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Abstract

This paper describes Bayesian techniques for support vector classifica-

tion. In particular, we propose a novel differentiable loss function called

the trigonometric loss function which has the desirable characteristic of

natural normalization in the likelihood function, and then follow standard

Gaussian processes techniques to set up a Bayesian framework. In this

framework, Bayesian inference is used to implement model adaptation,

while keeping the merits of support vector classifier, such as sparseness

and convex programming. This differs from standard Gaussian processes

for classification. Moreover, we put forward class probability in making

predictions. Experimental results on benchmark data sets indicate the

usefulness of this approach.

1 Introduction

As a computationally powerful class of supervised learning networks, classical support

vector classifier (SVC) (Vapnik, 1995) exploits the idea of mapping the input data

into a high dimensional (often infinite) Hilbert space defined by a reproducing kernel

∗All the correspondences should be addressed to S. Sathiya Keerthi.
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(RKHS), where a linear classification is performed. The discriminant function is con-

structed by solving a regularized functional via convex quadratic programming. The

advantages of classical SVC are: a global minimum solution; relatively fast train-

ing speed for large-scale learning tasks; and sparseness in solution representation.

The choice of the regularization parameter and the other kernel parameters in the

SVC model crucially affect the generalization performance. Model selection is usually

based on the criterion of some simple and pertinent performance measures, such as

cross validation (Wahba, 1990) or various generalization bounds derived from sta-

tistical learning theory (Vapnik, 1995). Typically, Bayesian methods are regarded

as suitable tools to determine the values of these parameters. Moreover, Bayesian

methods can also provide probabilistic class prediction that is more desirable than

just deterministic classification.

There is some literature on Bayesian interpretations of classical SVC. Kwok (2000)

built up MacKay’s evidence framework (MacKay, 1992) using a weight-space inter-

pretation. The unnormalized evidence may cause inaccuracy in Bayesian inference.

Sollich (2002) pointed out that the normalization issue in Bayesian framework for clas-

sical SVC is critical and proposed an intricate Bayesian treatment with normalized

evidence and error bar, where the evidence normalization depends on an unknown

input distribution that limits its usefulness in practice.

In this paper, we introduce a novel loss function for SVC, called the trigonometric

loss function, with the purpose of integrating Bayesian inference with SVC smoothly

while preserving their individual merits. The trigonometric loss function is smooth

and naturally normalized in likelihood evaluation. Further, it possesses the desirable

property of sparseness in sample selection. We follow standard Gaussian processes for

classification (Williams and Barber, 1998) to set up a Bayesian framework. Maximum

a posteriori (MAP) estimate of the latent functions results in a convex programming

problem. The popular sequential minimal optimization algorithm could be easily

adapted to find the solution. Optimal parameters can then be inferred by Bayesian

techniques.

The important advantages of our Bayesian treatment on SVC using the trigono-

metric loss function (BTSVC) over classical SVC are: (1) the capability to intrinsi-

cally and efficiently implement feature selection in the probabilistic framework; and

(2) quite better generalization performance on sparse training sets. The probabilities
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for class prediction that BTSVC provides are also rooted in the probabilistic frame-

work. Compared with GPC, BTSVC possesses the sparseness property that reduces

the computational burden and then helps us to tackle large data sets.

The paper is organized as follows: in section 2 we review the popular loss functions

for binary classification, and then propose the trigonometric loss function; in section 3

we describe the Bayesian framework, formulate the MAP estimate on function values

as a convex programming problem, and then evidence approximation can be applied

to implement hyperparameter inference; in section 4 we discuss probabilistic class

prediction; in section 5 we show the results of numerical experiments that verify the

approach and we conclude in section 6.

2 Trigonometric Loss Function

In the probabilistic approach for binary classification, logistic function is widely used

in likelihood evaluation (Williams and Barber, 1998), which is defined as

P(yx|fx) =
1

1 + exp(−yx · fx)
(1)

where the input vector x ∈ Rd, the class label yx ∈ {+1,−1} and fx denotes the

latent function (discriminant function) at x . − lnP(yx|fx) is usually referred to as

the loss function. The loss function associated with the shifted heaviside step function

in SVC is also called the hard margin loss function, which is defined as

`h(yx · fx) =
{

0 if yx · fx ≥ +1;

+∞ otherwise.
(2)

The hard margin loss function is suitable for noise-free data sets. For other general

cases, a soft margin loss function is popularly used in SVC (Burges, 1998), which is

defined as

`ρ(yx · fx) =
{

0 if yx · fx ≥ +1;

(1− yx · fx)ρ otherwise,

where ρ is a positive integer. The corresponding likelihood function in probabilistic

framework can be written as
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P(yx|fx) =
1

ν(fx)
· exp(−`ρ(yx · fx)),

where yx ∈ {−1,+1} and the normalizer should be ν(fx) = exp(−`ρ(+fx))+exp(−`ρ(−fx)).
Notice that the normalizer ν(fx) is dependent on the latent function fx. To compute

the MAP estimate on function values fx in Bayesian inference, the normalizer term

ν(fx) has to be taken into account that makes it inconvenient to find the solution.

This flaw precludes the solution of SVC from being directly used as the MAP esti-

mate (Sollich, 2002). Soft margin loss function is special in that it gives identical zero

penalty to training samples that have satisfied the constraint yx · fx ≥ +1. These

training samples are not involved in the Bayesian inference computations. This sim-

plification of computational burden is usually referred to as the sparseness property.

Logistic function does not enjoy this property since it contributes a positive penalty

to all the training samples. On the other hand, logistic function is attractive because

it is naturally normalized in likelihood evaluation, i.e., the normalizer is a constant,

a property that allows Bayesian techniques to be used smoothly.

Based on these observations, we list desirable characteristics of a loss function for

classification: it should be naturally normalized in likelihood evaluation; it should

possess a flat zero region that results in sparseness property; it should be smooth

and its first order derivative should be monotonic and continuous. Adhering to these

requirements, we propose a novel loss function for binary classification, known as

trigonometric loss function.1 The trigonometric loss function is defined as

`t(yx · fx) =















+∞ if yx · fx ∈ (−∞,−1];
2 ln sec(π

4
(1− yx · fx)) if yx · fx ∈ (−1,+1);

0 if yx · fx ∈ [+1,+∞),

(3)

1 It is possible to construct other loss functions with the desirable properties that

the trigonometric loss function possesses, and even one with a continuous second

order derivative.
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The trigonometric likelihood function is therefore written as

Pt(yx|fx) =















0 if yx · fx ∈ (−∞,−1];
cos2(π

4
(1− yx · fx)) if yx · fx ∈ (−1,+1);

1 if yx · fx ∈ [+1,+∞).

(4)

The derivatives of the loss function are needed in the implementation of Bayesian

methods. The first order derivative of (3) with respect to fx can be derived as

∂`t(yx · fx)
∂fx

=

{

−yx π2 tan(π4 (1− yx · fx)) if yx · fx ∈ (−1,+1);

0 if yx · fx ∈ [+1,+∞),
(5)

and the second order derivative is

∂2`t(yx · fx)
∂f 2

x

=

{

π2

8
sec2(π

4
(1− yx · fx)) if yx · fx ∈ (−1,+1);

0 if yx · fx ∈ [+1,+∞).
(6)

From (4) and Figure 1, it is easy to see that the normalizer ν(fx) is a constant for

any fx. From (3) and Figure 1, we find that the trigonometric loss function possesses

a flat zero region that is same as the loss functions in classical SVC, but it requires

that yx · fx > −1 should always hold. One related issue for the trigonometric loss

function is its sensitivity to outliers. We have conducted numerical experiments to

understand this effect. It will be shown, in Section 5.1, that the general predictive

ability using trigonometric loss function is not affected much by outliers, but only an

increase in the number of support vectors is seen. Its generalization performance is

found to be very close to the classical SVC method. The details are given in Section

5.

Remark 1 The trigonometric loss function (3) can also be stated in a more general

form as

`t(yx · fx) =















+∞ if yx · fx ∈ (−∞,−δ];
2 ln sec

(

π
4
(1− 1

δ
· yx · fx)

)

if yx · fx ∈ (−δ,+δ);
0 if yx · fx ∈ [+δ,+∞),

(7)

where δ > 0. The optimal value of δ is determined by the noise level in training data.
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3 Bayesian Inference

Introducing the trigonometric loss function into the regularized functional of classical

SVC yields an optimization problem of minimizing the trigonometric SVC (TSVC)

regularized functional in a RKHS

min
f∈RKHS

R(f) =
n
∑

i=1

`t(yxi
· fxi

) + λ‖f‖2RKHS, (8)

where the regularization parameter λ is positive and ‖f‖2RKHS is a norm in the RKHS.

TSVC is derived along the way of classical SVC in the Appendix. Here we only focus

on our initial motivation to integrate with Bayesian techniques. If we assume that the

prior P(f) ∝ e−λ‖f‖
2
RKHS and the likelihood P(D|f) ∝ e−

∑n
i=1 `t(yxi

·fxi
), the minimizer

of TSVC regularized functional (8) can be directly interpreted as maximum a poste-

riori (MAP) estimate of the function f in the RKHS (Evgeniou et al., 1999). Due to

the duality between RKHS and stochastic processes (Wahba, 1990), the function f

can also be explained as a family of random variables in a Gaussian process .

Recently, Gaussian processes have provided a promising non-parametric Bayesian

approach to classification problems (Williams and Barber, 1998). The important

advantage of Gaussian process models over other non-Bayesian models is the explicit

probabilistic formulation. This not only gives the ability to infer model parameters

in Bayesian framework but also provides probabilistic class prediction. We follow

the standard Gaussian process classifier to describe a Bayesian framework, in which

we impose a Gaussian process prior distribution on the latent functions and employ

the trigonometric loss function in likelihood evaluation. Compared with standard

Gaussian processes for classification, our approach uses the trigonometric loss function

in place of the logistic loss function in likelihood evaluation; this results in a different

convex programming problem for computing MAP estimate and leads to sparseness

in computation. The TSVC classifier in Bayesian framework is referred to as Bayesian

TSVC (BTSVC).

3.1 Bayesian Framework

The latent functions are usually assumed as the realizations of random variables

indexed by the input vector xi in a stationary zero-mean Gaussian process. The
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Gaussian process can then be specified by giving the covariance matrix for any finite

set of zero-mean random variables {f(xi)|i = 1, 2, . . . , n}. The covariance between

the outputs corresponding to the inputs xi and xj can be defined as

Cov[f(xi), f(xj)] = κ0exp

(

−1

2
κ‖xi − xj‖2

)

+ κb, (9)

where κ0 > 0, κ > 0 and κb > 0. κ0 denotes the average power of f(x) that reflects

the noise level. Note that the exponential term in (9) is exactly the Gaussian kernel

in classical SVC,2 while the second term corresponds to the variance of the offset in

the latent functions. Thus the relationship between the covariance function and the

kernel function is

Cov[f(xi), f(xj)] = κ0K(xi, xj) + κb, (10)

whereK(xi, xj) denotes the Gaussian kernel function, i.e.,K(xi, xj) = exp
(

−1
2
κ‖xi − xj‖2

)

.

Other kernel functions in classical SVC can also be used in the covariance function,

such as polynomial kernels and spline kernels (Wahba, 1990). However, we only focus

on Gaussian kernel in the present work.

We collect the parameters in the prior distribution {κ0, κ, κb}, as θ, the hyperpa-

rameter vector. Thus, for a given hyperparameter vector θ, the prior probability of

the random variables {f(xi)} is a multivariate Gaussian, which can be simply written

as

P(f |θ) = 1

Zf

exp(−1

2
fTΣ−1f), (11)

where f = [f(x1), f(x2), . . . , f(xn)]
T , Zf = (2π)

n
2 |Σ| 12 , and Σ is the n× n covariance

matrix whose ij-th element is Cov[f(xi), f(xj)].

The likelihood with the trigonometric likelihood function (4) can be written as

P(D|f , θ) =
n
∏

i=1

Pt(yxi
|f(xi)). (12)

2There is no need to multiply the term κ0 in kernel function of classical SVC, due

to the redundancy with the regularization parameter.
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Based on Bayes’ theorem, the posterior probability of f can then be written as

P(f |D, θ) = 1

ZS

exp (−S(f)) , (13)

where S(f) = 1
2
fTΣ−1f +

∑n
i=1 `t(yxi

· f(xi)), `t(·) is defined as in (3) and ZS =
∫

exp(−S(f)) df . Since P(f |D, θ) ∝ exp(−S(f)), the MAP estimate on the values

of f is therefore the minimizer of the following optimization problem

min
f

S(f) =
1

2
fTΣ−1f +

n
∑

i=1

`t(yxi
· f(xi)). (14)

This is a regularized functional. If fMP denotes an optimal solution of (14), then the

derivative of S(f) with respect to f should be zero at fMP, i.e.,

∂S(f)

∂f

∣

∣

∣

∣

fMP

= Σ−1 · f +
n
∑

i=1

∂`t(yxi
· f(xi))

∂f

∣

∣

∣

∣

∣

fMP

= 0.

Let us now define the following set of unknowns: υi = − ∂`t(yxi
·f(xi))

∂f(xi)
|fMP(xi) where the

derivative is as given in (5) and υ as the column vector containing {υi}. Then fMP

can be written as:

fMP = Σ · υ. (15)

Using (10), we can decompose the solution (15) into the form

fMP(x) =
n
∑

i=1

υi · κ0 ·K(x, xi) + κb

n
∑

i=1

υi, (16)

to show the significance of the hyperparameters.3 The hyperparameter κ0 determines

the average power of the patterns. The contribution of each pattern to the optimal

discriminant function depends on its υi in (16). In the case of high noise level,

3Let us consider the covariance function K(xi, xj) + κb and the general trigono-

metric loss function (7) in the regularized functional (14). Comparing the consequent

solution with that in (16), we can notice that there is an equivalence between κ0 in

(10) and the parameter 1/δ in (7).
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a smaller value κ0 can reduce the deleterious effect from some particular outliers.

In the regularized functional (14), κ0 in covariance function plays the role as the

regularization parameter. κb is only involved in the bias term of the discriminant

function (16).4

3.2 Convex Programming

In this subsection, we formulate the optimization problem (14) as a convex program-

ming problem, and then adapt the popular sequential minimal optimization (SMO)

algorithm (Platt, 1999; Keerthi et al., 2001) for the solution. As usual, slack variables

ξi are introduced: ξi ≥ 1− yxi
· f(xi), ∀i. The optimization problem (14) can then be

restated as the following equivalent optimization problem, which we refer to as the

primal problem:

min
f ,ξ

1

2
fTΣ−1f + 2

n
∑

i=1

ln sec
(π

4
ξi

)

(17)

subject to yxi
· f(xi) ≥ 1 − ξi and 0 ≤ ξi < 2, ∀i. Standard Lagrangian techniques

(Fletcher, 1987) are used to derive the dual problem. The strict inequality ξi < 2 is

assumed to hold and omitted. As we will see below, this condition will be implicitly

satisfied in the solution. Let αi ≥ 0 and γi ≥ 0 be the corresponding Lagrange

multipliers for other inequalities in the primal problem (17). The Lagrangian for the

primal problem (17) is:

L(f , ξ) =
1

2
fTΣ−1f +2

n
∑

i=1

ln sec
(π

4
ξi

)

−
n
∑

i=1

γi ·ξi−
n
∑

i=1

αi(yxi
·f(xi)−1+ξi). (18)

The KKT conditions for the primal problem (17) are

f(xi) =
n
∑

j=1

yxj
αjCov[f(xi), f(xj)], ∀i; (19)

π

2
tan
(π

4
ξi

)

= αi + γi, ∀i. (20)

4κb might be trivial if the sum
∑n

i=1 υi is very small.
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We can write (20) as

ξi =
4

π
arctan

(

2

π
(αi + γi)

)

(21)

Given this, we note that the condition ξi < 2 is automatically satisfied. If we collect

all the terms involving ξi in the Lagrangian (18), we get

Ti = 2 ln sec
(π

4
ξi

)

− (αi + γi)ξi.

Using (21) we can rewrite Ti as

Ti = ln

(

1 +

(

2

π
(αi + γi)

)2
)

− 4

π
(αi + γi) arctan

(

2

π
(αi + γi)

)

. (22)

Thus, the dual problem becomes a maximization problem involving only the dual

variables, αi and γi:

max
α,γ

R(α,γ) = −1

2

n
∑

i=1

n
∑

j=1

(yxi
αi)(yxj

αj)Cov [f(xi), f(xj)] +
n
∑

i=1

αi

+
n
∑

i=1

[

ln

(

1 +

(

2

π
(αi + γi)

)2
)

− 4

π
(αi + γi) arctan

(

2

π
(αi + γi)

)

] (23)

subject to

αi ≥ 0 and γi ≥ 0,∀i. (24)

It is noted that R(α,γ) ≤ R(α, 0) for any α and γ satisfying (24). Hence the

maximization of (23) over (α,γ) satisfying (24) can be found by maximizing R(α, 0)

over αi ≥ 0,∀i. Therefore, the dual problem can be finally simplified as

min
α

1

2

n
∑

i=1

n
∑

j=1

(yxi
αi)(yxj

αj)Cov [f(xi), f(xj)]−
n
∑

i=1

αi

+
n
∑

i=1

[

4

π
αi arctan

(

2αi

π

)

− ln

(

1 +

(

2αi

π

)2
)] (25)

subject to αi ≥ 0,∀i.

The dual problem (25) is a convex programming problem. In the following, we

study the optimality conditions for the dual problem and adapt the popular SMO

algorithm for the solution. Let ηi ≥ 0 ∀i be the Lagrange multipliers corresponding

to the inequalities in the dual problem (25). The KKT condition for the dual problem
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(25) requires

Fi + yxi
ηi = 0, ∀i, (26)

where Fi = −
∑n

j=1 yxj
αjCov [f(xi), f(xj)] + yxi

− 4
π
arctan

(

2yxi
αi

π

)

. The constraints

(26) can be simplified by considering three cases for each i:

Case 1 : αi 6= 0 Fi = 0;

Case 2 : αi = 0 and yxi
= −1 Fi ≥ 0;

Case 3 : αi = 0 and yxi
= +1 Fi ≤ 0.

Any one pair could be classified into one of the three sets, which are defined as:

I1 = {i : αi 6= 0}, I2 = {i : αi = 0 and yxi
= −1}, and I3 = {i : αi = 0 and yxi

= +1}.
Let us define βup = min{Fi : i ∈ Iup} and βlow = max{Fi : i ∈ I low}, where

Iup = I1 ∪ I2 and I low = I1 ∪ I3. Optimality holds if βup ≥ 0 and βlow ≤ 0. Thus, an

approximate stopping condition is

βup ≥ −τ and βlow ≤ τ (27)

where τ is a positive tolerance parameter, say 10−3. If (27) holds, we have reached a

τ -optimal solution, and then the MAP estimate on the values of the random variables

f can be determined from (19). We write (19) in column vector form as

fMP = Σ · υ (28)

where υ = [yx1
α1, yx2

α2, . . . , yxn
αn]

T , that is consistent with the form (15). The

training samples (xi, yxi
) associated with non-zero Lagrange multiplier αi are called

support vectors (SVs). The other samples associated with zero αi do not involve in

the solution representation and the following Bayesian computation. This property is

usually referred to as sparseness, and it reduces the computational cost significantly.

The popular SMO algorithm for classical SVC (Platt, 1999; Keerthi et al., 2001)

can be easily adapted to solve the optimization problem. The basic idea is to update

the pair of Lagrange multipliers associated with βup and βlow towards the minimum

iteratively till the stopping condition (27) is satisfied. The difference is that the sub-

optimization problem cannot be analytically solved. In the sub-optimization problem,

we use multiple Newton-Raphson steps to update the two Lagrangian multipliers

till convergence, then we return to SMO to update the variables βup and βlow, and
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check the stopping condition (27). The details of the Newton-Raphson steps are

as follows. If αi and αj are being optimized in the sub-optimization problem, the

Newton-Raphson formula for updating is

[

αnew
i

αnew
j

]

=

[

αi

αj

]

−
[

Hii Hij

Hij Hjj

]−1

·
[

−yxi
· Fi

−yxj
· Fj

]

(29)

where Hii = Cov[f(xi), f(xi)] +
8

π2+4·α2
i

, Hij = yxi
· yxj

· Cov[f(xi), f(xj)] and Fi

is as defined below (26). We use this formula (29) to update αi and αj iteratively

till the change in the α variables is less than 10−6 or the number of iterations is

greater than 100. In numerical experiments, we found that the adapted algorithm

can efficiently find the solution at nearly the same computational cost as that required

by the quadratic programming in classical SVC. Of course, other methods for solving

convex programming problems, such as dual subgradient schemes (Larsson et al.,

1999) or interior point methods (Vanderbei, 2001), can also be used for the solution.

3.3 Hyperparameter Inference

The optimal values of hyperparameters θ can be inferred by maximizing the posterior

probability P(θ|D), using P(θ|D) = P(D|θ)P(θ)/P(D). A prior distribution on the

hyperparameters P(θ) is required here. As we typically have little idea about the

suitable values of θ before training data are available, we assume a flat distribution

for P(θ), i.e., P(θ) is greatly insensitive to the values of θ. Therefore, P(D|θ) (which is

known as the evidence of θ) can be used to assign a preference to alternative values of

the hyperparameters θ (MacKay, 1992). The evidence can be calculated by an explicit

formula after using a Laplacian approximation at fMP, and then hyperparameter

inference may be done by gradient-based optimization methods.

The evidence is given by an integral over all f : P(D|θ) =
∫

P(D|θ,f)P(f |θ) df .
Using the definitions in (11) and (12), the evidence can also be written as

P(D|θ) = 1

Zf

∫

exp(−S(f)) df . (30)

The marginalization can be done analytically by considering the Taylor expansion of

S(f) around its minimum S(fMP), and retaining terms up to the second order. Since

the first order derivative with respect to f at the most probable point fMP is zero,
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S(f) can be written as

S(f) ≈ S(fMP) +
1

2
(f − fMP)

T ∂2S(f)

∂f∂fT

∣

∣

∣

∣

f=fMP

(f − fMP), (31)

where ∂2S(f)

∂f∂fT = Σ−1 + Λ, and Λ is a diagonal matrix coming from the second order

derivative of trigonometric loss function (6). Introducing (31) into (30) yields

P(D|θ) = exp(−S(fMP)) · |I + Σ · Λ|− 1
2 ,

where I is the n×n identity matrix. Notice that only a sub-matrix of Σ plays a role in

the determinant |I+Σ·Λ| due to the sparseness of the diagonal matrix Λ in which only

the entries associated with SVs are non-zero. We denote their sub-matrices as ΣM

and ΛM respectively by keeping their non-zero entries. The MAP estimate of f (28)

on support vectors can also be simplified as fMP = ΣM · υM, where υM denotes the

sub-vector of υ by keeping entries associated with SVs. Because of these sparseness

properties, the negative log of the evidence can then be simplified as in the following

remark.

Remark 2 The negative logarithm of the evidence, which is the probability of data

given hyperparameters P(D|θ), can be written as

− lnP(D|θ) = 1

2
υT
M · ΣM · υM + 2

∑

m∈SVs

ln sec
(π

4
ξm

)

+
1

2
ln |I + ΣM · ΛM|, (32)

where I is the identity matrix with the size of SVs, “m ∈ SVs” denotes that m is

varied over the index set of SVs and ξm = 1− yxm
· fMP(xm), ∀m.

The evidence evaluation is a convenient yardstick for model selection. Note that the

evidence depends on the set of SVs. This set will change as the hyperparameters are

varied. The evidence is a smooth function of the hyperparameters within the regions

of hyperparameter space where the set of SVs remains unchanged.5 We assume that

5It is possible that − lnP(D|θ) has jumps at the points where the set of SVs

changes discontinuously. This may lead to situations where gradient-based optimiza-

tion algorithms perform poorly, since the local gradient could have a completely

different direction from the “overall slope” of the evidence. However, in detailed
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the set of SVs remains the same near the minimum of the evidence. The minimizer

of − lnP(D|θ) could then be inferred by some gradient-based optimization methods.

We usually collect {lnκ0, lnκ, lnκb} as the set of variables to tune, and the derivatives

of (32) with respect to these variables are required. We give an expression for the

derivatives of − lnP(D|θ) with respect to these variables in the following remark.

Remark 3 The derivatives of − lnP(D|θ) with respect to the variables can be gen-

erally given as

∂ − lnP(D|θ)
∂ ln θ

=
θ

2
tr

(

(Λ−1M + ΣM)
−1∂ΣM

∂θ

)

− θ

2
υT
M

∂ΣM

∂θ
υM

−θ
2

∑

m∈SVs

υm
M

(

(Λ−1M + ΣM)
−1 · ΣM

)

mm

(

Λ−1M (Λ−1M + ΣM)
−1∂ΣM

∂θ
υM

)m (33)

where θ ∈ {κ0, κ, κb}, the subscript mm denotes the mm-th entry of a matrix, the

superscript m denotes the m-th entry of a vector and, “m ∈ SVs” denotes that m is

varied over the index set of SVs.

In standard Gaussian processes for classification (Williams and Barber, 1998), the

inversion of the full matrix Σ has to be computed in an iterative mode. This is a

heavy burden for large-scale learning tasks. In our approach, only the inversion of

the sub-matrix ΣM, corresponding to the SVs, is required in the gradient evaluation

(33). This sparseness in gradient evaluation makes it possible for our approach to

tackle reasonably large data sets with thousands of samples, as the SVs usually form

a small subset of the training samples.

3.4 Feature Selection

Automatic relevance determination (ARD) was proposed by MacKay (1994) and Neal

(1996) as a hierarchical prior over the weights in neural networks. The weights con-

nected to an irrelevant input can be automatically punished with a tighter prior in

numerical experiments we did not experience any difficulties in finding the optimal

solution using gradient-based algorithms on − lnP(D|θ).
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model adaptation, which reduces the influence of such a weight towards zero effec-

tively. ARD can be directly embedded into the covariance function (9) as follows

Cov[f(xi), f(xj)] = κ0exp

(

−1

2

d
∑

ι=1

κι(x
ι
i − xιj)

2

)

+ κb, (34)

where xι denotes the ι-th entry of the input vector x, and κι is the ARD parameter

that determines the relevance of the ι-th input dimension to the target. The deriva-

tives of − lnP(D|θ) (32) with respect to the variables {lnκι} can be evaluated like

we did in Remark 3.

Note that the training process with large number of hyperparameters can get stuck

at local minima since we use gradient-based optimization methods. In general, we can

perform the optimizations of the evidence several times starting from different initial

states, and choose the one with the highest evidence as optimal choice while discard-

ing other candidates. We can also organize these candidates together as an expert

committee to represent the predictive distribution that can reduce the uncertainty

with respect to the hyperparameters.

4 Probabilistic Class Prediction

In this section, we present details associated with the probabilistic class prediction

on test patterns (MacKay, 1992; Bishop, 1995). This ability to provide the class

probability is one of the important advantages of the probabilistic approach over the

usual deterministic approach.

Let us take a test case x for which the class label yx is unknown. The random vari-

able f(x) and the vector f containing the n zero-mean random variables {f(xi)}ni=1

have the prior joint multivariate Gaussian distribution,

[

f

f(x)

]

∼ N

[(

0

0

)

,

(

Σ k

k
T Cov[f(x), f(x)]

)]

where k = [Cov[f(x), f(x1)], . . . , Cov[f(x), f(xn)] ]
T . The conditional distribution of
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f(x) given f is a Gaussian:

P(f(x)|f ,D, θ) ∝ exp

(

−1

2

(f(x)− f TΣ−1k)2

Cov[f(x), f(x)]− k
TΣ−1k

)

. (35)

To remove the uncertainty in f , we compute P(f(x)|D, θ) by an integral over f -space,

which can be written as

P(f(x)|D, θ) =
∫

P(f(x)|f ,D, θ)P(f |D, θ) df , (36)

where P(f |D, θ) is given as in (13). We make a Laplacian approximation on S(f) at

fMP as given by (31), and replace f TΣ−1k by its linear expansion around fMP, i.e.,

f TΣ−1k = fT
MPΣ

−1
k + k

TΣ−1(f − fMP). (37)

By computing the integral over f (36) with the approximation (31) and the linear

expansion (37), the distribution of P(f(x)|D, θ) can be evaluated as the Gaussian

distribution

P(f(x)|D, θ) ∼ N (µt, σ
2
t ) =

1√
2πσt

exp

(

−(f(x)− µt)
2

2σ2
t

)

. (38)

where the mean is µt = υT
MkM, the variance is σ2

t = Cov[f(x), f(x)] − k
T
M(Λ

−1
M +

ΣM)
−1

kM,
6 and kM is the sub-vector of k by keeping the entries associated with SVs.

The standard deviation σt of the predictive distribution on x is also known as the

error bar on the mean value µt. The second term in the σ2
t evaluation is a measure

on the geometric distance between the test case x and the set of SVs in feature space.

In other words, the test case x tends to get a broad predictive distribution if it lies

far away from the SVs in feature space, and vice versa.

Now we make probabilistic class prediction. Given the hyperparameters θ, the

probability of the binary class label yx for the testing case x can be evaluated as:

P(yx|D, θ) =
∫

P(yx|f(x),D, θ)P(f(x)|D, θ) df(x) ,

6The matrix inverse is already at hand after Bayesian inference with evidence

gradient evaluations.
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where P(yx|f(x),D, θ) is evaluated by trigonometric likelihood function (4) and P(f(x)|D, θ)
is given by (38). The one dimensional integral can be easily computed as:

P(yx|D, θ) =
1

2
erfc

(

1− yxµt√
2σt

)

+

∫ +1

−1
cos2

(π

4
(1− yxf(x))

)

N (µt, σ
2
t ) df(x) ,

(39)

where erfc(ν) = 2√
π

∫ +∞
ν

exp(−z2) dz. The definite integral from −1 to +1 can be

calculated by Romberg integration which may yield accurate results using much few

function evaluations. Note that P(yx = +1|D, θ) is a monotonically increasing func-

tion of µt and P(yx|D, θ) = 0.5 only when the predictive mean µt = 0. However

P(yx|D, θ) also depends on the predictive variance σ2
t for any µt 6= 0. Specifically,

P(yx = +1|D, θ) is a monotonically decreasing function of the predictive variance σ2
t

when µt > 0, but it is a monotonically increasing function of σ2
t when µt < 0.

For θ in (39) we can simply choose the mode of the distribution P(D|θ), i.e., use
P(yx|D, θML) in making prediction where θML = argmax

θ
P(D|θ). This method is

usually referred to as Type II maximum likelihood. Note that this method is also

equivalent to the MAP estimate of ln θ with a uniform prior distribution on ln θ that

corresponds to a non-informative prior distribution P(θ) (Berger, 1985).7

5 Numerical Experiments

In numerical experiments, the initial values of the hyperparameters are chosen as

κ = 1/d and κb = 100.0, where d is the input dimension. The initial value of κ0

is chosen from {0.1, 1, 10, 100}, at which the gradient descent can start smoothly;

usually it is 10. In Bayesian inference, we use the routine L-BFGS-B (Byrd et al.,

1995) as the gradient-based optimization package, and start from the default initial

7In full Bayesian treatment, these hyperparameters θ must be integrated over θ

space. Hybrid Monte Carlo (HMC) methods (Duane et al., 1987; Neal, 1996) can be

adapted here to efficiently approximate the integral. However, we have not done it in

the present work.
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states mentioned above to infer optimal hyperparameters. N (µ, σ2) is used to denote

a Gaussian distribution with mean µ and variance σ2. We begin by showing the

behavior of BTSVC on two simulated data sets. Then we report the training results

on the benchmark data sets used by Rätsch et al. (2001). The computer we used

for these numerical experiments is PIII 866 PC with 384MB RAM and the operating

system is Windows 2000.8

5.1 Simulated Data 1

We generated 50 samples with positive label by randomly sampling in a Gaus-

sian distribution N (−2, 1) and 50 samples with negative label in N (+2, 1) as the

original case. To study the effect of outliers on BTSVC, we also created a sec-

ond case where an extra sample with negative label at −2 was inserted as an out-

lier. We tried BTSVC with the Gaussian covariance function (9) and also SVC

with Gaussian Kernel. For SVC, leave one out validation error was used to de-

termine optimal hyperparameters, which are the regularization parameter C and

the κ in the Gaussian kernel, exp
(

−κ
2
‖xi − xj‖2

)

.9 The initial search for opti-

mal hyperparameters was done on a 7 × 7 coarse grid linearly spaced in the region

{(log10 C, log10 κ)|0 ≤ log10C ≤ 3,−3 ≤ log10 κ ≤ 0}, followed by a fine search on a

9× 9 uniform grid linearly spaced by 0.1 in the (log10 C, log10 κ) space. For BTSVC,

the initial value of κ0 was set at 0.1 and Bayesian inference was used to find the op-

timal hyperparameters. Their final hyperparameter settings are recorded in Table 1.

Comparing the results of BTSVC on the two cases, we find that the effect of the out-

lier can be reduced by decreasing the hyperparameter κ0. Moreover, the increase on κ

8The program we used in the experiments is available at

http://guppy.mpe.nus.edu.sg/∼mpessk/btsvc/bisvm.zip, and the simulated data can

be accessed from http://guppy.mpe.nus.edu.sg/∼mpessk/btsvc/simu.zip.

9When two sets of hyperparameters yield same leave one out validation error, we

prefer the set with smaller number of SVs.
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in Gaussian kernel narrows the kernel shape that restricts the influence of the outlier

to a local region. The discriminant functions of BTSVC and SVC are compared in

Figure 2(b) and 2(d) for the two cases. In both cases, the region {x : f(x) > 0} is

quite similar for both BTSVC and SVC. In the probabilistic class prediction as given

in Figure 2(c), the regions {x : P(yx = +1|x) > 0.5} are almost same for both cases.

In the outlier case of BTSVC, several patterns around the outlier turn out to be SVs,

causing the error bar to reduce drastically. Through the reduction on the error bar,

these SVs contribute more confidence on class predictions in the region around the

outlier. This is another undesirable feature of our model associated with the presence

of outliers. However, there is one positive aspect. Note from Figure 2(c) that, among

all training samples of class −1, the outlier at −2 gets the lowest value for class −1
probability; this property can help to identify the outlier. Once outliers are identified

and removed BTSVC works much better.

5.2 Simulated Data 2

We compared the negative log-likelihood and test error with other well-known proba-

bilistic methods on a two dimensional simulated data set. The samples with positive

label were generated by randomly sampling in a two-dimensional Gaussian distri-

bution N
(

(−2, 0), diag{1, 2}
)

, while the samples with negative label were generated

by sampling in N
(

(+2, 0), diag{2, 1}
)

. The data set is composed of 1000 training

samples and 20002 test samples. The negative log-likelihood on test set and test

error rate are recorded in Table 2, together with the results of other probabilistic

approaches that includes optimal Bayes classifier (Duda et al., 2001) using the true

generative model, Bayes classifier using the generative model estimated from training

data, kernel logistic regression (Keerthi et al., 2002), probabilistic output of classical

SVC (Platt, 2000), standard Gaussian processes for classification (GPC) (Williams

and Barber, 1998).10 BTSVC and GPC yield quite similar test error as we expect

since both use the Laplacian approximation in Bayesian approach and the difference

10The results of kernel logistic regression and probabilistic output of standard SVC

are cited from Keerthi et al. (2002), where 5-fold cross validation was used for model

selection.

19



only lies in the loss function used. Compared with kernel logistic regression, BTSVC

yields lower error rate, but quite similar likelihood evaluation. A visual compari-

son with Bayes classifier and GPC is given in Figure 3. The predictive likelihood of

BTSVC is slightly conservative due to the broad error bar in the regions away from

the SVs.

In the next experiment, we compared the generalization performance and the com-

putational cost of standard SVC and BTSVC on different size of the two dimensional

simulated data. The size of training data set ranged from 10 to 1000. The set of

20002 test samples was used as the common test data for all training data sets. At

each size, we repeated the experiment 20 times to reduce the randomness in training

data generation. If the training data size is less than 100, leave one out validation er-

ror was used to determine optimal hyperparameters for SVC, otherwise 10-fold cross

validation was used. The searching method we used was same as that described in

Section 5.1, and the test error was obtained using the optimal hyperparameters. The

comparison of generalization performance is given in Figure 4. BTSVC and GPC

yield better and more stable generalization performance than SVC, especially when

the training data size is small. Clearly, when the number of training samples is small,

the Bayesian approaches are very much superior.

We present the CPU times used by the three algorithms for solution evaluation at

one hyperparameter set, separately in the three lower graphs of Figure 4. The CPU

times of BTSVC and GPC include the cost for the gradient evaluation. From the scal-

ing result in these graphs, we find that each evaluation in GPC consumes more CPU

time than BTSVC, and BTSVC consumes comparable CPU time as that required

by SVC for solving its quadratic programming problem. However, SVC with cross

validation requires hundreds of evaluations (this depends on the grid placed in hy-

perparameter space for searching and the number of folds we use in cross validation),

while for BTSVC and GPC, the number of evaluations depends on the iterations re-

quired by the optimization method to converge, which is usually about 20. Thus, the

overall CPU time used by BTSVC to find the optimal hyperparameters is much less

than that used by SVC when the number of SVs of BTSVC is less than one thousand.

However, as the number of training samples increases, BTSVC may get more SVs and

then the evaluation of the gradient could become a very expensive step. In such a

situation, SVC will be much more efficient than BTSVC.
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For large data sets with high noise level, we cannot obtain desirable sparseness in

the BTSVC solution due to the effect of outliers. However, when the noise level is

not high, the sparseness property allows BTSVC to handle reasonably large size data

sets that GPC cannot handle.

5.3 Benchmark Data

We also carried out Bayesian inference with Gaussian covariance function (9) on the

benchmark data sets used by Rätsch et al. (2001).11 We report the training results of

BTSVC on these data sets in Table 3. The optimal hyperparameters used throughout

the training on all partitions of that data set were determined by the average results

of Bayesian inference on the first five partitions. We choose optimal hyperparameters

in this way for a fair comparison with the results of SVC reported by Rätsch et al.

(2001). A paired t-test is carried out to measure how likely it would be to obtain

the observed t-statistic under the null hypothesis that there is no difference on test

error between BTSVC and SVC. The t-statistic is evaluated by t = ē
(

∑n
i=1(ei−ē)2
n(n−1)

)−1/2

where ē = 1
n

∑n
i=1 ei and ei denotes the test error difference between the two methods

on the i-th partition. The p-value, i.e. the probability of observing the given result by

chance given that the null hypothesis is true, is recorded in the last column of Table

3. A small p-value implies the difference is significant. BTSVC and SVC tie on the

overall performance. Thus, the generalization capability of our Bayesian approach is

very competitive.

We also carried out the training results of standard Gaussian processes for classifi-

cation (GPC) (Williams and Barber, 1998),12 to compare the generalization capability

and computational cost with BTSVC, which can be taken as a comparison between

11These 100-partition benchmark data sets (only 20 partitions available for Image

and Splice) and related experimental results reported by Rätsch et al. (2001) can be

accessed from http://www.first.gmd.de/∼raetsch/data/benchmarks.htm.

12The source code for GPC we used is available at

http://guppy.mpe.nus.edu.sg/∼mpessk/btsvc/gpc.zip, in which convex programming

is used to find the MAP estimate on function values and Type II maximum likelihood
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logistic loss function and trigonometric loss function. The optimal hyperparame-

ters were determined by Bayesian inference, which was carried out independently on

every partition. Their results are recorded in Table 4. The overall generalization

performance of BTSVC closely matches GPC. Notice that BTSVC requires quite less

computational cost on large data sets.

The correlation between evidence and generalization performance (measured by

test error rate) in BTSVC can be seen from their contour graphs in hyperparameter

space on the first partition of Banana and Waveform data sets in Figure 5.

For the next experiment, we chose the Image and Splice data, which have many

input variables, to carry out feature selection with ARD Gaussian covariance function

(34). The inputs {xi} in the training data were normalized to zero mean and unit

variance dimension-wise and the initial values for all ARD parameters were chosen

as 1/d where d is the input dimension. In Table 5, BTSVC using ARD Gaussian

covariance function improves generalization performance from 12.35% to 5.29% on

the Splice data sets. From the optimal ARD parameters, we find that only the

28th − 34th input dimensions are significantly relevant in the whole 60 dimensions.

Thus, we create reduced Splice data sets by keeping the 7 relevant dimensions only.

On the reduced data sets, both Gaussian (in Table 4) and ARD Gaussian kernel can

still yield competitive performance. Based on these numerical experiments, we find

that both BTSVC and GPC have the capacity to determine the relevant inputs and

hence improve generalization. BTSVC has the additional advantage that it requires

less overhead than GPC on large data sets.

6 Conclusion

In this paper, we proposed a Bayesian support vector classifier by introducing trigono-

metric likelihood function. In the probabilistic framework of stationary Gaussian

processes, various computational procedures are provided for the MAP estimate and

the evidence of the hyperparameters. Model adaptation and ARD feature selection

are implemented intrinsically in hyperparameter inference. Furthermore, the sparse-

with Laplacian approximation is used to tune hyperparameters.
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ness property associated with the new likelihood function reduces the computational

cost significantly. Another benefit is the availability of class probabilities in making

predictions. The results in numerical experiments verify that the generalization ca-

pability is excellent and that it is possible to tackle reasonably large data sets with

moderate noise level using this approach.
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Appendix: Trigonometric Support Vector Classifier

In a reproducing kernel Hilbert space (RKHS), trigonometric support vector classifier

(TSVC) takes the form of f(x) = 〈w · φ(x)〉 + b, where b is known as the bias, φ(·)
is the mapping function, and the dot product 〈φ(xi) · φ(xj)〉 is also the reproducing

kernel K(xi, xj) of the RKHS. The optimal classifier is constructed by minimizing the

following regularized functional

R(w, b) =
n
∑

i=1

`t(yxi
· fxi

) +
1

2
‖w‖2 (40)

where ‖w‖2 is a norm in the RKHS and `t(·) denotes the trigonometric loss function.

By introducing a slack variables ξi ≥ 1 − yxi
· (〈w · φ(xi)〉 + b), the minimization

problem (40) can be rewritten as

min
w,b,ξ

R(w, b, ξ) = 2
n
∑

i=1

ln sec
(π

4
ξi

)

+
1

2
‖w‖2 (41)

subject to yxi
· (〈w · φ(xi)〉 + b) ≥ 1− ξi and 0 ≤ ξi < 2, ∀i, which is referred as the

primal problem. Let αi ≥ 0 and γi ≥ 0 be the corresponding Lagrange multipliers for

the inequalities in the primal problem. The KKT conditions for the primal problem
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(41) are

w =
n
∑

i=1

yxi
αiφ(xi);

n
∑

i=1

yxi
αi = 0;

π

2
tan
(π

4
ξi

)

= αi + γi,∀i. (42)

Notice that the implicit constraint ξi < 2 has been taken into account automatically

in (42). Following the analogous arguments in Section 3.2, we can derive the dual

problem as

min
α
R(α) =

1

2

n
∑

i=1

n
∑

j=1

(yxi
αi)(yxj

αj)K(xi, xj)−
n
∑

i=1

αi

+
n
∑

i=1

[

4

π
αi arctan

(

2αi

π

)

− ln

(

1 +

(

2αi

π

)2
)] (43)

subject to
∑n

i=1 yxi
αi = 0 and αi ≥ 0 ∀i.

Comparing with BTSVC, the only difference lies in the existence of the equality

constraint
∑n

i=1 yxi
αi = 0 in TSVC. The popular SMO algorithm (Platt, 1999; Keerthi

et al., 2001) can be adapted to find the solution. The classifier is obtained as f(x) =

〈∑n
i=1 yxi

αiφ(xi) · φ(x)〉+b =
∑n

i=1 yxi
αiK(xi, x)+b using the optimal solution of the

dual problem (43). Cross validation can be used to choose the optimal parameters

for the kernel function.
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Rätsch, G., T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine

Learning, 42(3):287–320, 2001.

Sollich, P. Bayesian methods for support vector machines: Evidence and predictive

class probabilities. Machine Learning, 46:21–52, 2002.

Vanderbei, R. J. Linear Programming: Foundations and Extensions, volume 37 of

International Series in Operations Research and Management Science. Kluwer

Academic, Boston, 2nd edition, June 2001.

Vapnik, V. N. The Nature of Statistical Learning Theory. New York: Springer-Verlag,

1995.

Wahba, G. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional

Conference Series in Applied Mathematics. SIAM, 1990.

Williams, C. K. I. and D. Barber. Bayesian classification with Gaussian processes.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–

1351, 1998.

26



Table 1: The optimal hyperparameters in Gaussian covariance function (9) of BTSVC

after hyperparameter inference, along with the model parameters of standard SVC

with Gaussian kernel after leave one out cross validation on the one-dimensional

simulated data set. The Evidence, − lnP(D|θ), is evaluated using (32). SVs denotes

the number of SVs. C denotes the regularization parameter in SVC.

BTSVC SVC

Data set κ0 κ κb SVs Evidence C κ SVs

Original Case 7.485 0.194 0.565 9 5.46 7.943 0.159 6

Outlier Case 0.776 0.792 0.113 74 15.97 158.489 0.0158 8

Table 2: Negative log-likelihood on test set (NLL) and the error rate on test set

(ERR) for optimal Bayes classifier (Optimal), Bayes classifier (Bayes), kernel logistic

regression (Klogr), probabilistic output of classical support vector classifier (SVC),

standard Gaussian processes for classification (GPC) and Bayesian trigonometric sup-

port vector classifier (BTSVC) on the two dimensional simulated data set.

Optimal Bayes Klogr SVC GPC BTSVC

NLL 2532.5 2559.2 2663.4 2703.5 2570.3 2665.7

ERR 0.0490 0.0495 0.0502 0.0507 0.0496 0.0496
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Table 3: Training results of BTSVC with Gaussian covariance function (9) on the

100-partition benchmark data sets. d denotes the input dimension, n is the size of

training data and m is the size of test data. κ0, κ and κb denote the average result of

BTSVC on the first five partitions. RATE denotes the test error rate (in percentage)

averaged over all partitions of that data set together with the standard deviation; and

for comparison purpose, we cite the test error rate of classical SVC with Gaussian

kernel reported by Rätsch et al. (2001) in the column SVC, and then compute the

p-values for the paired t−test on error rate difference. We use bold face to indicate

the cases in which the indicated element is significantly better; a p-value threshold of

0.01 was used to decide this.

Data set d n m κ0 κ κb RATE SVC p-value

Banana 2 400 4900 2.308 1.425 0.349 10.39±0.50 11.53±0.66 7.69×10−30

Breast 9 200 77 0.172 0.115 0.00343 25.70±4.46 26.04±4.74 0.214

Diabetis 8 468 300 0.386 0.0606 15.638 23.13±1.75 23.53±1.73 2.95×10−4

Flare 9 666 400 0.802 0.316 0.0969 34.26±1.75 32.43±1.82 1.01×10−17

German 20 700 300 0.339 0.0625 11.362 23.37±2.28 23.61±2.07 0.0583

Heart 13 170 100 3.787 0.00731 9.222 16.33±2.78 15.95±3.26 0.0404

Image 18 1300 1010 87.953 0.0428 95.847 3.50±0.62 2.96±0.60 9.74×10−5

Ringnorm 20 400 7000 0.978 0.0502 102.126 1.99±0.26 1.66±0.12 2.75×10−22

Splice 60 1000 2175 3.591 0.00601 121.208 12.36±0.72 10.88±0.66 2.54×10−11

Thyroid 5 140 75 66.920 0.132 96.360 3.95±2.07 4.80±2.19 3.41×10−8

Titanic 3 150 2051 0.391 0.966 44.536 22.51±1.01 22.42±1.02 0.280

Twonorm 20 400 7000 18.658 0.00426 94.741 2.90±0.27 2.96±0.23 3.26×10−3

Waveform 21 400 4600 1.310 0.0393 111.23 9.94±0.42 9.88±0.43 0.196
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Table 4: Training results of BTSVC and GPC with Gaussian covariance function (9)

on the 100-partition benchmark data sets. Splice∗ denotes the reduced Splice data

sets, and SVs denotes the number of the SVs of BTSVC. RATE denotes the test

error rate of BTSVC in percent averaged over all partitions of that data set together

with the standard deviation, and GPC-RATE is the corresponding element of GPC.

TIME denotes the average CPU time in seconds consumed by BTSVC for training on

one partition, and GPC-TIME is the corresponding value of GPC. The p-value is for

the paired t−test on error rate. We use the bold face to indicate the cases in which

the indicated element is significantly better; a p-value threshold of 0.01 was used to

decide this.

Data set n SVs TIME GPC-TIME RATE GPC-RATE p-value

Banana 400 252.9±27.3 9.34±2.34 18.04±6.32 10.44±0.48 10.47±0.46 0.216

Breast 200 199.9±0.4 3.21±0.68 1.53±0.32 26.53±4.60 26.79±4.50 0.200

Diabetis 468 454.0±7.0 27.24±8.93 12.67±1.17 23.21±1.77 23.71±2.08 3.75×10−7

Flare 666 646.5±14.4 71.61±21.05 47.87±14.92 34.39±1.81 34.22±1.81 0.0506

German 700 682.7±13.8 95.71±34.76 57.78±13.93 23.48±2.11 23.81±2.17 0.0115

Heart 170 149.1±8.6 1.77±0.58 2.39±0.65 16.34±2.90 17.19±3.23 1.22×10−4

Image 1300 357.1±32.3 96.05±21.43 997.78±158.56 3.58±0.67 3.39±0.81 0.299

Ringnorm 400 188.8±9.0 2.88±1.19 18.79±9.94 1.99±0.26 1.61±0.13 7.36×10−39

Splice 1000 713.8±21.4 261.43±60.39 519.52±65.21 12.35±0.75 11.30±0.77 3.23×10−11

Splice∗ 1000 511.4±52.2 52.81±23.49 271.38±59.62 5.85±0.53 5.59±0.46 1.16×10−3

Thyroid 140 30.6±8.3 0.28±0.13 1.56±0.32 4.32±2.09 4.80±1.94 4.41×10−4

Titanic 150 149.8±1.5 1.32±0.38 0.90±0.22 22.73±1.43 22.50±1.54 5.12×10−3

Twonorm 400 96.0±18.3 2.16±0.95 23.71±6.93 2.85±0.29 2.89±0.27 0.016

Waveform 400 190.7±22.3 4.38±1.77 30.92±6.24 10.11±0.45 10.06±0.47 0.0888
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Table 5: Training results of BTSVC and GPC with ARD Gaussian kernel (34) on the

Image and Splice 20-partition data sets. Splice∗ denotes the reduced Splice data sets,

and SVs denotes the number of the SVs. RATE denotes the test error rate of BTSVC

in percent averaged over all partitions of that data set together with the standard

deviation, and GPC-RATE is the corresponding element of GPC. TIME denotes the

average CPU time in seconds consumed by BTSVC for training on one partition, and

GPC-TIME is the corresponding value of GPC. The p-value is for the paired t−test
on error rate.

Data set SVs TIME GPC-TIME RATE GPC-RATE p-value

Image 379.5±53.7 133.71±86.89 1561.64±351.92 2.59±0.54 2.24±0.58 0.0287

Splice 598.1±74.4 811.89±574.48 1238.22±318.96 5.29±0.67 5.07±0.79 0.217

Splice∗ 491.6±37.3 48.43±21.32 498.04±247.84 5.71±0.59 5.59±0.55 0.303
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Figure 1: The graphs of trigonometric likelihood function and its loss function. The

horizontal axis indicates the latent function fx of the input vector x.
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Figure 2: The training results of BTSVC on the one-dimensional simulated data,

together with the results of SVC and GPC. In graph (a), the distributions of each

class are presented as reference. In graph (c), we compare the probabilistic class

prediction of BTSVC (39) on the original and outlier cases. In graph (e), we present

the results of GPC on the two cases. In graphs (b) and (d), we plot the discriminant

function of BTSVC, µt in (38), together with that of classical SVC for the two cases.

The dotted curves indicate the error bars provided by BTSVC, i.e. µt±σt. Leave one
out cross validation was used to choose the optimal model parameters for SVC. In

graph (f), we present the results of GPC on the outlier case as reference. The dotted

curves indicate the error bars provided by GPC. Note that the error bars on f(x) in

(d) and (f) are not comparable, since the BTSVC and GPC have different relations

linking f(x) to the class probabilities. 31
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Figure 3: In the upper graph, the contour of the probabilistic output of Bayes classifier

on the two dimensional simulated data set is presented. In the middle graph, the

contour of probabilistic output of BTSVC is presented. In the lower graph, the

contour of probabilistic output of standard Gaussian processes for classification is

presented. The contours are indexed by P (yx = +1|x,D, θ).

32



10
1

10
2

10
3

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

data size

Test Error Rate of SVC

10
1

10
2

10
3

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Test Error Rate of BTSVC

data size

10
1

10
2

10
3

10
4

10
2

10
0

10
2

data size

CPU Time Used by SVC

10
1

10
2

10
3

10
4

10
2

10
0

10
2

data size

CPU Time Used by BTSVC

10
1

10
2

10
3

10
4

10
2

10
0

10
2

data size

CPU Time Used by GPC

slope≈ 2.13  slope≈ 2.18  slope≈ 2.33 

10
1

10
2

10
3

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1 

data size

Test Error Rate of GPC

Figure 4: SVC, BTSVC and GPC on the two-dimensional simulated data sets at

different size of training data. The test error rates at different sizes of training data

are given in the three upper graphs separately. BTSVC and GPC used Bayesian in-

ference with Laplacian approximation to tune hyperparameters while cross validation

was used for SVC to choose optimal hyperparameters. In the left lower graph, the

computational cost (CPU time in seconds) of SVC for training once on one fold is

given. In the middle and right lower graph, we present the CPU time in seconds con-

sumed by BTSVC and GPC for one evaluation on evidence and its gradient (including

the convex programming) separately. The position of cross denotes the average value

over 20 tries, and the vertical line indicates the standard deviation.
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Figure 5: The contour graphs of evidence and testing error rate in hyperparameter

space on the first fold of Banana and Waveform data sets. The horizontal axis indi-

cates κ0 and the vertical axis indicates κ. κb is fixed at 100. Note that the evidence

is given by − lnP(D|θ).
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