*Energy models and Deep Belief Networks
- Definition
« examples
« overcomplete ICA: generative vs. energy-based models
- Learning

« contrastive divergence
* (score matching)

— Restricted Boltzmann Machines

- Deep Belief Networks

« infinite networks <-> RBMs
* learning: greedy + wake-sleep phase



Deep Belief Networks

* Demo:
http://www.cs.toronto.edu/~hinton/digits.html

« Other datasets:
http://www.cs.toronto.edu/~roweis/data.html



Goal architecture

2000 top-level units

10Iabelunns‘

i

This could be the
top level of
another sensory
pathway

i

500 units

Ul

500 units

rJd

28 x 28
pixel
Image




Ingredient 1

« Write code to perform inference and CD
learning in a RBM

- Test that, given weights and visible unit v, you get a
correct distribution over h (both probabilities and
samples); same for v given h

- Test that, given v and perturbing correct w, the
algorithm comes back to minimum

« Optional: insert decay and momentum term



Ingredient 2

« Write code to perform inference and CD
learning in a RBM with softmax labels

- Define simple model with 2 labels, 2 hidden units, 4
input units; label 1 generates either [1,0,0,0] or
[0,1,0,0]; label 2 generates [0,0,1,0] or [0,0,0,1]

- Verify that generating with fixed labels gives you
correct input patterns

- Verify that after learning, labels are inferred
correctly in all 4 cases

« Optional: insert decay and momentum term



Greedy learning

At this point you can already train the DBN with
the greedy algorithm

- | The input to each RBM is given by the probabilities over
the hidden states at the previous layer

- Begin using a few letters from the small dataset
bi nar yal phadi gs. mat (100 units per layer should be ok)

- Try to generate letters by clamping one of the labels

- Given all examples of one class, how invariant is the
representation in the various layers? Does that change if you
learn a model without labels?

- If you want to use the MNIST dataset, divide the data in
balanced mini-batches (e.g., 10 examples from each class)



Classification

 Try to classify the input letters:

- easy, inaccurate: use the recognition model, set
uniform probabilities over labels; look at the
probabilities over labels at equilibrium

- hard, more accurate: get representation at top
hidden layer, compute free energy for that state and
each label lit in turn (Teh, Hinton, 2001)



Up-down algorithm

« Write code to refine the greedy solution using
the up-down algorithm

- see Appendix B in (Hinton et al., 2006)

- increase the number of Gibbs iterations at the top
during learning

« Optional: how does accuracy depend on the
architecture? How good can one get by just
greedily learning many layers?



