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Abstract

Deploying deep learning models in real-world
applications often raises security and reliability
concerns, due to their sensitivity to small input
perturbations. While adversarial training methods
aim at training more robust models, these tech-
niques often result in a lower unperturbed (clean)
test accuracy, including the most widely used Pro-
jected Gradient Descent (PGD) method. Further-
more, fast adversarial training methods often over-
fit the specific perturbation used during training.
In this work, we propose uncertainty-targeted at-
tacks (UTA), where the perturbations are obtained
by maximizing the model’s estimated uncertainty.
We demonstrate on MNIST and CIFAR-10 that
this approach—when implemented both in image
and latent space—does not drastically deteriorate
the clean test accuracy relative to PGD, its fast
variant does not suffer from catastrophic overfit-
ting, and it is robust to PGD attacks.

1. Introduction
It has been shown that small perturbations added to the input
can easily “fool” well-performing deep neural networks
(DNNs) into making wrong predictions (Biggio et al., 2013;
Szegedy et al., 2014), which limits their application in real-
world tasks due to security risks. The goal of adversarial
training (AT) methods is improving the robustness to small
perturbations of a trained classifier Cω : x 7→ ŷ, with
x ∈ Rd denoting a data sample of finite dataset {xi,yi}Ni=1

drawn from the data distribution pd, ŷ ∈ Rc its prediction
of c possible classes, and ω ∈ Rm the parameters of the
model. AT methods directly target this weakness of DNNs
by training the model with modified training samples as
follows:

min
ω

E(x,y)∼pd
[max
δ∈∆
L(Cω(x+ δ),y)] , (AT)
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where L denotes the loss function, and the added worst-case
perturbation δ ∈ Rd is constrained to a small region around
the sample x, typically a ball ∆ , [−ε, ε]d with ε > 0.
Popular implementations of the (AT) objective are the pro-
jected gradient descent (PGD, Madry et al., 2018)—where
the inner maximization step is implemented with k gradient
ascent steps, and its “fast variants”—which take only one
step to compute the perturbation δ, e.g., fast gradient sign
method (FGSM, Goodfellow et al., 2015), see § 2. However,
further empirical studies showed that AT methods often re-
duce the average accuracy on “clean” unperturbed test sam-
ples, indicating the two objectives—robustness and clean
accuracy—might be competing (Tsipras et al., 2019; Su
et al., 2018). Moreover, Wong et al. (2020) further pointed
out a phenomenon referred to as catastrophic overfitting
where the robustness of fast AT methods rapidly drops to
almost zero, within a single training epoch, see § 4.

A separate line of work aims at increasing the interpretability
of the model by associating to each of its predictions an un-
certainty estimate (Kim et al., 2016; Doshi-Velez and Kim,
2017). Two main uncertainty types in machine learning
are considered: (i) aleatoric–describing the noise inherent
in the observations, as well as (ii) epistemic–uncertainty
originating from the model. While the former cannot be
reduced, the latter arises due to insufficient data to train the
model, and it can be explained away given enough data.
In the context of classification, apart from capturing high-
uncertainty due to overlapping regions of different classes,
the epistemic uncertainty also captures which regions of the
data space are not “visited” by the training samples.

In this work we consider “uncertainty targeted attacks”
(UTA), motivated by the insights that (i) as standard AT
methods find a permutation δ which maximizies the loss,
the perturbed sample x̃ , x+ δ is moved toward the deci-
sion boundary; and (ii) an uncertainty maximizing pertur-
bation would move x̃ either towards the decision boundary
or toward non-visitied regions in data space, depending on
the proximity. More precisely, we investigate if finding
a perturbation δ which maximizes the model’s estimated
uncertainty can provide a better trade-off between gener-
alization and robustness, as well as improve the reported
problem of catastrophic overfitting.

Related work: AT & maximum entropy. Stutz et al.
(2019) show that adversarial examples leave the data mani-
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fold and that on-manifold adversarial training boosts gener-
alization on synthetic datasets. The authors thus propose to
use perturbations in the latent space of a VAE-GAN (Larsen
et al., 2016; Rosca et al., 2017). Similarly, several methods
traverse the latent space to find data samples that are mis-
classified (Baluja and Fischer, 2017; Song et al., 2018; Xiao
et al., 2018; Zhang et al., 2020). In the context of standard
classification, Pereyra et al. (2017) penalize the confident
predictions by adding a regularizer that maximizes the en-
tropy of the output distribution. Moreover, in the context of
adversarial training, the results of (Cubuk et al., 2017, §3.2)
indicate that adding such a regularizer improves the model
robustness to PGD attacks.

(a) 1 step (b) 10 steps (c) 20 steps

Figure 1: 2D experiment: PGD (top) Vs. UTA (bottom)
attacks to the same trained classifier, for varying number
of steps (columns). ◦ and + depict the clean and perturbed
samples, resp., and their color blue/red depicts their class.
Top row: background depicts the assigned probability to
each class of the attacked model, including its decision
boundary. Bottom row: background depicts the uncertainty
estimates of 10 model ensemble, where darker green is
higher. As PGD is maximizing the cross-entropy loss, the
perturbed sample can change its class—see (b) & (c), top—
requiring smaller ε-ball, and on the other hand, small ε will
imply reduced robustness around samples that are on a larger
distance from the opposite class. See § 3.1 for discussion.

Related work: uncertainty estimation. While standard
DNN training performs a maximum likelihood estimation
of the parameters ω ∈ Ω, training Bayesian Neural Net-
works (BNNs) extends to estimating the posterior distri-
bution, providing a mathematically grounded framework
for uncertainty. However, due to the integration with re-
spect to the whole parameter space Ω, BNNs come at a
prohibitive computational cost that is often intractable for
DNNs. A popular epistemic uncertainty estimation method
is deep ensembles (Lakshminarayanan et al., 2017), which
trains a large number of models on the dataset and com-
bines their predictions to estimate a predictive distribution
over the weights. Gal and Ghahramani further show that

Dropout (Srivastava et al., 2014) when applied to a neural
network approximates Bayesian inference of a Gaussian pro-
cesses (Rasmussen and Williams, 2005). The proposed MC
Dropout—which applies Dropout at inference time—allows
for computationally efficient uncertainty estimation.

Overview of contributions. We propose uncertainty-
targeted attacks (UTA), where the perturbations are obtained
by maximizing the model’s estimated uncertainty. Our 2D
illustrative example shows that UTA perturbations have the
advantage of on average decreased mislabeled perturbed
samples, see Fig. 1 and § 3.1, which could explain the re-
duced clean accuracy of the standard loss-based adversarial
methods. The presented preliminary results on MNIST
and CIFAR-10 show that this approach, when implemented
either in image or latent space: (i) does not drastically
decrease the clean test accuracy relative to PGD, (ii) its
fast variant does not suffer from catastrophic overfitting,
(iii) and it is robust to PGD attacks.

2. Preliminaries
Adversarial training. The inner maximization problem of
Eq. AT can be implemented in several ways. As in general
the optimization is non-convex, Lyu et al. (2015) propose
approximating the inner maximization problem with Taylor
expansion and then applying Lagrangian multiplier. For `∞
bounded attacks, this linearization yields the FGSM (Good-
fellow et al., 2015), with its perturbation defined as:

δFGSM , ε · Sign
(
∇
x
L(Cω(x),y)

)
, (FGSM)

where Sign(·) denotes the sign function. To improve the
catastrophic overfitting of FGSM, Wong et al. (2020) pro-
pose adding a random vector ξ to FGSM as follows:

δR-FGSM , Π
||·||∞≤ε

(
ξ + α · Sign

(
∇
x
L(Cω(x),y)

))
,

(R-FGSM)
where ξ ∼ U([−ε, ε]d), α ∈ [0, 1] is selected step size, and
Π is projection on the `∞–ball. The PGD method (Madry
et al., 2018) applies FGSM for i = 1, . . . , k steps:

δiPGD , Π
||·||∞≤ε

(
α · Sign

(
∇
x
L(Cω(x+ δi−1

PGD),y)
))
.

(PGD)

PGD with k steps is often referred to as PGD-k.

Uncertainty estimation. We use MC Dropout to sampleM
models {C(m)

ω }Mm=1, with the ensemble’s prediction ŷ ∈ RC

defined as the average prediction:

ŷ =
1

M

M∑
m=1

Softmax
(
C(m)
ω (x)

)
.

Finally, we use the entropy of the output distribution to
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quantify the uncertainty estimate of a given sample x:

H(x,ω) = −
∑
c∈C

ŷc log ŷc . (E)

3. Uncertainty targeted attacks (UTA)
Unlike standard loss-based attacks, we propose uncertainty-
guided exploration in either the data or the latent space.
Uncertainty Targeted Attacks (UTA) aim at finding pertur-
bations which maximize the uncertainty estimate:

min
ω

E(x,y)∼pd
[L(Cω(E(x) + δu),y)]

s.t. δu = arg max
δ∈∆

H(E(x) + δ,ω) ,
(UTA)

where the encoder E is the identity when perturbations are
applied in the input space. The above formulation also ap-
plies for latent space UTA perturbations, where with abuse
of notation, the model can be seen as having an encoder part
E : x 7→ z and a classification part Cω : z 7→ y, and in that
case δ ∈ Rl, where l is the dimension of the latent space.

Similar to AT, the inner maximization of UTA—for both
image and latent-space perturbations—can be implemented
analogously to PGD and FGSM–see App. A, referred below
as UTA and UTA with one step, resp.

3.1. Motivating example

Fig. 1 depicts a toy experiment with non-isotropic distance
between samples of opposite class in R2. For PGD we ob-
serve that when the size of the ball ε is: (i) small: PGD
does not improve the robustness around opposite class sam-
ples that are widely separated; (ii) large: PGD can per-
turb the sample by moving it on the opposite side of the
boundary–resulting in mislabeled samples. Thus, to achieve
as good robustness-generalization trade-off as possible, ε
should be carefully selected for PGD. On the other hand, we
observe that UTA is relatively less sensitive to the choice
of ε. See Fig. 6 for such analysis on CIFAR-10. While
Fig. 1 illustrates the difference between attacks for a fixed
model, Fig. 2 illustrates the decision boundaries obtained
with standard training, PGD, as well as UTA.

3.2. Advantages of UTA

In high dimensional space, such non-isotropic margins as
in § 3.1 are more likely to occur, what could explain why
more robust models trained with PGD on average degrade
the clean test accuracy. Uncertainty based perturbations
on the other hand, are only sensitive to the choice of ε at
the beginning when the uncertainty guides the data space
exploration, and are less likely to wrongfully label a per-
turbed sample that does not lie on the decision boundary.
In addition, relative to standard AT methods, UTA: (i) is

(a) Baseline (b) PGD-AT (c) UTA-AT

Figure 2: Decision boundary obtained from: (a) regular
training, (b) PGD with a large ε, k = 15, and a α = 0.05, (c)
UTA using a large ε, k = 15, and a α = 0.05. We observe in
(b) that some data points are misclassified in some regions,
and well-classified in other regions, indicating that finding a
value of ε that does good robustness/generalization trade-off
globally is difficult for PGD. See § 3.1 & 3.2 for discussion.

unsupervised–does not require the ground truth labels y, and
can thus be extended to unsupervised methods which output
probability estimates, and (ii) includes more general per-
turbations as, depending on the proximity of the data point
at hand, will either move it toward the decision boundary,
or toward “unexplored” regions of the training set.

4. Experiments
Setup & methods. We evaluate on MNIST (Lecun and
Cortes, 1998) and CIFAR-10 (Krizhevsky, 2009). We de-
note as UTA-k-M , when performing k steps of UTA, and
sampling M models using MC-dropout. See App. A for
details on the implementation. As in (Andriushchenko and
Flammarion, 2020) we also evaluate against PGD with ran-
dom restarts which as in R-FGSM adds random pertur-
bation, restarts 10 times and finally selects the strongest
perturbation, denoted as PGD-50-10.

4.1. Image space experiments

Since Babu (2020) observe that adding a Dropout layer after
each convolutional layer helps to stabilize FGSM we use the
identical setting of MC Dropout with p = 0.2 for all meth-
ods. Fig.3a and 3b depict the results on CIFAR-10 which
evaluate if the methods are prone to Catastrophic Overfitting
(CO). Relative to FGSM, UTA-1-1 notably improves CO,
as although there is an accuracy drop relatively later, it does
not reduce to 0.

Fig. 3c depicts the robustness to PGD-50-10 attacks of var-
ious training methods for ε ∈ { 4

255 ,
6

255 ,
8

255 ,
10
255}, includ-

ing the R-FGSM and PGD-2 strong baselines. We compare
these test-time attacks against UTA-1-5 and UTA-2-5 train-
ing with 5 sampled models. Although UTA perturbations
are weaker in terms of PGD-50-10 robustness, relative to
R-FGSM and PGD-2, they suffer less from CO and show
competitive PGD-50-10 robustness even for large values of
ε. In particular, for UTA-1-5 and UTA-2-5 we observe that
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(a) training with FGSM (b) training with UTA (c) testing with PGD-50-10

Figure 3: Catastrophic overfitting (CO) on CIFAR-10 using ResNet 18, averaged over 3 runs. (a): training with FGSM–with
step size α = 8/255, ε = α; and testing against PGD–10 with ε = 8/255 and α = ε/4. CO occurs at around iteration
4700. (b): training with UTA with 1 step (fast version), 1 sampled model and α = ε = 8/255; testing against PGD-10
(ε = 8/255, α = ε/4) and FGSM (ε = α = 8/255). We observe that UTA is more robust to CO relative to 3a. (c):
PGD-50-10 comparison of different AT and UTA methods for different values of the perturbation radius ε. We observe that
the UTA methods, albeit being marginally less robust to PGD-50-10, do not suffer from CO even for large values of ε.

even for ε = 10
255 there is no CO, which is not the case for

the R-FGSM attack.

4.2. Latent space experiments

We apply UTA in latent space on MNIST and CIFAR-
10. For all experiments the encoder E(x) is a two-layer
convolutional network, and the classifier part Cω(z) is a
multi-layer perceptron. For all experiments, E(x) is pre-
trained and frozen. We compare UTA-k-10 with PGD-k
for k ∈ {2, 4, 8, 16, 32, 64, 128, 256}. In latent space, dis-
tances are arbitrary making the choice of ε itself arbitrary.
In our experiments we set ε = 5. Fig. 4 shows on CIFAR-
10 how latent-space PGD loses both its clean and robust
(PGD-10) accuracy when the number of steps increases. On
the other hand, UTA copes well with large k as it has a
high clean accuracy,in line with the toy example introduced
in § 3.1. We observe similar results on MNIST, see Fig.
5. Note that while PGD and UTA, when applied in latent
space, are notably less robust against PGD-10 perturbations
in image space—relative to when they are applied in image
space—yet they improve the robustness relative to standard
non-adversarial training.

5. Discussion
Building on the well-established notion of uncertainty esti-
mates, we proposed uncertainty-targeted attacks that perturb
a training sample in a direction that maximizes the uncer-
tainty of the model. Our preliminary results on MNIST
and CIFAR-10, in input data and latent space, indicate that
this approach is promising as it degrades less the clean test
accuracy relative to PGD, it is more robust to PGD rela-
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num-steps
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(a) PGD-10 accuracy

0 50 100 150 200 250
num-steps

0.2

0.3

0.4

0.5

0.6

latent-PGD
latent-UTA
no-adv-training

(b) Clean accuracy

Figure 4: Robustness and generalization performance of
PGD and UTA attacks in latent space after their full training,
for a varying number of steps k (x-axis), on CIFAR-10.
Dashed line depicts the performance of standard training
(without adversarial training). See § 4.2 for discussion.

tive to standard training, and its one-step variant improves
the reported catastrophic overfitting of FGSM. Interestingly,
while this method does not directly target the adversarial
training objective AT, it is nonetheless robust to standard
AT methods.

As MC-Dropout is an approximate uncertainty estimation
method, a potential direction includes exploring if using
BNNs in some tractable setups could improve the perfor-
mances of UTA in terms of robustness-generalization trade-
off. More generally, it is promising to study if recently
proposed methods of computing the DNN model’s uncer-
tainty such as (van Amersfoort et al., 2021) could further
improve UTA methods.
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A. Details on the implementation
A.1. UTA-PGD details

To solve the inner maximization problem of UTA, we im-
plement a variation of PGD:

δiu , Π
||·||∞≤ε

(
α · Sign

(
∇
x
H(E(x) + δi−1

UTA,ω)
))
.

(UTA-PGDA)

A.2. Input space experiments

Catastrophic overfitting experiments. We evaluate
catastrophic overfitting on the CIFAR-10 (Krizhevsky,
2009) dataset. We use a ResNet18 (He et al., 2016) architec-
ture, modified to accommodate the MC-dropout sampling
procedure. The modification consists of adding a dropout
layer with dropout probability p = 0.2 after each convo-
lutional layer. In order to have a very fast version of the
attack (same computational cost as FGSM) we use only one
UTA step, and sample only one model with MC-dropout,
e.g. k = 1 and M = 1. For Fig.3a and 3b, our models
were trained for 200 epochs using the SGD optimizer with
Nesterov momentum and with an initial learning rate of 0.1
decayed by factor of 1

5 after 60, 120, 160 epochs.

For Fig. 3c in order to reach faster convergence we trained
a ResNet18 model for 90 epochs with MCD using a cyclic
learning rate scheduling (Smith, 2017) with a maximum LR
of 0.2 for the FGSM, R-FGSM and PGD-2 and of 0.1 for
the UTA-1-5 and UTA-2-5 attacks.

B. Additional results
Fig. 5 shows results obtained applying PGD and UTA in
latent space on the MNIST dataset. Fig. 6 shows differences
of input perturbations on CIFAR-10 obtained with UTA and
PGD with identical hyperparameters (α = 0.001, ε = ∞)
and a large k = 1000 steps.
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Figure 5: MNIST results with PGD and UTA performed
in latent space. The number of PGD and UTA steps is
progressively increased.

Figure 6: Illustration of the difference between PGD and
UTA attacks to classifier trained on CIFAR-10: (i) top row:
clean samples, (ii) middle row: UTA perturbations, (iii)
bottom row: PGD attacks, where for UTA and PGD we use
same setup (1000 steps, step size of 0.001, ε = ∞). We
use large number of steps to verify empirically if the dif-
ference between UTA and PGD depicted in Fig. 1 holds on
real-world datasets as well. Contrary to the PGD-perturbed
samples, the correct class of the UTA-perturbed ones re-
mains perceptible.
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