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Abstract

As machine learning models are increasingly
employed to assist human decision-makers, it
becomes critical to communicate the uncertainty
associated with these model predictions. How-
ever, the majority of work on uncertainty has
focused on traditional probabilistic or ranking
approaches – where the model assigns low prob-
abilities or scores to uncertain examples. While
this captures what examples are challenging for
the model, it does not capture the underlying
source of the uncertainty. In this work, we seek
to identify examples the model is uncertain about
and characterize the source of said uncertainty.
We explore the benefits of designing a targeted
intervention – targeted data augmentation of high
uncertainty examples over the course of training.
We ask – does the rate of learning in the presence
of additional information differ between atypical
and noisy examples? Our results show that this
is indeed the case, suggesting that well designed
interventions over the course of training can be
an effective way to characterize and distinguish
between different sources of uncertainty.

1. Introduction
As machine learning models are increasingly implemented
in real-world applications, it becomes important to estimate
the uncertainty in the predictions of these models and en-
sure that model behavior is safe and trustworthy. Traditional
approaches to uncertainty estimation use a probabilistic ap-
proach – where examples a model is uncertain about are
assigned low probabilities or scores (Denker and LeCun,
1990; Hendrycks and Gimpel, 2016; Erfani et al., 2016; Ruff
et al., 2018; Parzen, 1962; Rosenblatt, 1956; Hawkins, 1974;
Vandeginste, 1988). While probabilities and other scores
are a useful way to isolate examples where the model is un-
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Figure 1. Examples of different predictive uncertainties. Left: An
instance of the horse class representing error reducible using
more data examples. Right: A horse image mislabelled as a
donkey, representing irreducible error as the model cannot learn
this class distribution even with more examples because of the
corrupted label.

certain, the estimate of uncertainty is fundamentally limited
in that they capture what predictions are challenging for the
model but not the underlying source of the uncertainty.

Most natural image and language datasets exhibit a long-tail
distribution with an unequal frequency of attributes in
training data (Zipf, 1999; Feldman, 2020). However, the
nature of these low-frequency attributes differ considerably.
Atypical examples are rare or unusual underrepresented
attributes – data points sampled from sparsely populated
regions of the input space. Poor model performance on
atypical examples reflects epistemic uncertainty, where
there is insufficient evidence for the model to learn the
feature. In contrast, noisy examples are due to influences
on the data-generating process, such as label corruption
or input data perturbation, which impairs the learnability
of the instance. These noisy examples are dominated
by aleatoric uncertainty or irreducible error because the
mapping between the input and output space is entirely
stochastic. Recent work has suggested that labelling noise
is widespread in widely used datasets, and can constitute
a large fraction of the training set (Hooker et al., 2020;
Northcutt et al., 2021; Beyer et al., 2020).

The need for a framework to estimate both the level and
source of uncertainty is driven by the very different down-
stream remedies for different sources of uncertainty. For
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sources of high epistemic uncertainty, such as low-frequency
attributes or challenging fine-grained samples (atypical), a
practitioner can improve model performance by either col-
lecting more data that are similar or re-weighting examples
to improve model learning of this instance (or other ac-
tive learning techniques) (Budd et al., 2021; Zhang et al.,
2019; Liu et al., 2020). In contrast, for causes of aleatoric
uncertainty, such as noisy examples, solutions like down-
weighting or elimination through data cleaning are advo-
cated (Zhang et al., 2020; Li et al., 2019; Thulasidasan et al.,
2019b; Liu and Guo, 2020; Schroder and Niekler, 2020).

Despite the importance of identifying the sources of
predictive uncertainty, this subject has been relatively
under-treated in ML literature. Probabilistic frameworks
will accord high uncertainty to both underrepresented
attributes and noisy examples, failing to distinguish between
the two. While sub-fields have evolved separately around
the treatment of low-frequency and noisy distributions (Wu
et al., 2020; Yi and Wu, 2019; Thulasidasan et al., 2019a),
only limited work to date has focused on the sources of
uncertainty within a unified framework (Kendall and Gal,
2017; Depeweg et al., 2018).

Present Work. In this work, we seek to identify examples
the model is uncertain about and characterize the source
of said uncertainty. We leverage the key distinguishing
difference between Epistemic and Aleatoric uncertainty –
one is reducible given additional data and the other is not.
We propose targeted data augmentation throughout training
to amplify the difference in learning rate between atypical
and noisy examples. Our results show well designed
interventions over the course of training can be an effective
way to cluster and distinguish between different sources
of uncertainty.

2. Methodology
2.1. Sources of Uncertainty

We consider a supervised learning setting where we denote
the training dataset D as:

D def
=
{
(x1, y1), . . . , (xN , yN )

}
⊂ X × Y , (1)

whereX represents the data space and Y the set of outcomes
associated with the respective instances. We consider a
neural network as a function fw : X 7→ Y with trainable
weights w. Given the training dataset, fw optimizes a set of
weights w∗ by minimizing an objective function L,

w∗ = argmin
w

L(w) (2)

Here, we aim to quantify the uncertainty associated with
a model prediction, and to subsequently identify the source
of the uncertainty by classifying examples as contributing

disproportionately to aleatoric or epistemic uncertainty.
This means we are interested in firstly obtaining a good
measure of predictive uncertainty, the uncertainty related
to the prediction ŷi for an input instance xi ∈ X . To this
end, we leverage Variance of Gradients (VoG) (Agarwal
and Hooker, 2020), a class-normalized variance gradient
score for determining the relative ease of learning data
samples within a given class. Important for our use case,
VoG produces a per-example score that can be used to
rank the entire dataset. Secondly, it measures change in
gradient updates over the course of training – which we use
to measure the impact of targeted interventions on model
uncertainty. Given the predicted or true class label p, VoG
first calculates the gradients of the pre-softmax activation
layer l with respect to each pixel xi and sums it across the
color channels to arrive at S ∈ R32×32, i.e.,

S =
∂Al

p

∂xi
(3)

The variance of gradients is then calculated across each
pixel using the gradients from a set of K checkpoints, i.e.,
{S1, . . . ,SK}.

VoGp =

√
1

K

K∑
t=1

(St − µ)2 (4)

Finally, the score is averaged across all pixelsNp to compute
a scalar VoG score.

VoG =
1

Np

N∑
p=1

(VoGp) (5)

2.2. Characterizing the difference between atypical and
noisy examples

An accurate uncertainty score s(fw,xi) for an instance
xi ∈ X reflects the accumulation of uncertainty in the data
curation process, the set of modeling choices and the train-
ing protocol itself. Thus, the possible outcome ŷi depends
upon the datasetD and the underlying model fw. Intuitively,
s(fw,xi) is a composition of both aleatoric (sa(fw,xi)) and
epistemic knowledge (se(fw,xi)).

One way to characterize uncertainty as aleatoric or epis-
temic is to ask whether it can be reduced through additional
training data. In this work, we apply transformations θ to
the training set D, resulting in a new set DA. The stochas-
ticity of the transformation parameters is responsible for
generating new samples, i.e., data augmentation.

We evaluate the impact of providing additional information
for all training examples ∀xi ∈ X relative to not providing
additional information. This amounts to comparing standard
data augmentation to no data augmentation. In addition, we
also explore the benefits of designing a targeted intervention
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Figure 2. VoG ranking for atypical and noisy subsets across training for different augmentation variants

– where rolling augmentation only selectively augments sam-
ples where the model is uncertain. For the first 3 epochs,
rolling augments 100% i.e all of the samples. From the 4th

epoch, we utilize the VoG score to rank and begin selectively
augmenting the top X% VoG percentile, with X reducing
with every following epoch. X begins at 100% and is then
reduced by 2% for every following epoch till we reach 20%.
At this point, we continue to augment the images in the top
20% of the VOG ranking till the end of the training.

Given our hypothesis that additional information will help
distinguish between reducible and irreducible error, we ex-
pect differences in the distributions of atypical and noisy to
be amplified for the two augmentation schemes relative to
no augmentation.

2.3. Experimental Framework

Dataset Construction. To understand how atypical and
noisy examples are learned, we stratify atypical and noisy
subsets where ground truth is known for these examples.
We briefly describe the details below:

Atypical sub-sets. We construct two different atypical sub-
sets based upon two different notions of typicality: 1) Fre-
quency and 2) Consistency:

1. Frequency. We artificially create a known frequency
disparity between examples. We sample a fraction
of the dataset at random p. Of the remaining dataset,
we sample a fraction t and create two copies of each
example. t is selected such that the overall dataset size
is the same as the original unmodified dataset.

2. Consistency. For the consistency setting, we utilize
the C-Score (Jiang et al., 2020) as a pseudo-measure
of how typical an example is wrt the other samples in
the dataset. We directly use the pre-computed C-scores
1 available for Cifar-10 as a continuous measure of
typicality.

For modeling a noisy subset, we follow (Zhang et al., 2016)
and assign uniformly shuffled labels to a percentage of the
training data. More specifically, this decision models noisy
data as mislabelled instances. For both variants, we maintain
a ratio of 20% noisy, 20% atypical, and 60% typical exam-
ples and ensure that it is the same size as the original dataset.

Frequency-Noise Dataset. We uniformly sample 20% (A)
from Cifar-10 training set as atypical candidates. We sample
another random 20% (N ) from the remaining examples, uni-

1Available from https://pluskid.github.io/
structural-regularity/

https://pluskid.github.io/structural-regularity/
https://pluskid.github.io/structural-regularity/
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Table 1. Testing accuracies for different augmentation variants of
LongTail datasets.

DATASET VARIANT TEST ACC

FREQUENCY
NO AUG. 60.6%
STANDARD AUG. 67.7%
ROLLING AUG. 72.0%

C-SCORE
NO AUG. 72.1%
STANDARD AUG. 76.9%
ROLLING AUG. 78.7%

formly shuffle the labels and consider them as Noisy candi-
dates. Finally, we sample 30% from the remaining Cifar-10
dataset, create two copies and add that as Typical candidates.

CScore-Noise Dataset. For the CScore-Noise dataset,
we consider the bottom 20%(A) C-Score ranked images as
atypical. Similar to the Frequency-Noise dataset, we
then sample another random 20%(N ) from the remaining
examples, uniformly shuffle the labels and add these as
Noisy candidates. The remaining 60% Cifar-10 dataset is
considered as Typical.

We note that CScore-Noise preserves all orig-
inal datapoints in Cifar-10 training set, whereas
Frequency-Noise downsamples the number of
original examples in order to maintain the same training set
size. While Frequency-Noise and CScore-Noise
differ in the construction of the atypical subset, both have
the same fraction of noisy examples.

Training details. For all our Cifar-10 experiments, we use
a WideResNet (Zagoruyko and Komodakis, 2016) archi-
tecture. We train for 60 epochs using stochastic gradient
descent (SGD). For training variants where augmentation
is present, we use standard data augmentation by applying
random horizontal flips and crops with padding. We use a
base learning rate schedule of 0.1 and adaptively dampen it
by a factor of 0.2 at the 10th, 20th and 30th training epochs.
For our baseline variant on a clean dataset (no artificial strat-
ification of noisy and atypical) we report a top-1 test-set
accuracy of 93.11% for Cifar-10.

3. Results
We address the following key questions: Q1) Can the pres-
ence of additional information amplify differences in the
rate of learning of atypical and noisy examples? and Q2)
Do different atypical subsets exhibit different separability?

Q1) Characterizing differences between atypical and
noisy subsets across training. In Fig. 2, we plot the distri-
bution of ranks based on class-normalized VoG scores for
both noisy and atypical samples across training. We now

describe the effect of different augmentation variants on
separating the noisy and atypical subsets.

No Augmentation. In Fig. 2, we observe a large overlap in
the distribution of atypical and noisy examples in a training
setting without augmentation. While there is a perceptible
drop in Atypical VoG ranks relative to Noisy VoG ranks
after ten epochs, the level of overlap between atypical and
noisy remains high.

Standard Augmentation. We observe better separation be-
tween the noisy and atypical distributions using standard
augmentation during training (Fig. 2). The addition of in-
formation, even if done uniformly, provides the model with
additional examples of the atypical instances. Atypical VoG
ranks fall more markedly, while Noisy VoG ranks remain at
the top of the distribution.

Rolling Augmentation. In Fig. 2, it is clear that rolling
augmentation provides a notable improvement over no aug-
mentation at helping distinguish between atypical and noisy
examples. We note that rolling Augmentation leads to a
slightly more pronounced separation of noisy and atypical
examples than standard augmentation.

Q2) Differences between datasets. We note that this sep-
arability is more visible on the CScore-Noise dataset
than the Frequency-Noise dataset. We believe this
is because our frequency constraints limited the training
dataset to 70% of the typical 50,000 examples (in order to
make 2 copies and maintain the same training set size, only
30% of the dataset was sampled and expanded).

4. Conclusion
We leverage targeted augmentation interventions to charac-
terize examples as dominated by aleatoric and epistemic
uncertainty. We empirically show how augmentation pro-
tocols (both targeted and standard) amplify the differences
in distribution between noisy and atypical examples. The
slight improvement of targeted rolling augmentation over
standard opens up interesting questions around 1) gaining
a better understanding of what types of augmentations aid
distinction between atypical and noisy, 2) experimenting
with different augmentation protocols.

The motivation for this work is to eventually treat the atypi-
cal and noisy subsets in a dataset appropriately during train-
ing. Common remedies for noisy examples would include
data cleaning or isolating a subset for re-labelling, whereas
atypical examples may benefit from data augmentation, re-
weighting or additional data collection. An interesting area
of future work is leveraging these targeted augmentations to
inform these downstream remedies.
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