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Current multi-electrode techniques enable the simultaneous recording of spikes from hundreds of neu-
rons. To study neural processing, plasticity, and hierarchical structure, such as in the visuomotor system,
it is desirable to infer the underlying functional connectivity between the recorded neurons. One challenge
in inferring these connections is that a large number of parameters, which characterize how each neuron
influences the other neurons, are often estimated from relatively little data. Such problems can be improved
by using Bayesian methods that combine information from the recorded spikes (likelihood) with prior be-
liefs about functional connectivity (prior). Recent studies have used a likelihood function that captures the
Poisson-like firing of neurons [2] and a prior that captures the sparseness of neural connections [3]. Here
we extend these methods to include a prior that captures the empirical finding that interactions tend to vary
smoothly in time. A generative model for this problem is shown in Figure 1. To describe the connec-
tions between neurons we follow a network likelihood model. Each neuron has a spontaneous firing rate,
and connections between neurons are parameterized as a set of spatio-temporal kernels, α. These param-
eters generate a Poisson conditional intensity function for each neuron which, in turn, generates spikes. A
likelihood function for this model has been previously derived using the point-process framework [1]. To
implement a sparseness priors in this framework we introduce a set of latent variables, C, drawn i.i.d from an
exponential distribution, to describe the strength of each connection. To implement a prior over the smooth-
ness of connections we assume that the time course of each spatio-temporal kernel is a Gaussian random
walk with variance determined by the latent variable, Ci,j . This incorporates our intuitive notion that most
connections will be very weak and that fluctuations in spatio-temporal kernels will scale with connection
strength.
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To estimate the spatio-temporal kernels we find the parameters α and latent variables C that maximize
the log-posterior probability of the model given the observed spike trains (MAP estimation). A single free
parameter b allows us to vary the relative importance of smoothness and sparseness. Estimations are fairly
robust to the choice of this parameter, and in practice, we can optimize it using cross-validation.

Using simulated data we show that this method, as well as a method using a linear approximation
of the likelihood function, can successfully infer connectivity patterns from spikes. In datasets with many
neurons (> 100) the use of priors over smoothness and sparseness can compensate, to some extent, for a less
accurate likelihood function. Applying our method to real data, we infer functional connections from spike
data recorded from primary motor (M1) and premotor (PMd) cortices of a macaque monkey. We use cross-
validation to verify our estimates. Spatio-temporal kernels describing the interactions between neurons were
similar to those found by previous studies. However, recording from two anatomically distinct areas (M1 and
PMd) allows us to analyze the larger structure of these functional connections. We use a recently introduced
Bayesian clustering algorithm, the infinite relational model (IRM), to make sense of the inferred functional
networks and to study their structure. Unlike k-means or many other clustering algorithms, the complexity
of the clustering (e.g., the number of clusters) is not predetermined with this algorithm. Using a prior over
the number of clusters, IRM automatically determines the number of clusters and cluster assignments that
best fit the data. Groups of neurons in M1 and PMd show distinct patterns of input and output that may
correspond to functional assemblies (similar to cortical columns). A typical clustering result is shown in
Figure 2. Clusters were composed, almost exclusively, of neurons from either area M1 (blue) or PMd (red).
However, incorporating a model of external covariates, such as hand position [4] or gaze, is required to
make finer functional distinctions. Although, these results are from motor cortex, this method has potential
applications in analyzing functional connections anywhere in the visuomotor system and in the brain.
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