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Abstract
A fundamental problem in machine learning is to
learn representations that are invariant to certain
transformations. For example, image represen-
tations are desired to be invariant to translation,
rotation, changes in color, or background; natu-
ral language representations ought to be invariant
to named entities. Naturally, data augmentations
are a simple yet powerful way to address such
invariance. However, such data augmentations
requiring either additional data collection or care-
ful engineering to capture all invariances. In this
paper, we argue that a simple yet effective ad-
ditional loss, called Data Augmented Invariant
Regularization (DAIR), could improve the perfor-
mance even further. DAIR promotes additional
invariance on top of data augmentations at little
marginal cost, and is consistent with any learning
model. We empirically evaluate the performance
of DAIR on two vision tasks, Colored MNIST
and Rotated MNIST, and demonstrate that it pro-
vides non-trivial gains beyond data augmentation,
outperforming invariant risk minimization.

1. Introduction
Deep neural networks have been widely used in various
applications, not only in the field of image recognition
ans language processing. Variants of these powerful mod-
els solve learning problems from image classification to
machine translation outperforming human accuracy How-
ever, these neural networks are vulnerable to learning spu-
rious correlations and therefore fail to generalize out-of-
distribution (Arjovsky et al., 2019). Domain generalization
datasets like Rotated MNIST (Arjovsky et al., 2019), Col-
ored MNIST (Arjovsky et al., 2019), PACS (Li et al., 2017),
VLCS (Fang et al., 2013), Office-Home (Venkateswara et al.,
2017), Terra Incognita (Beery et al., 2018) and Domain-
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Net (Peng et al., 2019) have shown difficulties to Empirical
Risk Minimization (ERM) based algorithms. For example,
in learning end-to-end dialogue models, Qian et al. (2021)
show 29% performance drop on MultiWOZ (Budzianowski
et al., 2018) due to the memorization of named entities.

There are two main existing directions for promoting such
invariance to transformations: 1) Data augmentation, which
promotes such invariances by curating synthetic examples
that exhibit such invariances. 2) Geometric deep learning,
which bakes such invariances into the neural network ar-
chitectures used for training. For example, convolutional
layers are fundamentally preserving translations, or some
other specifically designed networks (Zaheer et al., 2017;
Bloem-Reddy & Teh, 2020; Finzi et al., 2021).

Besides two main directions mentioned above, researchers
have proposed several other algorithmic solutions to address
this issue: IRM (Arjovsky et al., 2019), DRO (Sagawa et al.,
2019), Mixup (Yan et al., 2020), MLDG (Li et al., 2018a),
CORAL (Sun & Saenko, 2016), MMD (Li et al., 2018b),
DANN (Ganin et al., 2016), C-DANN (Li et al., 2018c) and
fine-tuned ERM (Gulrajani & Lopez-Paz, 2020). Most of
the approaches listed above are complicated, and cannot be
applied to arbitrary tasks, such as generation.

In this paper, we propose a simple yet effective regulariza-
tion technique, called augmented invariant regularization
(DAIR) that promotes invariance with respect to the aug-
mented data. DAIR is simple to implement, offers marginal
additional cost to training with data augmentation, is com-
patible with any task including generation, and is competi-
tive with state-of-the-art algorithmic approaches

2. DAIR: Data Augmented Invariant
Regularization

Let z = (x, y) denote a data sample, and let `(z; θ) be a
parametric loss function, where θ is the set of model parame-
ters (e.g., network weights). We assume that we have access
to a (potentially randomized) data augmenter function A(·).
Examples for A include (random) rotation and coloring.
Such augmenters in general capture all the desired trans-
formations against which we wish to be invariant. Given
a sample z, let z̃ = (x̃, ỹ) = A(z) denote an augmented
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sample. In this paper, we optimize the following augmented
objective function:

fγ,λ(z, z̃; θ) = γ`(z; θ)+(1−γ)`(z̃; θ)+λr(z, z̃; θ) (1)

where DAIR regularizer is defined as

r(z, z̃; θ) :=
(√

`(z; θ)−
√
`(z̃; θ)

)2
. (2)

The main purpose we choose square root function in (2) is
to make the scale of r(·) and `(·) the same, hence making
the tuning of λ easier across different tasks. We observe that
empirically there are several working substitutions such as
regular MSE and Jensen-Shannon divergence. By setting γ
and λ to desired values, one can have the following training
scenarios.

• Empirical Risk Minimization (ERM):

fERM(z, z̃; θ) = `(z; θ)

• Data Augmented Empirical Risk Minimization
(DA-ERM):

fDA-ERM(z, z̃; θ) =
1

2
`(z; θ) +

1

2
`(z̃; θ)

• Data Augmented Invariant Regularization (DAIR):

fDAIR,λ(z, z̃; θ) =
1

2
`(z; θ) +

1

2
`(z̃; θ) + λr(z, z̃; θ)

The idea behind the regularizer in (2) is simple. For a fully
transformation invariant model, `(z; θ) ≈ `(A(z); θ) will
hold for the data augmenter, A(·), corresponding to such
transformation function.

Lemma 1 (Gradient of augmented loss). We have

∇θfγ,λ(z, z̃; θ) =

(
γ + λ− λ

√
`(z̃; θ)

`(z; θ)

)
∇θ`(z; θ)

+

(
1− γ + λ− λ

√
`(z; θ)

`(z̃; θ)

)
∇θ`(z̃; θ)

The second term in Lemma 1 behaves as the correction term,
which promotes invariance. Note the corrections can be
huge when `(·) is close to zero. One can also observe that `
and r are at the same scale, making the tuning of λ and the
optimization framework friendly. Unlike other work (Ar-
jovsky et al., 2019) which imposes invariance in the latent
space, we impose invariance on the output of the very last
layer. This crucial difference brings the possibility of ex-
tending our regularizer to generative models.

Scheme z Color | y = 0

C1 with p = 0.8, z = y Red
with p = 0.2, z = 1− y Green

C2 with p = 0.9, z = y Red
with p = 0.1, z = 1− y Green

C3 with p = 0.1, z = y Red
with p = 0.9, z = 1− y Green

C4 z = 2 Random

Table 1. Color schemes in Colored MNIST. Random color means
that the value of each channel of the image is uniformly random
chosen from 0 to 255.

3. Experiments
In this paper, we apply the proposed loss function (1) on
the following two datasets: Extended Colored MNIST and
Extended Rotated MNIST. We compare the performance
of DAIR with plain data augmentation, and invariant risk
minimization (IRM) as a strong baseline. One crucial differ-
ence between our work and IRM is is the motivation. IRM
is designed to take two examples from two different envi-
ronments and learn representations that are invariant to the
environment, e.g., in cases where we are aggregating multi-
ple datasets. On the other hand, we are interested in promot-
ing invariance when we have a single dataset. As such, we
artificially generate the second environment in IRM using
data augmentation. For a given example z, we design an
augmenter A(·) and use it to generate additional samples
that adhere to the invariance we have in mind. Hence, IRM
will be applied in the same way that examples from different
environments are augmenting pairs.

Extended Colored MNIST is an extension of the original
Colored MNIST (Arjovsky et al., 2019). The label is a noisy
function of both digit and color. The digit has a correlation
of 0.75 with the label and a certain correlation with the label
depending on the color scheme. Besides the two colors
in the original dateset, we introduce fully random colored
scheme to the dateset, which is the best augmenter one can
think of. The three color schemes are detailed in Table 1.

Extended Rotated MNIST is a variant of the original Ro-
tated MNIST (Ghifary et al., 2015). The original dataset
contains images of digits rotated d degrees, where d ∈ D ,
{0, 15, 30, 45, 60, 75}. Similarly, we introduce the random
degree scheme here to serve as the best possible augmenter.
To further exploit the potential of the proposed algorithm,
we make this dataset more difficult by introducing more
challenging degree scheme; The rotation schemes are sum-
marized in Table 2.

Note all the augmented images are generated on the fly.
Examples of images from some transformation schemes are
shown in Figures 1 to 6.
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Scheme Rotation

R1 0◦

R2 90◦

R3 0◦, 180◦

R4 90◦, 270◦

R5 [0◦, 360◦]
R6 [22.5◦, 67.5◦], [202.5◦, 247.5◦]

Table 2. Rotation schemes in Rotated MNIST. [a, b] means that
degrees are unformly random chosen between a and b.

Setup Train Aug Test λ

1 C1 C2 C3 1000
2 C1 C4 C3 100

Table 3. Training procedure of Colored MNIST. The value of λ has
been chosen from {1, 10, 100, 1000, 10000} based on validation
performance. See Appendix A for details.

Setup Train Aug Test λ

3 R1 R5 R2 1
4 R4 R6 R3 10

Table 4. Training procedure of Rotated MNIST. The value of λ has
been chosen from {1, 10, 100, 1000} based on validation perfor-
mance. See Appendix A for details.

Setup: We train a model consisted of three convolutional
layers and two fully connected layers with 20,000 examples.
For each dataset we are defining several different schemes
on how the dataset could be modified: Table 1 (Colored
MNIST) and Table 2 (Rotated MNIST). Then, we define sev-
eral setups. Each setup is consisted of one original dataset,
one augmentation dataset, and one test dataset, each of
which is selected among the defined schemes. These setups
are provided in Table 3 (Colored MNIST) and Table 4 (Ro-
tated MNIST). For each setup, we train the model with the
following four algorithms and compare their performances:
ERM, DA-ERM, DAIR and Invariant Risk Minimization
(IRM). Each experiment is repeated for 10 times; the mean
and the standard derivation are reported. The value of λ are
chosen base on the validation results. Detailed architectures
and training parameters can be found in Appendix B and
detailed results can be found in Appendix A.

3.1. Colored MNIST

We conduct two sets of experiments for this dataset: Setup
1 (Table 3) follows the exact same color schemes from
the original Colored MNIST (Arjovsky et al., 2019). For
Setup 2, we train the model with the strongest possible
augmenter: uniformly random color. The entire procedure

Figure 1. C2 Figure 2. C3 Figure 3. C4

Figure 4. R4 Figure 5. R5 Figure 6. R6

is summarized in Table 3.

Results: We compare our results with the IRM (Arjovsky
et al., 2019) approach, as a strong baseline. For Setup 1,
Table 5 suggests that DAIR outperforms IRM by as much
as 3% (in the original problem setup that IRM addresses).
More importantly, DAIR is much simpler and computation-
ally efficient compared with IRM. One may also observe
that ERM does not work at all even with augmentation.
However, with the same augmentation set, DAIR boosts the
performance by 30%. Note that the regularizer is surpris-
ingly effective given the fact that color schemes C1 and C2
are very similar, meaning that z = A(z) most of the time,
whereas the test set C3 is very different. In Setup 2, with a
stronger augmenter, the performance of DAIR is even better,
approaching the theoretical upper bound in this problem,
i.e., 75%. Note that the stronger augmenter does not neces-
sarily give better results for other algorithms. See Table 6.
Finally, we note that the performance of IRM decreases in
this setup, which is not unexpected as IRM is not designed
for this setup.

3.2. Rotated MNIST

We start with the strongest augmenter in Setup 3. One may
notice that there is a chance that the augmented images bear
the same rotation degrees as the testing set. To make the
task more difficult, we will use R6 as the augmented test
to test how the trained model generalize to entirely unseen
domain. The training procedure is summarized in Table 4.

Results: In the strongest augmenter case in Setup 3. The
augmented images are uniformly random rotated and there-
fore there exists possibilities that the testing samples are
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Algorithm Accuracy

ERM 32.70± 0.45
DA-ERM 40.91± 0.45

DAIR 72.58± 0.11
IRM 68.06

Table 5. CM, Setup #1

Algorithm Accuracy

ERM 32.70± 0.45
DA-ERM 29.61± 0.80

DAIR 73.10± 0.12
IRM 63.13

Table 6. CM, Setup #2

Algorithm Accuracy

ERM 18.82± 0.62
DA-ERM 95.82± 0.06

DAIR 95.95± 0.08
IRM —

Table 7. RM, Setup #3

Algorithm Accuracy

ERM 17.71± 0.52
DA-ERM 71.05± 0.38

DAIR 84.08± 0.32
IRM 42.33

Table 8. RM, Setup #4

rotated the same way as the augmented samples, i.e., the
model may explicitly see the testing distribution during
training. Since this augmenter is very strong, as expected,
all the algorithms work well in this scenario except vanilla
ERM. We do not include IRM here since one can always
trivially set the penalty coefficient equals to 0, ending up
with DA-ERM. See Table 7 for results. However, it is not
always possible to construct such a strong augmentation
set for complicated tasks, such as NLP tasks. Therefore, in
Setup 4, we introduce a weak augmenter. It clear that the
training set, augmenting set and testing set have no overlap-
ping, i.e., the rotation degrees of images from each set are
never the same. Table 8 suggests that DAIR outperforms
DA-ERM. Models trained with DAIR shows very strong
generality towards unseen distributions. We also do not
include the IRM result here as we can not get a result better
then DA-ERM with non-trivial penalty coefficient. It is clear
that DAIR boosts the invariance by a large margin. On top
of the augmentation set, we gain additional invariance at
almost no cost.

4. Conclusion
In this paper, we proposed a simple yet effective regularizer
that can be used wherever data augmentation is used to pro-
mote invariance. We empirically verified the performance of
the proposed regularization technique on two vision tasks. It
remains as future work to expand the empirical verification
to more benchmarks, especially to tasks beyond computer
vision. Better understanding of the properties of the regular-
izer and tuning of the corresponding hyperparameter also
remains as open areas for research.
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A. Detailed Results in Section 3
We show results of validation accuracies of the models
trained with different λ.

λ Accuracy

1 47.87± 0.62
10 57.02± 0.50

100 70.93± 0.18
1000 72.73± 0.06

10000 70.38± 2.10

Table 9. Setup #1

λ Accuracy

1 63.88± 0.28
10 71.31± 0.08

100 73.54± 0.08
1000 71.23± 0.16

10000 57.01± 2.24

Table 10. Setup #2

λ Accuracy

1 96.15± 0.03
10 93.95± 0.05
100 72.82± 0.31

Table 11. Setup #3

λ Accuracy

1 74.36± 0.33
10 84.68± 0.19
100 71.00± 0.73

Table 12. Setup #4

B. Model Architecture and Training
Parameters

Layer Type Shape

Convolution + ReLU 4× 4× 6
Max Pooling 2× 2
Convolution + ReLU 4× 4× 16
Max Pooling 2× 2
Convolution + ReLU 4× 4× 96
Fully Connected + ReLU 64
Fully Connected C

Table 13. Model Architecture, C = 1 for Colored MNIST and
C = 10 for Rotated MNIST

Parameter

Learning Rate 0.005 0.0005
Epochs 20 20
Batch-size 64

Table 14. Training parameter


