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Algorithms for finding structure in data have become increasingly
important both as tools for scientific data analysis and as models
of human learning, yet they suffer from a critical limitation.
Scientists discover qualitatively new forms of structure in observed
data: For instance, Linnaeus recognized the hierarchical organiza-
tion of biological species, and Mendeleev recognized the periodic
structure of the chemical elements. Analogous insights play a
pivotal role in cognitive development: Children discover that object
category labels can be organized into hierarchies, friendship net-
works are organized into cliques, and comparative relations (e.g.,
‘‘bigger than’’ or ‘‘better than’’) respect a transitive order. Stan-
dard algorithms, however, can only learn structures of a single
form that must be specified in advance: For instance, algorithms for
hierarchical clustering create tree structures, whereas algorithms
for dimensionality-reduction create low-dimensional spaces. Here,
we present a computational model that learns structures of many
different forms and that discovers which form is best for a given
dataset. The model makes probabilistic inferences over a space of
graph grammars representing trees, linear orders, multidimen-
sional spaces, rings, dominance hierarchies, cliques, and other
forms and successfully discovers the underlying structure of a
variety of physical, biological, and social domains. Our approach
brings structure learning methods closer to human abilities and
may lead to a deeper computational understanding of cognitive
development.

cognitive development � structure discovery � unsupervised learning

D iscovering the underlying structure of a set of entities is a
fundamental challenge for scientists and children alike

(1–7). Scientists may attempt to understand relationships be-
tween biological species or chemical elements, and children may
attempt to understand relationships between category labels or
the individuals in their social landscape, but both must solve
problems at two distinct levels. The higher-level problem is to
discover the form of the underlying structure. The entities may
be organized into a tree, a ring, a dimensional order, a set of
clusters, or some other kind of configuration, and a learner must
infer which of these forms is best. Given a commitment to one
of these structural forms, the lower-level problem is to identify
the instance of this form that best explains the available data.

The lower-level problem is routinely confronted in science and
cognitive development. Biologists have long agreed that tree
structures are useful for organizing living kinds but continue to
debate which tree is best—for instance, are crocodiles better
grouped with lizards and snakes or with birds (8)? Similar issues
arise when children attempt to fit a new acquaintance into a set
of social cliques or to place a novel word in an intuitive hierarchy
of category labels. Inferences like these can be captured by
standard structure-learning algorithms, which search for struc-
tures of a single form that is assumed to be known in advance
(Fig. 1A). Clustering or competitive-learning algorithms (9, 10)
search for a partition of the data into disjoint groups, algorithms
for hierarchical clustering (11) or phylogenetic reconstruction
(12) search for a tree structure, and algorithms for dimension-
ality reduction (13, 14) or multidimensional scaling (15) search
for a spatial representation of the data.

Higher-level discoveries about structural form are rarer but
more fundamental, and often occur at pivotal moments in the
development of a scientific field or a child’s understanding (1, 2,
4). For centuries, the natural representation for biological
species was held to be the ‘‘great chain of being,’’ a linear
structure in which every living thing found a place according to
its degree of perfection (16). In 1735, Linnaeus famously pro-
posed that relationships between plant and animal species are
best captured by a tree structure, setting the agenda for all
biological classification since. Modern chemistry also began with
a discovery about structural form, the discovery that the ele-
ments have a periodic structure. Analogous discoveries are made
by children, who learn, for example, that social networks are
often organized into cliques, that temporal categories such as the
seasons and the days of the week can be arranged into cycles, that
comparative relations such as ‘‘longer than’’ or ‘‘better than’’ are
transitive (17, 18) and that category labels can be organized into
hierarchies (19). Structural forms for some cognitive domains
may be known innately, but many appear to be genuine discov-
eries. When learning the meanings of words, children initially
seem to organize objects into nonoverlapping clusters, with one
category label allowed per cluster (20); hierarchies of category
labels are recognized only later (19). When reasoning about
comparative relations, children’s inferences respect a transitive
ordering by the age of 7 but not before (21). In both of these
cases, structural forms appear to be learned, but children are not
explicitly taught to organize these domains into hierarchies or
dimensional orders.

Here, we show that discoveries about structural form can be
understood computationally as probabilistic inferences about
the organizing principles of a dataset. Unlike most structure-
learning algorithms (Fig. 1 A), the model we present can simul-
taneously discover the structural form and the instance of that
form that best explain the data (Fig. 1B). Our approach can
handle many kinds of data, including attributes, relations, and
measures of similarity, and we show that it successfully discovers
the structural forms of a diverse set of real-world domains.

Any model of form discovery must specify the space of
structural forms it is able to discover. We represent structures
using graphs and use graph grammars (22) as a unifying
language for expressing a wide range of structural forms (Fig.
2). Of the many possible forms, we assume that the most
natural are those that can be derived from simple generative
processes (23). Each of the first six forms in Fig. 2 A can be
generated by using a single context-free production that
replaces a parent node with two child nodes and specifies how
to connect the children to each other and to the neighbors of
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the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2 A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P�S, F�D� � P�D�S�P�S�F�P�F�. [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S�F) favors graphs where k, the number of clusters,
is small: P(S�F) � �k if S is compatible with F, and P(S�F) � 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter � determines the
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Fig. 1. Finding structure in data. (A) Standard structure learning algorithms search for representations of a single form that is fixed in advance. Shown here
are methods that discover six different kinds of structures given a matrix of binary features. (B) A hierarchical model that discovers the form F and the structure
S that best account for the data D. The model searches for the form and structure that jointly maximize P(S, F�D) � P(D�S)P(S�F)P(F).
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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extent to which graphs with many clusters are penalized, and is
fixed for all of our experiments. The normalizing constant for
P(S�F) depends on the number of structures compatible with a
given form, and ensures that simpler forms are preferred when-

ever possible. For example, any chain Sc is a special case of a grid,
but P(Sc�F � chain) � P(Sc�F � grid) because there are more
possible grids than chains given a fixed number of entities. It
follows that P(Sc, F � chain�D) � P(Sc, F � grid�D) for any
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dataset D, and that the grid form will only be chosen if the best
grid is substantially better than the best chain.

The remaining term in Eq. 1, P(D�S), measures how well the
structure S accounts for the data D. Suppose that D is a feature
matrix like the matrix in Fig. 1. P(D�S) will be high if the features
in D vary smoothly over the graph S, that is, if entities nearby in
S tend to have similar feature values. For instance, feature f1 is
smooth over the tree in Fig. 1B, but f100 is not. Even though Fig.
1 shows binary features, we treat all features as continuous
features and capture the expectation of smoothness by assuming
that these features are independently generated from a multi-
variate Gaussian distribution with a dimension for each node in
graph S. As described in SI Appendix, the covariance of this
distribution is defined in a way that encourages nearby nodes in
graph S to have similar feature values, and the term P(D�S) favors
graphs that meet this condition.

In principle, our approach can be used to identify the form F
that maximizes P(F�D), but we are also interested in discovering
the structure S that best accounts for the data. We therefore
search for the structure S and form F that jointly maximize the
scoring function P(S, F�D) (Eq. 1). To identify these elements, we
run a separate greedy search for each candidate form. Each
search begins with all entities assigned to a single cluster, and the
algorithm splits a cluster at each iteration, using the production
for the current form (Fig. 2). After each split, the algorithm
attempts to improve the score, using several proposals, including
proposals that move an entity from one cluster to another and
proposals that swap two clusters. The search concludes once the
score can no longer be improved. A more detailed description of
the search algorithm is provided in SI Appendix.

We generated synthetic data to test this algorithm on cases
where the true structure was known. The SI Appendix shows
graphs used to generate five datasets, and the structures found
by fitting five different forms to the data. In each case, the model
recovers the true underlying form of the data.

Next, we applied the model to several real-world datasets, in
each case considering all forms in Fig. 2. The first dataset is a
matrix of animal species and their biological and ecological
properties. It consists of human judgments about 33 species and
106 features and amounts to a larger and noisier version of the
dataset shown schematically in Fig. 1. The best scoring form for
this dataset is the tree, and the best tree (Fig. 3A) includes
subtrees that correspond to categories at several levels of
resolution (e.g., mammals, primates, rodents, birds, insects, and
flying insects). The second dataset is a matrix of votes from the
United States Supreme Court, including 13 judges and their
votes on 1,596 cases. Some political scientists (35) have argued
that a unidimensional structure best accounts for variation in
Supreme Court data and in political beliefs more generally,
although other structural forms [including higher-dimensional
spaces (36) and sets of clusters (37)] have also been proposed.
Consistent with the unidimensional hypothesis, our model iden-
tifies the chain as the best-scoring form for the Supreme Court
data. The best chain (Fig. 3B) organizes the 13 judges from
liberal (Marshall and Brennan) to conservative (Thomas and
Scalia).

If similarity is assumed to be a measure of covariance, our
model can also discover structure in similarity data. Under our
generative model for features, the expression for P(D�S) includes
only two components that depend on D: the number of features
observed and the covariance of the data. As long as both
components are provided, Eq. 1 can be used even if none of the
features is directly observed. We applied the model to a matrix
containing human judgments of the similarity between all pairs
of 14 pure-wavelength hues (38). The ring in Fig. 3C is the best
structure for these data and corresponds to the color circle
described by Newton. Next, we analyzed a similarity dataset
where the entities are faces that vary along two dimensions:

masculinity and race. The model chooses a grid structure that
recovers these dimensions (Fig. 3D). Finally, we applied the
model to a dataset of distances between 35 world cities. Our
model chooses a cylinder where the chain component corre-
sponds approximately to latitude, and the ring component
corresponds approximately to longitude.

The same algorithm can be used to discover structure in
relational data, but we must modify the distribution P(D�S).
Suppose that D is a square frequency matrix, where D(i, j)
indicates the number of times a certain relation has been
observed between entities i and j (Fig. 4). We define a model
where P(D�S) is high if the large entries in D correspond to edges
in the graph S. A similar model can be defined if D is a binary
relation rather than a frequency matrix. Given a relation D, it is
important to discover whether the relation tends to hold between
elements in the same cluster or only between different clusters,
and whether the relation is directed or not. The forms in Fig. 2 A
all have directed edges and nodes without self-links, and we
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and a tree. As the number of features grows even further, the tree becomes
increasingly complex, with subtrees that correspond more closely to adult
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other carnivorous land mammals; the songbirds (robin, finch), flying birds
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egories; and the flying insects (butterfly, bee) and walking insects (ant,
cockroach) form distinct subcategories. More information about these simu-
lations can be found in SI Appendix.
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expanded this collection to include forms with self-links, forms
with undirected edges, and forms with both of these properties.

First, we applied the model to a matrix of interactions among
a troop of sooty mangabeys. The model discovers that the order
is the most appropriate form, and the best order found (Fig. 4A)
is consistent with the dominance hierarchy inferred by prima-
tologists studying this troop (39). Hierarchical structure is also
characteristic of human organizations, although tree-structured
hierarchies are perhaps more common than full linear orders.
We applied the model to a matrix of interactions between 13
members of George W. Bush’s first-term administration (40).
The best form is an undirected hierarchy, and the best hierarchy
found (Fig. 4B) closely matches an organizational chart built by
connecting individuals to their immediate superiors. Next, we
analyzed social preference data (41) that represent friendships
between prison inmates. Clique structures are often claimed to
be characteristic of social networks (42), and the model discovers
that a partition (a set of cliques) gives the best account of the
data. Finally, we analyzed trade relations between 20 commu-
nities in New Guinea (43). The model discovers the Kula ring,
an exchange structure first described by Malinowski (44).

We have presented an approach to structure discovery that
provides a unifying description of many structural forms, dis-
covers qualitatively different representations for a diverse range
of datasets, and can handle multiple kinds of data, including
feature data, relational data, and measures of similarity. Our
hypothesis space of forms (Fig. 2) includes some of the most
common forms, but does not exhaust the set of cognitively
natural or scientifically important forms. Ultimately, psycholo-
gists should aim to develop a ‘‘Universal Structure Grammar’’
(compare with ref. 45) that characterizes more fully the repre-
sentational resources available to human learners. This universal
grammar might consist of a set of simple principles that generate
all and only the cognitively natural forms. We can only speculate
about how these principles might look, but one starting place is
a metagrammar (46) for generating graph grammars. For in-
stance, all of the forms shown in Fig. 2 A can be generated by a
metagrammar shown in SI Appendix.

Our framework may be most readily useful as a tool for data
analysis and scientific discovery, but should also be explored as
a model of human learning. Our model helps to explain how
adults discover structural forms in controlled behavioral exper-
iments (40), and is consistent with previous demonstrations that
adults can choose the most appropriate representation for a
given problem (47). Our model may also help to explain how
children learn about the structure of their world. The model
shows developmental shifts as more data are encountered, and

often moves from a simple form to a more complex form that
more faithfully represents the structure of the domain (Fig. 5 and
SI Appendix). Identifying the best form for a domain provides
powerful constraints on inductive inference, constraints that may
help to explain how children learn new word meanings, concepts,
and relations so quickly and from such sparse data (48–51).
Discovering the clique structure of social networks can allow a
child to predict the outcome of interactions between individuals
who may never have interacted previously. Discovering the
hierarchical structure of category labels allows a child to predict
that a creature called a ‘‘chihuahua’’ might also be a dog and an
animal, but cannot be both a dog and a cat.

As examples like these suggest, form discovery provides a way
of acquiring domain-specific constraints on the structure of
mental representations, a possibility that departs from two
prominent views of cognition. A typical nativist view recognizes
that inductive inference relies on domain-specific constraints but
assumes that these constraints are innately provided (52–54).
Chomsky (52), for instance, has suggested that ‘‘the belief that
various systems of mind are organized along quite different
principles leads to the natural conclusion that these systems are
intrinsically determined, not simply the result of common mech-
anisms of learning or growth.’’ A typical empiricist view em-
phasizes learning but assumes no domain-specific representa-
tional structure. Standard methods for learning associative
networks (55) and neural networks (56) use the same generic
class of representations for every task, instead of attempting to
identify the distinctive kinds of structures that characterize
individual domains. Without these constraints, empiricist meth-
ods can require unrealistically large quantities of training data to
learn even very simple concepts (57). Our framework offers a
third view that combines insights from both these approaches
and shows how domain-specific structural constraints can be
acquired by using domain-general probabilistic inference. As
children learn about the structure of different domains, they
make discoveries as impressive as those of Linnaeus and Men-
deleev, and approaches like ours may help to explain how these
discoveries are possible.
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