25 85.84 89.97

Fog 90.68 65.63 56.98 72.86 90.31 80.25 90.92
Frost 79.83 79.74 76.70 86.91 86.42 89.05 91.27

Gaussian Blur 72.83 79.65 76.30 83.17 91.25 81.92 92.06
Glass Blur 53.24 79.66 76.03 81.11 73.98 81.48 83.49

Impulse Noise 57.35 74.92 72.95 83.87 81.88 89.58 89.82
JPEG Compression 79.33 83.61 82.49 88.74 87.26 89.72 88.91

Motion Blur 77.36 77.83 74.25 80.72 89.54 80.50 90.72
Pixelate 74.95 83.63 82.32 88.17 82.49 88.90 86.40
Saturate 92.60 81.73 81.54 87.17 91.85 90.31 92.56

Shot Noise 60.70 81.40 80.38 89.17 80.42 91.45 91.13
Snow 83.36 81.22 80.27 85.13 87.98 86.85 90.11

Spatter 85.97 80.99 79.79 85.35 91.09 87.82 92.06
Speckle Noise 64.35 80.90 79.64 88.93 81.38 91.60 91.26

Zoom Blur 77.58 80.85 76.97 84.21 91.01 84.30 91.91
mCA 77.47 78.24 75.46 83.80 87.36 85.99 90.64

Table 1. Classification accuracy on CIFAR-10-C across different corruptions for various methods on ResNet-18 architecture. The best
accuracy is highlighted in bold for each row which corresponds to a specific corruption. MAGN + AugMix achieves the highest mCA
score.

Architecture Test Set Standard AugMix MAGN+AugMix

ResNet-18 CIFAR-10 94.74 94.26 94.66
CIFAR-10-C 77.47 87.36 90.64

DenseNet-121 CIFAR-10 93.84 94.55 94.54
CIFAR-10-C 75.13 87.74 89.63

Inception-V3 CIFAR-10 94.30 95.72 95.87
CIFAR-10-C 74.73 89.26 90.61

ResNet-18 CIFAR-100 76.16 74.96 75.94
CIFAR-100-C 50.96 63.08 66.82

DenseNet-121 CIFAR-100 73.74 76.12 75.60
CIFAR-100-C 47.35 63.73 64.78

Inception-V3 CIFAR-100 75.57 78.35 78.16
CIFAR-100-C 51.45 66.76 68.37

Table 2. Classification accuracy on CIFAR-10/CIFAR-100 datasets
and Mean Corrupted Accuracy (mCA) on CIFAR-10-C/CIFAR-
100-C corrupted datasets for ResNet-18, DenseNet-121 and
Inception-V3 architectures.

validation sets on different model architectures as shown in
Table 3. The combination of our MAGN regularizer with
AugMix yields significant improvements in RMSE calibra-
tion errors in comparison to standard training. Specifically,
it achieves an average absolute improvement of 17.4% and
18.6% in RMSE calibration error over standard training on
the corrupted CIFAR-10-C and CIFAR-100-C validation
sets, respectively.

Additional experimental results on the clean and corrupted
CIFAR-100 datasets can be found in the Supplementary
Material section.

Architecture Test Set Standard AugMix MAGN+AugMix

ResNet-18 CIFAR-10 4.7 3.2 2.2
CIFAR-10-C 17.7 1.7 1.1

DenseNet-121 CIFAR-10 6.4 3.0 4.1
CIFAR-10-C 20.9 2.4 1.9

Inception-V3 CIFAR-10 5.3 1.5 2.0
CIFAR-10-C 19.9 5.0 3.3

ResNet-18 CIFAR-100 8.4 4.3 1.8
CIFAR-100-C 20.2 1.8 5.5

DenseNet-121 CIFAR-100 15.0 4.7 5.4
CIFAR-100-C 30.9 2.1 0.6

Inception-V3 CIFAR-100 8.0 3.7 3.9
CIFAR-100-C 19.7 8.4 8.7

Table 3. RMS calibration error (percentage) on CIFAR-10/CIFAR-
10-C and CIFAR-100/CIFAR-100-C datasets on ResNet-18,
DenseNet-121 and Inception-V3 architectures. MAGN + AugMix
achieves a large reduction in RMSE calibration error in comparison
to standard training.

5. Conclusion
In this paper, a regularization method for training ro-
bust deep learning classifiers is presented based on
misclassification-aware Gaussian smoothing at different
scales. We empirically show that combining this type of
Gaussian noise smoothing with additional data augmenta-
tion mixing chains yields state-of-the-art robustness against
unforeseen domain shifts, while also improving uncertainty
calibration for different architectures and datasets. We hope
this work encourages more research on improving general-
ization of classifiers against natural occurring corruptions.
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6. Supplementary Material
6.1. Data Corruption Visualizations

An example image along with its corrupted versions is
shown in Figure 1; although humans might be able to recog-
nize this as a boat, a deep learning image classifier trained
in a standard manner will fail against most of these corrup-
tions.

Figure 1. Example CIFAR-10 test image along with its corrupted
versions. These corruptions are not available in the training process,
and are only used for evaluation at inference time.

6.2. Analysis of Gaussian Noise Regularization

In this section, we analyze the effect of Gaussian noise
regularization in the small-noise regime. Using this analysis,
we obtain a relationship between loss curvature and Fisher
information, which is further used to derive a bound on the
local loss deviation in a neighborhood of x. This bound is
used to understand the effect of the MAGN regularizer on
the local loss landscape and motivate our misclassification-
aware modification.

Using a second-order Taylor expansion on the KL diver-
gence D, for small σ, we have (Kullback, 1997):

E
δ∼N (0,σ2I)

D(pθ(x) ‖ pθ(x+ δ))

≈ E
δ∼N (0,σ2I)

1

2
δTGθ(x)δ

= E
δ∼N (0,σ2I)

1

2
Tr(Gθ(x)δδ

T )

=
σ2

2
Tr(Gθ(x)) (7)

where we used Eδ∼N (0,σ2I)[δδ
T ] = σ2I , and Gθ(x) is the

Fisher information matrix (FIM) given by:

Gθ(x) =
∑
k

[pθ(x)]k∇x log[pθ(x)]k(∇x log[pθ(x)]k)T

(8)
Taking the outer expectation as in the first regularizer of (6)
and using the approximation (7):

E
σ∼U([0,σmax])

E
δ∼N (0,σ2I)

D(pθ(x) ‖ pθ(x+ δ))

≈ E
σ∼U([0,σmax])

[
σ2

2

]
Tr(Gθ(x))

=
σ2

max

6
Tr(Gθ(x)) (9)

The FIM has a strong connection to curvature; in fact for
the case of cross-entropy, the Hessian matrix of the loss
function is identical to the FIM (8), as the next proposition
shows.

Proposition 1 The following relation holds H(x) :=
∇2
xL(fθ(x), y) = Gθ(x).

Proof: From Appendix C in (Lin et al., 2019), the Hessian
of the softmax cross-entropy function can be decomposed
as:

H(x) = JT (diag(p)− ppT )J (10)

where J denotes the Jacobian of the network function fθ
(logits) and p denotes the softmax probabilities. The Ja-
cobian transposed is denoted as JT = [JT1 , . . . , J

T
K ] with

Jk := ∇xfk(x)T . Starting from the FIM in (8), we have:

Gθ(x) =
∑
k

pk(∇x log pk)(∇x log pk)T

=
∑
k

pk(∇xfk − JT p)(∇xfk − JT p)T

=
∑
k

pk(∇xfk∇xfTk −∇xfkpTJ − JT p∇xfTk

+ JT ppTJ)

=
∑
k

pk∇xfk∇xfTk − (
∑
k

pk∇xfk)pTJ

− JT p(
∑
k

pk∇xfk)T + JT ppTJ

=
∑
k

pk∇xfk∇xfTk − JT ppTJ − JT ppTJ + JT ppTJ

=
∑
k

pkJ
T
k Jk − JT ppTJ

= JT diag(p)J − JT ppTJ
= JT (diag(p)− ppT )J
= H(x)

This concludes the proof. �
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Thus, minimizing with the Gaussian noise regularizer (9)
is equivalent to minimizing the curvature in all directions
equally since Tr(H(x)) =

∑
i λi(H(x)) where λi denote

the sorted Hessian eigenvalues. This has the effect of induc-
ing low curvature in the loss landscape of L around x and
encourages a locally linear behavior.

Substituting (8) into (9) and simplifying, we obtain:

E
σ∼U([0,σmax])

E
δ∼N (0,σ2)

D(pθ(x) ‖ pθ(x+ δ))

≈ σ2
max

6

∑
k

[pθ(x)]k‖∇x log[pθ(x)]k‖22 (11)

This can be interpreted a regularization term that induces
stability of predictions within a local neighborhood of x
through weighted logit smoothing. This type of weighted
logit smoothing leads to a bound on the local loss deviation.

Theorem 1 The following bound holds on the loss function:

|L(x+ δ, y)−L(x, y)| ≤ ‖δ‖2 ·
√∑

k

yk‖∇x log p(x)k‖22

+
1

2
λmax(H(x))‖δ‖22 + o(‖δ‖22) (12)

Proof: Using the quadratic loss approximation near x, we
have:

L(x+δ, y) = L(x, y)+δT∇xL(x, y)+
1

2
δTH(x)δ+o(‖δ‖22)

By using up to second order terms, we can obtain an upper
bound on the loss variation as:

|L(x+ δ, y)− L(x, y)|

≈ | 〈∇xL(x, y), δ〉+
1

2
δTH(x)δ|

≤ ‖δ‖2 · ‖∇xL(x, y)‖2 +
1

2
δTH(x)δ (13)

where we used the Cauchy-Schwarz inequality to bound the
linear term and the fact that H is positive semidefinite. The
gradient in the first term of (13) can be written as:

‖∇xL(x, y)‖2

=

√
‖
∑
k

−yk∇x log p(x)k‖22

=

√∑
k

yk‖∇x log p(x)k‖22

=

√∑
k

ek‖∇x log p(x)k‖22 +
∑
k

p(x)k‖∇x log p(x)k‖22

where ek = yk − p(x)k is the prediction error. Upper
bounding the quadratic term in (13), we obtain:

δTH(x)δ = δT

(∑
i

λi(H(x))uiu
T
i

)
δ

=
∑
i

λi(H(x))(δTui)
2

≤ λmax(H(x))
∑
i

(δTui)
2

= λmax(H(x))‖δ‖22

Using the two preceding bounds with (13), we obtain the
desired bound (12). The proof is complete. �

A consequence of Theorem 1 is that for correct classifica-
tions where yk ≈ p(x)k, minimizing the regularizer (11)
has the effect of (a) minimizing the curvature, as the Hes-
sian trace upper bounds the maximum Hessian eigenvalue
of the loss L(x, y), λmax(H(x)) ≤ Tr(H(x)), in addition
to (b) increasing loss surface flatness by minimizing the
norm of the loss gradient, ‖∇xL(x, y)‖2. Thus, we choose
to include the effect of true class confidence in this regular-
izer as shown in the second term of (6) via a multiplication
with p(x)y. This adapts the regularization strength making
this regularizer misclassification-aware. For higher confi-
dence examples, the Gaussian smoothing effect increases to
make the loss more locally regular, while for misclassifica-
tions this effect is minimized to focus the learning on the
classification loss.

6.3. Experimental Results

Robustness Results. Figure 4 shows a comparison between
clean and mean corrupted accuracies on CIFAR-10 for var-
ious deep learning methods using a ResNet-18 architec-
ture. Figure 2 visualizes the corruption robustness profile;
it shows that the combination of our MAGN regularizer
with AugMix improves corruption robustness upon standard
models by a large margin. Table 5 and Figures 5, 3 showcase
additional results on the clean and corrupted CIFAR-100
datasets, similar to those shown earlier on CIFAR-10, for the
same baselines on the ResNet-18 architecture. Compared
to standard training, MAGN achieves an mCA absolute im-
provement of 8.2%, and when combined with AugMix, it
increases to 15.9%. Again, this improves upon the previous
SOTA AugMix which achieves a smaller 12.1% improve-
ment, and adversarial training variants.

Uncertainty Calibration Results. Calibration perfor-
mance on the clean and corrupted CIFAR-10 validation
sets on different model architectures is shown in Figure 6.
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Figure 2. Robustness against a variety of corruptions including CIFAR-10-C weather, blur, noise and digital corruptions. The combination
MAGN + AugMix improves robustness by a large margin despite not having seen these in the training process.

Figure 3. Robustness against a variety of corruptions including CIFAR-100-C weather, blur, noise and digital corruptions. Similar to the
observed results on the CIFAR-10-C dataset, our combination MAGN + AugMix yields improved robustness.
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Hyperparameter Sensitivity. We study the effect of the
training hyperparameters (λ1, λ2, σmax) on the robustness
and uncertainty estimation performance on the ResNet-18
architecture trained for the CIFAR-10 dataset where we use
the training loss defined in (14):

min
θ

E
(x,y)∼D

[
L (fθ(x), y) (14)

+ λ1[pθ(x)]y E
σ∼U([0,σmax])

E
δ∼N (0,σ2)

D(pθ(x) ‖ pθ(x+ δ))
]

+ λ2 · JS(pθ(x); pθ(xa,1); pθ(xa,2))
]
.

The classification loss L in (14) is the standard term that
maximizes accuracy on clean examples and the first regu-
larizer is our proposed MAGN consistency loss. The sec-
ond Jensen-Shannon regularizer embeds the original and
augmented examples similarly, and the augmentations are
generated using the mixing chains of AugMix (Hendrycks
et al., 2020).

Table 4 contains the results from which it is evident that the
robustness and calibration is not too sensitive to the choice
of hyperparameters as the clean accuracy, mCA, and RMSE
calibration error do not change significantly.

Figure 4. Clean and mCA performance on CIFAR-10 and CIFAR-
10-C respectively for various deep learning methods. Our
MAGN approach provides a significant robustness improvement
in comparison to the standard model. A further combination of
MAGN+AugMix yields state of the art performance.

Figure 5. Clean and mCA performance on CIFAR-100 and CIFAR-
100-C respectively for various deep learning methods. Similar to
Figure 4 for CIFAR-10-C, our approach MAGN provides robust-
ness improvement over the standard model and the combination
MAGN+AugMix yields additional gains in performance.

Figure 6. RMS calibration error performance of various deep learn-
ing architectures on the corrupted dataset CIFAR-10-C. The com-
bination MAGN+AugMix significantly improves the uncertainty
calibration on unforeseen corruptions in comparison to standard
models.
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Parameters Clean Acc. mCA Clean RMS Cal. Error Corrupt RMS Cal. Error
(3, 12, 0.2) 94.66 90.64 2.2 1.1
(3, 12, 0.4) 94.79 90.74 2.7 1.1
(5, 12, 0.2) 94.69 90.70 2.3 0.9
(3, 10, 0.2) 94.48 90.61 1.4 2.1

Table 4. Sensitivity analysis on hyperparameters of MAGN + AugMix. Test set accuracy and RMS calibration error for CIFAR-10 and
CIFAR-10-C datasets on ResNet-18 architecture.

Corruption Standard AT TRADES RSE AugMix MAGN MAGN+AugMix
Clean 76.16 59.52 60.62 67.65 74.96 73.98 75.94

Brightness 73.53 56.24 57.27 65.13 72.71 70.93 73.90
Contrast 63.22 29.08 23.69 39.83 66.97 53.04 69.26

Defocus Blur 58.32 54.04 52.55 59.84 71.23 56.98 72.28
Elastic Transform 59.38 52.39 50.73 57.92 66.12 58.37 67.55

Fog 67.05 37.27 32.20 45.45 65.87 60.89 67.42
Frost 49.55 50.79 49.49 60.69 60.56 64.86 66.48

Gaussian Blur 49.37 52.14 49.79 56.86 68.86 50.41 70.25
Glass Blur 21.66 52.23 50.41 54.24 40.47 47.70 52.67

Impulse Noise 29.05 39.63 43.04 53.47 56.04 59.94 65.06
JPEG Compression 49.09 57.02 56.83 64.13 61.83 59.80 63.43

Motion Blur 53.11 50.36 47.72 54.58 66.85 50.49 68.71
Pixelate 49.01 57.37 57.36 64.46 58.87 59.47 61.70
Saturate 66.12 48.88 50.84 56.63 64.99 63.93 66.06

Shot Noise 30.28 53.00 54.42 64.23 55.15 66.32 65.14
Snow 55.11 53.60 53.03 59.27 64.76 61.39 67.14

Spatter 59.67 52.94 53.77 57.53 69.64 62.48 70.95
Speckle Noise 31.78 51.58 52.97 63.40 56.21 66.09 65.24

Zoom Blur 51.94 52.75 50.76 58.20 68.37 51.92 69.62
mCA 50.96 50.07 49.27 57.54 63.08 59.17 66.82

Table 5. Classification accuracy on CIFAR-100-C across different corruptions for various methods ResNet18 architecture. The best
accuracy is highlighted in bold for each row which corresponds to a specific corruption. MAGN + AugMix achieves the highest mCA
score.


