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Abstract

Entropy of a predictive distribution averaged over
an ensemble or several posterior weight samples
is often used as a metric for Out-of-Distribution
(OoD) detection. However, we show that predict-
ive entropy is inappropriate for this task because
it mistakes ambiguous in-distribution samples as
OoD. This issue remains hidden on curated data-
sets commonly used for benchmarking. We in-
troduce a new dataset, Dirty-MNIST, with a long
tail of ambiguous samples, which exemplifies this
problem. Additionally, we look at the entropy of
single, deterministic, softmax models and show
that it is unreliable exactly for OoD samples. In
summary, we caution against using predictive or
softmax entropy for OoD detection in practice and
introduce several methods to evaluate the quantit-
ative difference between several uncertainty met-
rics.

1. Introduction
For the reliable detection of out-of-distribution (OoD)
samples, we need to avoid mistaking ambiguous in-
distribution (iD) samples as OoD. This is particularly im-
portant for noisy and ambiguous datasets found in safety-
critical applications like autonomous driving (Huang &
Chen, 2020) and medical diagnosis (Esteva et al., 2017;
Filos et al., 2019).

OoD samples have high epistemic uncertainty, and ambigu-
ous iD samples have high aleatoric uncertainty: epistemic
uncertainty is inherent to the model, caused by a lack of
relevant training data, and hence reducible with more data1;
while aleatoric uncertainty is caused by inherent noise or
ambiguity in the data and hence irreducible with more data

1OATML, University of Oxford 2Torr Vision Group, Uni-
versity of Oxford. Correspondence to: Andreas Kirsch <an-
dreas.kirsch@cs.ox.ac.uk>.

Presented at the ICML 2021 Workshop on Uncertainty and Robust-
ness in Deep Learning., Copyright 2021 by the author(s).

1We follow the definition of epistemic uncertainty at input x as
a quantity which is high for a previously unseen x, and decreases
when x’s label is added to the training set and the model is updated.

(Der Kiureghian & Ditlevsen, 2009; Kendall & Gal, 2017).
Hence, we must distinguish between the epistemic and aleat-
oric uncertainty of a model for a given sample, and we will
see that predictive entropy confounds the two.

In deep learning, Deep Ensembles (Lakshminarayanan et al.,
2017) are often used for OoD detection as they have been
shown to perform well on a range of uncertainty prediction
tasks. Deep Ensembles consist of several deep networks,
trained independently with different random seeds, whose
predictions are averaged at test time. While deep ensem-
bling provides a small accuracy increase, it often improves
uncertainty estimation as measured in OoD detection and
robustness to distribution shift (Ovadia et al., 2019). A fre-
quently used benchmark is to distinguish between two data
sets based on sample uncertainty: the iD data set that was
used for training, and an OoD set that is significantly differ-
ent but non-trivial to distinguish. In Deep Ensembles (and
related methods), the entropy of their predictive distribution
is used for this benchmark (Hendrycks & Gimpel, 2016;
Vyas et al., 2018; Linmans et al., 2020; Macêdo et al., 2019;
Chan et al., 2020; Vernekar et al., 2019).

In this paper, we argue that firstly, using entropy for OoD
detection is inherently inappropriate because it cannot dis-
tinguish between aleatoric uncertainty of ambiguous iD
samples and the epistemic uncertainty of OoD samples, and
secondly that the softmax entropy of a single model is even
more inappropriate because it is unreliable specifically for
samples with high epistemic uncertainty, i.e., OoD samples.
This is tied to the very reason why a Deep Ensembles’ mu-
tual information captures epistemic uncertainty well and can
be used to detect adversarial examples and OoD data, too
(Smith & Gal, 2018). To exemplify the issues, we introduce
Dirty-MNIST as a dataset with a long tail of ambiguous
samples, and we analyze the relationship between softmax
entropy and predictive entropy in more detail.

To show that entropy is inappropriate for OoD detection, we
train a LeNet (LeCun et al., 1998), a VGG-16 (Simonyan
& Zisserman, 2015) and a ResNet-18 with spectral normal-
isation, ResNet+SN2(He et al., 2016; Miyato et al., 2018)
on Dirty-MNIST, a modified version of MNIST (LeCun

2Liu et al. (2020) show that spectral normalization regularizes
the latent space in a way that is beneficial for OoD detection, so
we also include a model trained on this recent approach.
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0.4
0.5

0 1 2
Entropy LeNet

0.00
0.05
0.10
0.15

Fr
ac

tio
n 0.4

0.5

0 1 2
Entropy VGG-16

0.00
0.05
0.10
0.15

Fr
ac

tio
n 0.4

0.5

0 1 2
Entropy ResNet18+SN

0.00
0.05
0.10
0.15

Fr
ac

tio
n

(b) Softmax entropy

Figure 1: (a): Dirty-MNIST consists of MNIST (60k
samples) and a long tail of ambiguous samples (60k
samples). (b): Neural networks (here LeNet, VGG & Res-
Net+SN), trained on Dirty-MNIST as in-distribution (iD)
dataset with ambiguous samples, yield arbitrary softmax
entropies for Fashion-MNIST as OoD dataset. OoD samples
cannot be separated well from iD samples.

et al., 1998) with additional ambiguous digits (Ambiguous-
MNIST), depicted in Figure 1(a). We refer to Appendix A
for details on how this dataset was generated. Dirty-MNIST
poses a challenge for using entropy for OoD detection as it
confounds aleatoric and epistemic uncertainty: Figure 1(b)
shows that the softmax entropy of a deterministic model
is unable to distinguish between iD (Dirty-MNIST) and
OoD (Fashion-MNIST (Xiao et al., 2017)) samples as the
entropy for the latter heavily overlaps with the entropy for
Ambiguous-MNIST samples. With ambiguous data hav-
ing various levels of aleatoric uncertainty, Dirty-MNIST
is more representative of real-world datasets compared to
well-cleaned curated datasets, like MNIST and CIFAR-10,
commonly used for benchmarking (Krizhevsky et al., 2009).

2. Background
In this section, we introduce Bayesian models within deep
learning and relate them to Deep Ensembles and determin-
istic models.

Bayesian Models (Neal, 2012; MacKay, 1992) provide a
principled way of measuring uncertainty. Starting with
a prior distribution p(ω) over model parameters ω, they
infer a posterior p(ω|D), given the training data D. The
predictive distribution p(y|x,D) for a given input x is com-
puted via marginalisation over the posterior: p(y|x,D) =
Eω∼p(ω|D)[p(y|x, ω)]. As mentioned in Gal (2016) and
Smith & Gal (2018), the predictive entropy H[Y |x,D] of
p(y|x,D) upper-bounds the epistemic uncertainty, where
epistemic uncertainty is quantified as the mutual information
I[Y ;ω|x,D] (expected information gain) between paramet-
ers ω and output y, following the equation:

H[Y |x,D]︸ ︷︷ ︸
predictive

= I[Y ;ω|x,D]︸ ︷︷ ︸
epistemic

+Ep(ω|D)[H[Y |x, ω]]︸ ︷︷ ︸
aleatoric (for iD x)

. (1)

Predictive entropy will be high for both iD ambiguous

samples (high aleatoric uncertainty) and for OoD samples
(high epistemic uncertainty). Hence, predictive entropy is a
good measure for OoD detection only when used with cur-
ated datasets that do not contain ambiguous samples, unlike
Dirty-MNIST in Figure 1. Note that aleatoric uncertainty
is only meaningful in-distribution because it quantifies the
level of ambiguity between the different classes which might
be observed for input x. If the probability of observing x
under the data generating distribution is zero, the probability
p(y|x) = p(x,y)

p(x) is not defined, and its entropy as a measure
of aleatoric uncertainty is not defined.

Deep Ensembles (Lakshminarayanan et al., 2017) are an
ensemble of neural networks which average the models’ soft-
max outputs. Uncertainty is then estimated as the entropy of
this averaged softmax vector. Note that ensembling might
also be seen as performing Bayesian Model Averaging (He
et al., 2020; Wilson & Izmailov, 2020), as each ensemble
member, producing a softmax output p(y|x, ω), can be con-
sidered to be drawn from some distribution p(ω|D) over
the trained model parameters ω, which is induced by the
pushforward of the weight initialization under stochastic
optimization. As a result, Equation (1) can also be applied
to Deep Ensembles to disentangle epistemic from predictive
uncertainty.

In practice, both mutual information I[Y ;ω|x,D] and pre-
dictive entropy H[Y |x,D] are used in the literature to detect
OoD samples, but predictive entropy will be high whenever
either epistemic uncertainty is high, or when aleatoric un-
certainty is high: it upper bounds the mutual information.
This can help separate iD and OoD data better for curated
iD datasets, offering an explanation for previous empirical
findings of predictive entropy outperforming mutual inform-
ation (Malinin & Gales, 2018). With ambiguous iD samples,
it can lead to confounding, however.

Deterministic Models produce a softmax distribution
p(y|x, ω) and use either the maximum softmax probabil-
ity maxc p(y = c|x, ω) (confidence) or the softmax entropy
H[Y |x, ω] as a measure of uncertainty. It is well-known
that these measures are often not indicative of OoD data
(Hendrycks & Gimpel, 2016; Guo et al., 2017). Popular
approaches to tackle this problem include pre-processing
of inputs and post-hoc calibration methods (Liang et al.,
2018; Guo et al., 2017), alternative objective functions (Lee
et al., 2018; DeVries & Taylor, 2018), and exposure to out-
liers (Hendrycks et al., 2018). However, these methods
suffer from several shortcomings including failing to per-
form under distribution shift (Ovadia et al., 2019), requiring
significant changes to the training setup, and assuming the
availability of OoD samples during training (which many
applications do not have access to). In the next section, we
demonstrate that the softmax entropy is inherently inappro-
priate to capture epistemic uncertainty.
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Figure 2: Softmax entropy histograms of 30 Wide-ResNet-28-10+SN models trained on CIFAR-10, evaluated on SVHN
(OoD). The softmax entropy distribution of the different models varies considerably.

3. Qualitative & Quantitative Statements
In this section, we show that softmax entropy cannot capture
epistemic uncertainty exactly because a Deep Ensemble’s
mutual information can. Proofs are provided in Appendix D.

As mentioned in Section 2, Equation (1) can be used with
Deep Ensembles, as each ensemble member can be con-
sidered a sample from some distribution p(ω | D) over
model parameters ω ⊂ Ω (e.g. a uniform distribution over
K trained ensemble members ω1, ..., ωK). Note that the
mutual information I[Y ;ω | x,D] isolates epistemic for
Deep Ensembles as well, whereas the predictive entropy
H[Y | x,D] (often used with Deep Ensembles) measures
predictive uncertainty, which will be high whenever either
epistemic or aleatoric uncertainties are high3. Furthermore,
the mechanism underlying Deep Ensemble uncertainty that
pushes epistemic uncertainty to be high on OoD data is
the function disagreement between different ensemble com-
ponents, i.e. arbitrary extrapolations of the softmax models
composing the ensemble (leading the “aleatoric” term in
Equation (1) to vanish (Smith & Gal, 2018)). We can form-
alize this intuition in the following quantitative statement
using Equation (1):
Proposition 3.1. Let x1 and x2 be points such that x1 has
higher epistemic uncertainty than x2 under the ensemble:
I[Y1;ω | x1,D] > I[Y2;ω | x2,D] + δ, with δ ≥ 0. Further
assume both have similar predictive entropy |H[Y1|x1,D]−
H[Y2 | x2,D]| ≤ ε, for ε ≥ 0. Then, there exist sets of
ensemble members Ω̂ with p(Ω̂ | D) > 0, such that for all
softmax models ω ∈ Ω̂ the softmax entropy of x1 is lower
than the softmax entropy of x2: H[Y1 | x1, ω] < H[Y2 |
x2, ω]− (δ − ε).

This shows that if a sample is assigned higher epistemic
uncertainty (in the form of mutual information) by a Deep
Ensemble, it will necessarily be assigned lower softmax
entropy by at least one of the ensemble’s members. As a
result, the empirical observation that the mutual informa-

3A mutual information estimator based on a Deep Ensemble’s
outputs will lower-bound the actual mutual information. This
explains why the predictive entropy performs better: its estimate
upper-bounds the estimated mutual information and is thus likely
to be closer to the actual mutual information/epistemic uncertainty.

tion of an ensemble can quantify epistemic uncertainty well
implies that the softmax entropy of a deterministic model
cannot. This claim is further supported by Figure 1(b) (and
Appendix C and D.3) where we observe the softmax entropy
for OoD samples to have high variance.

4. Quantitative Modeling & Empirical
Validation

To gain further insights, we analyze the relationship between
softmax entropies and predictive entropies and quantify the
variance of softmax entropies given the predictive distribu-
tion and epistemic uncertainty in the ensemble setting. We
empirically find that a Dirichlet distribution lower-bounds
the variance, but models the entropy distribution well. This
preliminary result allows us quantify how strongly the soft-
max entropies vary across different deterministic models.

For a distribution over models p(ω | D), and a sample x,
we have p(y | x), I[Y ;ω | x]. We use moment matching
with these two quantities to fit a Dirichlet distribution p ∼
Dir(α(x, ω)) as a model for p(y | x, ω), which satisfies:

p(y | x) =
αi
α0

(2)

H[Y | x]− I[Y ;ω | x] = ψ(α0 + 1)

−
K∑
y=1

p(y | x)ψ(α0 p(y | x) + 1).
(3)

We can thus compute the variance Var[H[Y | p]] (see ap-
pendix) as a proxy for Var[H[Y | x, ω]].

Empirical results show that Var[H[Y | p]] lower-bounds
Var[H[Y | x, ω]] for common models in Figure 3. This
simple approximation seems to be able to capture the empir-
ical entropy distribution quite well as shown in Figure 4. In
particular, we see in Figure 3(a) that most OoD samples have
epistemic uncertainty around 0.5 nats with considerable
variance of around ≈ 0.15 nats2 (std dev ≈ 0.4 nats).

We train an ensemble of VGG and WideResNet-28-10+SN
models (25 members each) on CIFAR-10 and compute the
predictive entropy, mutual information, and softmax entrop-
ies for each sample in SVHN (as OoD distribution with
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Figure 3: The variance of softmax entropies can be lower-bounded by fitting Dirichlet distributions on the OoD samples
p(y | x, ω) from SVHN for a WideResNet-28-10+SN trained on CIFAR-10. (a) The variance of the softmax entropy is not
linearly correlated to the epistemic uncertainty. For both high and low epistemic uncertainty, the variance decreases. (b) The
empirical variance of softmax entropies is effectively lower-bounded by the predicted variance of the Dirichlet distributions.
The red dashed line depicts equality. (c) The ratio histogram shows that there are only few violations due to precision issues.
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Figure 4: Simulated vs empirical softmax entropy and
(ensemble) predictive entropy on WideResNet-28-10+SN
and VGG16. Although we use a simple Dirichlet model,
sampling from the fitted Dirichlet distributions does approx-
imate the empirical entropy distribution well.
ambiguous data). Figure 2 depicts how the softmax entrop-
ies vary considerably across the different ensemble members
over SVHN. In Figure 3, we see empirically that the soft-
max entropy variance of the fitted Dirichlet distributions
generally lower-bounds the true softmax entropy variance.
Morever, Figure 3(a) shows both i) the non-linear relation-
ship between epistemic uncertainty and variance in the soft-
max entropies and ii) that Dirichlet distributions cannot
capture this well. However, the fitted Dirichlet distributions
provide a good proxy for the overall distribution of softmax
entropies: we draw softmax distributions from the Dirichlets
for each sample and compare the respective entropies to the
true softmax entropies on SVHN in Figure 4. For both VGG
and WideResNet, we see that the histograms are close, so
even though this quantitive model is very simple, it captures
the true distribution of softmax entropies surprisingly well.

5. Conclusion & Limitations
Both through quantitative and qualitative statements as well
as through empirical validation, we show that neither the
predictive entropy of Deep Ensembles nor the softmax en-
tropy of deterministic models is appropriate for measuring
epistemic uncertainty and OoD detection tasks. This holds
in particularly for real world datasets that contain more am-
biguous data than the curated datasets that are employed
for benchmarking. Proposition 3.1 shows that it does not
provide a stable ranking of points by epistemic uncertainty,
and that indeed, the predictive entropy of Deep Ensembles
captures epistemic uncertainty through the variance of the
softmax entropies of deterministic models. Additionally, we
have examined a simple model that relates the predictive
entropy and epistemic uncertainty (through the mutual in-
formation) of Deep Ensembles with the softmax entropies
of deterministic models.

There are two limitations: first, the Dirichlet distribution
that we fit is not a maximum entropy distribution given the
constraints we pose, as far as we know. It is surprising
that it provides a good lower bound empirically. At the
same time, this simple model seems to match the empirical
softmax entropy distribution on OoD data well. Further
work is needed to establish and prove true lower bounds
or approximations. Second, while our argument is true
for epistemic uncertainty generally, it does not generalize
to OoD detection tasks when the model is trained with
“OoD” hold-out data of any form as this breaks the implied
equivalence “OoD data⇐⇒ high epistemic uncertainty”.
Indeed, training using OoD data shifts epistemic uncertainty
into aleatoric uncertainty and can be captured by the softmax
entropy of deterministic models as well as the predictive
entropy of a Deep Ensemble—even though it confounds
ambiguous iD samples with OoD samples. However, is such
data still truly OoD when we start training or fine-tuning on
it, or are we simply moving the goal posts?
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Figure 5: Visualisation of softmax outputs/entropies along with the Predictive Entropy (PE) and Mutual Information of a
5-Ensemble. Figures (a) and (b) show that the softmax entropy is high at points of ambiguity, i.e., where the label changes
from 0 to 1 for the data, thereby capturing aleatoric uncertainty, whereas softmax entropy can be low or high for OoD
(between -2 to 2). At the same time, figure (c) shows that the MI of the ensemble is only high for OoD, thereby solely
capturing epistemic uncertainty, whereas the PE of the ensemble is high for both OoD and for regions of ambiguity, thereby
capturing both epistemic and aleatoric uncertainty.

A. Ambiguous- and Dirty-MNIST
Each sample in Ambiguous-MNIST is constructed by decoding a linear combination of latent representations of 2 different
MNIST digits from a pre-trained VAE (Kingma & Welling, 2014). Every decoded image is assigned several labels
sampled from the softmax probabilities of an off-the-shelf MNIST neural network ensemble, with points filtered based
on an ensemble’s MI (to remove ‘junk’ images). All off-the-shelf MNIST neural networks were then discarded and new
models were trained to generate Figure 1 (and as can be seen, the ambiguous points we generate indeed have high entropy
regardless of the model architecture used). We create 60K training and 10K test images for Ambiguous-MNIST. Finally,
the Dirty-MNIST dataset in this experiment contains MNIST and Ambiguous-MNIST samples in a 1:1 ratio (with 120K
training and 20K test samples).

B. Experimental Details
We use Wide-ResNet-28-10 (Zagoruyko & Komodakis, 2016) as the model architecture for all the baselines. We train the
softmax baselines for 350 epochs using SGD as the optimiser with a momentum of 0.9, and an initial learning rate of 0.1.
The learning rate drops by a factor of 10 at epochs 150 and 250. We train the 5-Ensemble baseline using this same training
setup.

C. 5-Ensemble Visualisation
In Figure 5, we provide a visualisation of a 5-ensemble (with five deterministic softmax networks) to see how softmax
entropy fails to capture epistemic uncertainty precisely because the mutual information (MI) of an ensemble does not. We
train the networks on 1-dimensional data with binary labels 0 and 1. The data is shown in Figure 5(b). From Figure 5(a) and
Figure 5(b), we find that softmax entropy is high in regions of ambiguity where the label changes from 0 to 1 (i.e., at x
value -4 and 4). This indicates that softmax entropy can capture aleatoric uncertainty. Furthermore, in the x interval (−2, 2),
we find that the deterministic softmax networks disagree in their predictions (see Figure 5(a)) and have softmax entropies
which can be high, low or anywhere in between (see Figure 5(b)). In fact, this disagreement is the very reason why the
MI of the ensemble is high in the interval (−2, 2), thereby reliably capturing epistemic uncertainty. Finally, note that the
predictive entropy (PE) of the ensemble is high both in the OoD interval (−2, 2) as well as at points of ambiguity (i.e., at -4
and 4). This indicates that the PE of a Deep Ensemble captures both epistemic and aleatoric uncertainty well. From these
visualisations, we draw the conclusion that the softmax entropy of a deterministic softmax model cannot capture epistemic
uncertainty precisely because the MI of a Deep Ensemble can.
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D. Theoretical Results
D.1. Qualitative Statement

We start with a proof of Proposition 3.1, which quantitatively examines the qualitative statemets that given the same
predictive entropy, higher epistemic uncertainty for one point than another will cause some ensemble members to have lower
softmax entropy.

Proposition 3.1. Let x1 and x2 be points such that x1 has higher epistemic uncertainty than x2 under the ensemble:
I[Y1;ω | x1,D] > I[Y2;ω | x2,D] + δ, with δ ≥ 0. Further assume both have similar predictive entropy |H[Y1 | x1,D]−
H[Y2 | x2,D]| ≤ ε, for ε ≥ 0. Then, there exist sets of ensemble members Ω̂ with p(Ω̂ | D) > 0, such that for all softmax
models ω ∈ Ω̂ the softmax entropy of x1 is lower than the softmax entropy of x2: H[Y1 | x1, ω] < H[Y2 | x2, ω]− (δ − ε).

Proof. From Equation (1), we obtain

| I[Y1;ω | x1,D] + Ep(ω|D) [H[Y1 | x1, ω]]

− I[Y2;ω | x2,D]− Ep(ω|D) [H[Y2 | x2, ω]] | ≤ ε.
(4)

and hence we have

Ep(ω|D) [H[Y1 | x1, ω]]− Ep(ω|D) [H[Y2 | x2, ω]]

+ (I[Y1;ω | x1,D]− I[Y2;ω | x2,D])︸ ︷︷ ︸
>δ

≤ ε. (5)

We rearrange the terms:
Ep(ω|D) [H[Y1 | x1, ω]] < Ep(ω|D) [H[Y2 | x2, ω]]− (δ − ε). (6)

Now, the statement follows by contraposition: if H[Y1 | x1, ω] ≥ Ep(ω|D) [H[Y2 | x2, ω]]−(δ−ε) for all ω, the monotonicity
of the expectation would yield Ep(ω|D) [H[Y1 | x1, ω]] ≥ Ep(ω|D) [H[Y2 | x2, ω]]− (δ − ε). Thus, there is a non-null-set Ω′

with p(Ω′) > 0, such that
H[Y1 | x1, ω] < H[Y2 | x2, ω]− (δ − ε), (7)

for all ω ∈ Ω′.

While this statement provides us with an intuition for why ensemble members and thus deterministic models cannot provide
epistemic uncertainty reliably through their softmax entropies, we can examine this further by establishing some upper
bounds.

D.2. Infinite Deep Ensemble

There are two interpretations of the ensemble parameter distribution p(ω | D): we can view it as an empirical distribution
given a specific ensemble with members ωi∈{1,...,K}, or we can view it as a distribution over all possible trained models,
given: random weight initializations, the dataset, stochasticity in the minibatches and the optimization process. In that
case, any Deep Ensemble with K members can be seen as finite Monte-Carlo sample of this posterior distribution. The
predictions of an ensemble then are an unbiased estimate of the predictive distribution Ep(ω|D) [p(y|x, ω|)], and similarly the
expected information gain computed using the members of the Deep Ensemble is just a (biased) estimator of I[Y ;ω | x,D].

D.3. Analysis of Softmax Entropy of a Single Deterministic Model on OoD Data using Properties of Deep
Ensembles

Based on the interpretation of Deep Ensembles as a distribution over model parameters, we can walk backwards and, given
some value for the predictive distribution and epistemic uncertainty of a Deep Ensemble, estimate what the softmax entropies
from each ensemble component must have been. I.e. if we observe Deep Ensembles to have high epistemic uncertainty on
OoD data, we can deduce from that what the softmax entropy of deterministic neural nets (the ensemble components) must
look like. More specifically, given a predictive distribution p(y | x) and epistemic uncertainty, that is expected information
gain I[Y ;ω | x], of the infinite Deep Ensemble, we estimate the expected softmax entropy from a single deterministic model,
considered as a sample ω ∼ p(ω | D) and model a lower bound for the variance. Empirically, we find the variance to be
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higher by a large amount for OoD samples, showing that softmax entropies do not capture epistemic uncertainty well for
samples with high epistemic uncertainty.

We will need to make several strong assumptions that limit the generality of our estimation, but we can show that our
analysis models the resulting softmax entropy distributions appropriately. This will show that deterministic softmax models
can have widely different entropies and confidence values.

Given the predictive distribution p(y | x) and epistemic uncertainty I[Y ;ω | x], we can approximate the distribution
over softmax probability vectors p(y|x, ω) for different ω using its maximum-entropy estimate: a Dirichlet distribution
(Y1, . . . , YK) ∼ Dir(α) with non-negative concentration parameters α = (α1, . . . , αK) and α0 :=

∑
αi. Note that the

Dirichlet distribution is used only as an analysis tool.

D.3.1. PRELIMINARIES

Before we can establish our main result, we need to look more closely at Dirichlet-Multinomial distributions. Given
a Dirichlet distribution Dir(α) and a random variable p ∼ Dir(α), we want to quantify the expected entropy
Ep∼Dir(α) HY∼Cat(p)[Y ] and its variance Varp∼Dir(α) HY∼Cat(p)[Y ]. For this, we need to develop more theory. In
the following, Γ denotes the Gamma function, ψ denotes the Digamma function, ψ′ denotes the Trigamma function.

Lemma D.1. Given a Dirichlet distribution and random variable p ∼ Dir(α), the following hold:
1. The expectation E [logpi] is given by:

E [logpi] = ψ(αi)− ψ(α0). (8)

2. The covariance Cov[logpi, logpj ] is given by

Cov[logpi, logpj ] = ψ′(αi) δij − ψ′(α0). (9)

3. The expectation E
[
pni p

m
j logpi

]
is given by:

E
[
pni p

m
j logpi

]
=
αni α

m
j

αn+m
0

(ψ(αi + n)− ψ(α0 + n+m)) ,
(10)

where i 6= j, and nk = n (n+ 1) . . . (n+ k − 1) denotes the rising factorial.

Proof. 1. The Dirichlet distribution is members of the exponential family. Therefore the moments of the sufficient statistics
are given by the derivatives of the partition function with respect to the natural parameters. The natural parameters of the
Dirichlet distribution are just its concentration parameters αi. The partition function is

A(α) =

k∑
i=1

log Γ (αi)− log Γ (α0) , (11)

the sufficient statistics is T (x) = log x, and the expectation E [T ] is given by

E [Ti] =
∂A(α)

∂αi
(12)

as the Dirichlet distribution is a member of the exponential family. Substituting the definitions and evaluating the partial
derivative yields

E [logpi] =
∂

∂αi

[
k∑
i=1

log Γ (αi)− log Γ

(
k∑
i=1

αi

)]
(13)

= ψ (αi)− ψ (α0)
∂

∂αi
α0, (14)

where we have used that the Digamma function ψ is the log derivative of the Gamma function ψ(x) = d
dx ln Γ(x). This

proves (8) as ∂
∂αi

α0 = 1.



On Pitfalls in OoD Detection: Predictive Entropy Considered Harmful

2. Similarly, the covariance is obtained using a second-order partial derivative:

Cov[Ti, Tj ] =
∂2A(α)

∂αi ∂αi
. (15)

Again, substituting yields

Cov[logpi, logpj ] =
∂

∂αj
[ψ (αi)− ψ (α0)] (16)

= ψ′ (αi) δij − ψ′ (α0) . (17)

3. We will make use of a simple reparameterization to prove the statement using Equation (8). Expanding the expectation
and substituting the density Dir(p;α), we obtain

E
[
pni p

m
j logpi

]
=

∫
Dir(p;α)pni p

m
j logpi dp (18)

=

∫
Γ (α0)∏K
i=1 Γ (αi)

K∏
k=1

pαk−1
k pni p

m
j logpi dp (19)

=
Γ(αi + n)Γ(αj +m)Γ(α0 + n+m)

Γ(αi)Γ(αj)Γ(α0)∫
Dir(p̂; α̂) p̂ni p̂

m
j log p̂i dp̂

(20)

=
αni α

m
j

αn+m
0

E [log p̂i] , (21)

where p̂ ∼ Dir(α̂) with α̂ = (α0, . . . , αi+n, . . . , αj +m, . . . , αK) and we made use of the fact that Γ(z+n)
Γ(z) = zn. Finally,

we can apply Equation (8) on p̂ ∼ Dir(α̂) to show

=
αni α

m
j

αn+m
0

(ψ(αi + n)− ψ(α0 + n+m)) . (22)

With this, we can already quantify the expected entropy Ep∼Dir(α) HY∼Cat(p)[Y ]:

Lemma D.2. Given a Dirichlet distribution and a random variable p ∼ Dir(α), the expected entropy
Ep∼Dir(α) HY∼Cat(p)[Y ] of the categorical distribution Y ∼ Cat(p) is given by

Ep(p|α) H[Y | p] = ψ(α0 + 1)−
K∑
y=1

αi
α0
ψ(αi + 1). (23)

Proof. Applying the sum rule of expectations and Equation (10) from Lemma D.1, we can write

E H[Y | p] = E

[
−

K∑
i=1

pi logpi

]
= −

∑
i

E [pi logpi] (24)

= −
∑
i

αi
α0

(ψ(αi + 1)− ψ(α0 + 1)) . (25)

The result follows after rearranging and making use of
∑
i
αi

α0
= 1.

With these statements, we can answer a slightly more complex problem:
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Lemma D.3. Given a Dirichlet distribution and a random variable p ∼ Dir(α), the covariance Cov[pni logpi,p
m
j logpj ]

is given by

Cov[pni logpi,p
m
j logpj ] (26)

=
αni α

m
j

αn+m
0

((ψ(αi + n)− ψ(α0 + n+m))

(ψ(αj +m)− ψ(α0 + n+m))

−ψ′(α0 + n+m))

+
αni α

m
j

αn0 α
m
0

(ψ(αi + n)− ψ(α0 + n))

(ψ(αj +m)− ψ(α0 + n)),

(27)

for i 6= j, where ψ is the Digamma function and ψ′ is the Trigamma function. Similarly, the covariance
Cov[pni logpi,p

m
i logpi] is given by

Cov[pni logpi,p
m
i logpi] (28)

=
αn+m
i

αn+m
0

(
(ψ(αi + n+m)− ψ(α0 + n+m))2

+ ψ′(αi + n+m)− ψ′(α0 + n+m))

+
αni α

m
i

αn0 α
m
0

(ψ(αi + n)− ψ(α0 + n))

(ψ(αi +m)− ψ(α0 + n)).

(29)

Regrettably, the equations are getting large. By abuse of notation, we introduce a convenient shorthand before proving the
lemma.

Definition D.4. We will denote by

E [log p̂n,mi ] = ψ(αi + n)− ψ(α0 + n+m), (30)

and use E [log p̂ni ] for E
[
log p̂n,0i

]
. Likewise,

Cov[log p̂n,mi , log p̂n,mj ] = ψ′(αi + n)δij − ψ′(α0 + n+m). (31)

This notation agrees with the proof of Equation (8) and (9) in Lemma D.1. With this, we can significantly simplify the
previous statements:

Corollary D.4.1. Given a Dirichlet distribution and random variable p ∼ Dir(α),

E
[
pni p

m
j logpi

]
=
αni α

m
j

αn+m
0

E [log p̂n,mi ], (32)

Cov[pni logpi,p
m
j logpj ] (33)

=
αni α

m
j

αn+m
0

(
E [log p̂n,mi ]E

[
log p̂m,nj

]
Cov[log p̂n,mi , log p̂n,mj ]

)
+
αni α

m
j

αn0 α
m
0

E [log p̂ni ]E
[
log p̂mj

]
for i 6= j, and

(34)

Cov[pni logpi,p
m
i logpi] (35)
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=
αn+m
i

αn+m
0

(
E
[
log p̂n+m

i

]2
+Cov[log p̂n+m

i , log p̂n+m
i ]

)
+
αni α

m
i

αn0 α
m
0

E [log p̂ni ]E
[
log p̂mj

]
.

(36)

Proof of Lemma D.3. This proof applies the well-know formula (cov) Cov[X,Y ] = E [X Y ]− E [X]E [Y ] once forward
and once backward (rcov) E [X Y ] = Cov[X,Y ] + E [X]E [Y ] while applying Equation (10) several times:

Cov[pni logpi,p
m
j logpj ] (37)

cov
= E

[
pni log(pi)p

m
j log(pj)

]
− E [pni logpi]E

[
pmj logpj

] (38)

=
αni α

m
j

αn+m
0

E
[
log(p̂i,ji ) log(p̂i,jj )

]
− E

[
log p̂ii

]
E
[
logpjj

] (39)

(rcov)
=

αni α
m
j

αn+m
0

(
Cov[log p̂i,ji , log p̂i,jj ]

+E
[
log p̂i,ji

]
E
[
log p̂i,jj

])
−
αni α

m
j

αn0 α
m
0

E
[
log p̂ii

]
E
[
logpjj

]
,

(40)

where pi,j ∼ Dir(αi,j) with αi,j = (. . . , αi + n, . . . , αj + m, . . .). pi/j and αi/j are defined analogously. Applying
Equation (9) and Equation (8) from Lemma D.1 yields the statement. For i = j, the proof follows the same pattern.

D.3.2. VARIANCE OF SOFTMAX ENTROPIES

Now, we can prove the theorem that quantifies the variance of the entropy of Y :

Theorem D.5. Given a Dirichlet distribution and a random variable p ∼ Dir(α), the variance of the entropy
Varp∼Dir(α) HY∼Cat(p)[Y ] of the categorical distribution Y ∼ Cat(p) is given by

Var[H[Y | p]] (41)

=
∑
i

α2
i

α2
0

(
Cov[log p̂2

i , log p̂2
i ] + E [log p̂2

i ]
2
)

+
∑
i 6=j

αi αj

α2
0

(
Cov[log p̂1

i , log p̂1
j ] + E

[
log p̂1,1

i

]
E
[
log p̂1,1

j

])
−
∑
i,j

αi αj
α2

0

E [log p̂1
i ]E

[
log p̂1

j

]
.

(42)

Proof. We start by applying the well-known formula Var[
∑
iXi] =

∑
i,j Cov[Xi, Xj ] and then apply Lemma D.3

repeatedly.


