An Improved Conjugate Gradient Scheme to the Solution of Least Squares SVM

Wei Chu Chong Jin Ong^{*} S. Sathiya Keerthi

CHUWEI@GATSBY.UCL.AC.UK MPEONGCJ@NUS.EDU.SG MPESSK@NUS.EDU.SG

Control Division, Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260

Abstract

The Least Square Support Vector Machines (LS-SVM) formulation corresponds to the solution of a linear system of equations. Several approaches to its numerical solutions have been proposed in the literature. In this paper, we propose an improved method to the numerical solution of LS-SVM and show that the problem can be solved using one reduced system of linear equations. Compared with the existing algorithm (Suykens et al., 1999) for LS-SVM, our approach is about twice as efficient. Numerical results using the proposed method are provided for comparisons with other existing algorithms.

Keywords: Least Square Support Vector Machines, Conjugate Gradient, Sequential Minimal Optimization

1 Introduction

As an interesting variant of the standard support vector machines (Vapnik, 1995), least squares support vector machines (LS-SVM) have been proposed by Suykens and Vandewalle (1999) for solving pattern recognition and nonlinear function estimation problems. The links between LS-SVM classifiers and kernel Fisher discriminant analysis have also been established by Van Gestel et al. (2002). The LS-SVM formulation has been further extended to kernel principal component analysis, recurrent networks and optimal control (Suykens et al., 2002). As for the training of the LS-SVM, Suykens et al. (1999) proposed an iterative algorithm based on the conjugate

^{*}Corresponding author

gradient algorithm. Keerthi and Shevade (2003) adapted the Sequential Minimal Optimization (SMO) algorithm for SVM (Platt, 1999) for the solution of LS-SVM.

In this paper, we propose an improved algorithm with conjugate gradient methods for LS-SVM. We first show the optimality conditions of LS-SVM, and establish its equivalence to a reduced linear system. Conjugate gradient methods can then be employed for its solution. Compared with the algorithm proposed by Suykens et al. (1999), our algorithm is equally robust and is at least twice as efficient.

We adopt the following notations. $x \in \mathbb{R}^d$, $D \in \mathbb{R}^{n \times m}$ are *d*-dimensional column vector and $n \times m$ matrix of real entries respectively; x^T is the transpose of x; $\mathbf{1}_n$ and $\mathbf{0}_n$ are n-column vectors of entries 1 and 0 respectively. This paper is organized as follows. In section 2, we review the optimization formulation of LS-SVM, and then show the simplification of the optimality conditions to a reduced linear system. In section 3, we present the results of numerical experiments using our proposed algorithm on some benchmark data sets of different sizes, and compare with the results obtained using the conjugate method by Suykens et al. (1999) and the SMO algorithm by Keerthi and Shevade (2003). We conclude in section 4.

2 LS-SVM and its Solution

Suppose that we are given a training data set of n data points $\{x_i, y_i\}_{i=1}^n$, where $x_i \in \mathbb{R}^d$ is the *i*-th input vector and y_i is the corresponding *i*-th target. For binary classification problems y_i takes only two possible values $\{-1, +1\}$, whereas y_i takes any real value, i.e. $y_i \in \mathbb{R}$, for regression problems. We employ the idea to transform the input patterns into the reproducing kernel Hilbert space (RKHS) by a set of mapping functions $\phi(x)$ (Suykens et al., 2002). The reproducing kernel K(x, x') in the RKHS is the dot product of the mapping functions at x and x', i.e.

$$K(x, x') = \langle \boldsymbol{\phi}(x) \cdot \boldsymbol{\phi}(x') \rangle \tag{1}$$

In the RKHS, a linear classification/regression is performed. The discriminant function takes the form $f(x) = \sum_{i=1}^{n} \langle \boldsymbol{w} \cdot \boldsymbol{\phi}(x) \rangle + b$, where \boldsymbol{w} is the weight vector in the RKHS, and $b \in R$ is called the bias term. The discriminant function of LS-SVM classifier (Suykens and Vandewalle, 1999) is constructed by solving the following minimization problem:

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} P(\boldsymbol{w},b,\boldsymbol{\xi}) = \frac{1}{2} \langle \boldsymbol{w} \cdot \boldsymbol{w} \rangle + \frac{C}{2} \sum_{i=1}^{n} \xi_i^2$$
(2)

s.t.
$$y_i - (\langle \boldsymbol{w} \cdot \boldsymbol{\phi}(x_i) \rangle + b) = \xi_i \quad i = 1, \cdots, n$$
 (3)

where C > 0 is the regularization factor and ξ_i is the difference between the output y_i and $f(x_i)$. Using standard techniques (Fletcher, 1987), the Lagrangian for (2)-(3) is:

$$L(\boldsymbol{w}, b, \boldsymbol{\xi}; \boldsymbol{\alpha}) = \frac{1}{2} \langle \boldsymbol{w} \cdot \boldsymbol{w} \rangle + \frac{C}{2} \sum_{i=1}^{n} \xi_{i}^{2} + \sum_{i=1}^{n} \alpha_{i} \left(y_{i} - \left(\langle \boldsymbol{w} \cdot \boldsymbol{\phi}(x_{i}) \rangle + b \right) - \xi_{i} \right)$$
(4)

where $\alpha_i, i = 1, \dots, n$ are the Lagrangian multipliers corresponding to (3). The Karush-Kuhn-Tucker (KKT) conditions (2) are:

$$\frac{\partial L}{\partial \boldsymbol{w}} = 0 \quad \rightarrow \quad \boldsymbol{w} = \sum_{i=1}^{n} \alpha_i \boldsymbol{\phi}(x_i)$$

$$\frac{\partial L}{\partial b} = 0 \quad \rightarrow \quad \sum_{i=1}^{n} \alpha_i = 0$$

$$\frac{\partial L}{\partial \xi_i} = 0 \quad \rightarrow \quad \alpha_i = C\xi_i \quad \forall i$$

$$\frac{\partial L}{\partial \alpha_i} = 0 \quad \rightarrow \quad \xi_i = y_i - (\langle \boldsymbol{w} \cdot \boldsymbol{\phi}(x_i) \rangle + b) \quad \forall i$$
(5)

In the numerical solution proposed by Suykens et al. (1999), the KKT conditions of (5) are reduced to a linear system by eliminating \boldsymbol{w} and $\boldsymbol{\xi}$, resulting in

$$\begin{bmatrix} \boldsymbol{Q} & \boldsymbol{1}_{\mathbf{n}} \\ \boldsymbol{1}_{\mathbf{n}}^{T} & \boldsymbol{0} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{b} \end{bmatrix} = \begin{bmatrix} \boldsymbol{y} \\ \boldsymbol{0} \end{bmatrix}$$
(6)

where $\boldsymbol{Q} \in R^{n \times n}$ with *ij*-th entry $\boldsymbol{Q}_{ij} = K(x_i, x_j) + \frac{1}{C} \delta_{ij}$, $\boldsymbol{y} = [y_1, y_2, \dots, y_n]^T$ and $\boldsymbol{\alpha} = [\alpha_1, \alpha_2, \dots, \alpha_n]^T$. Note that \boldsymbol{Q} is symmetric and positive definite since the matrix $\boldsymbol{K} \in R^{n \times n}$ with $\boldsymbol{K}_{ij} = K(x_i, x_j)$ is semi-positive definite and the diagonal term $\frac{1}{C}$ is positive. Solving (6) for $\boldsymbol{\alpha}$ and b, the discriminant function can be obtained from $f(x) = \sum_{i=1}^n \alpha_i K(x_i, x) + b$.

 $^{{}^{1}\}delta_{ij}$ is 1 only when i = j, otherwise 0.

Suykens et al. (1999) suggested the use of the conjugate gradient method for the solution of (6). In addition, they reformulated (6) so as to exploit the positive definiteness of Q and proposed to solve two systems of linear equations for α . More exactly, their algorithm can be described as

- 1. Solve the intermediate variables η and ν from $Q \cdot \eta = y$ and $Q \cdot \nu = \mathbf{1}_n$ using conjugate gradient methods.
- 2. Find solution $b = (\mathbf{1_n}^T \cdot \boldsymbol{\eta})/(\mathbf{1_n}^T \cdot \boldsymbol{\nu})$, and $\boldsymbol{\alpha} = \boldsymbol{\eta} b \cdot \boldsymbol{\nu}$.

In step 1, the n^{th} -order linear equations are solved twice, using conjugate gradient method, for the solutions of η and ν . In the following, we propose a single step approach that solves the linear system having n-1 order. We begin by stating some known results.

 $\begin{array}{ccc} \textbf{Lemma 1} & \textit{Consider the partition of the symmetric and positive definite matrix } \boldsymbol{Q} := \begin{bmatrix} \bar{\boldsymbol{Q}} & \boldsymbol{q} \\ & \boldsymbol{q}^T & \boldsymbol{Q}_{nn} \end{bmatrix}, \\ where \ \bar{\boldsymbol{Q}} \in R^{(n-1)\times(n-1)}, \ \boldsymbol{q} \in R^{n-1} \ and \ \boldsymbol{Q}_{nn} \in R. \ Then \end{array}$

$$\tilde{\boldsymbol{Q}} := \bar{\boldsymbol{Q}} - \boldsymbol{1}_{n-1} \cdot \boldsymbol{q}^T - \boldsymbol{q} \cdot \boldsymbol{1}_{n-1}^T + \boldsymbol{Q}_{nn} \cdot \boldsymbol{1}_{n-1} \cdot \boldsymbol{1}_{n-1}^T$$
(7)

is positive definite.

Proof: Let $\boldsymbol{M} = \begin{bmatrix} \mathbf{I}_{n-1} & \mathbf{0}_{n-1} \\ -\mathbf{1}_{n-1}^T & 1 \end{bmatrix}$ and note that $\boldsymbol{M}^T \cdot \boldsymbol{Q} \cdot \boldsymbol{M} = \begin{bmatrix} \mathbf{I}_{n-1} & -\mathbf{1}_{n-1} \\ \mathbf{0}_{n-1}^T & 1 \end{bmatrix} \begin{bmatrix} \bar{\boldsymbol{Q}} & \boldsymbol{q} \\ \boldsymbol{q}^T & \boldsymbol{Q}_{nn} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{n-1} & \mathbf{0}_{n-1} \\ -\mathbf{1}_{n-1}^T & 1 \end{bmatrix} = \begin{bmatrix} \tilde{\boldsymbol{Q}} & \tilde{\boldsymbol{q}} \\ \tilde{\boldsymbol{q}}^T & \boldsymbol{Q}_{nn} \end{bmatrix}$ (8)

where $\tilde{\boldsymbol{Q}}$ is as given by (7). Since \boldsymbol{Q} is positive definite, so is the matrix at the right-hand side of (8). As $\tilde{\boldsymbol{Q}}$ is a sub-matrix of a positive definite matrix, the result follows.

Lemma 2 Let $\tilde{\boldsymbol{\alpha}}^*$ be the solution of $\tilde{\boldsymbol{Q}} \cdot \tilde{\boldsymbol{\alpha}} = \tilde{\boldsymbol{y}} - y_n \cdot \mathbf{1}_{n-1}$ with $\tilde{\boldsymbol{y}} = [y_1, y_2, \dots, y_{n-1}]^T$ and $\tilde{\boldsymbol{Q}}$ as given by (7). Then the vector $\boldsymbol{\alpha}^* = \begin{bmatrix} \tilde{\boldsymbol{\alpha}}^* \\ -\mathbf{1}_{n-1}^T \cdot \tilde{\boldsymbol{\alpha}}^* \end{bmatrix}$ and $b^* = y_n + \boldsymbol{Q}_{nn} \cdot (\mathbf{1}_{n-1}^T \cdot \tilde{\boldsymbol{\alpha}}^*) - \boldsymbol{q}^T \cdot \tilde{\boldsymbol{\alpha}}^*$ are the solution of the optimization problem (2).

Proof: Since $\tilde{\boldsymbol{Q}}$ is positive definite, $\tilde{\boldsymbol{\alpha}}^*$ is unique. Using $\tilde{\boldsymbol{Q}}$ from (7) and $\tilde{\boldsymbol{Q}} \cdot \tilde{\boldsymbol{\alpha}}^* = \tilde{\boldsymbol{y}} - y_n \cdot \mathbf{1}_{n-1}$, we have

$$\bar{\boldsymbol{Q}} \cdot \tilde{\boldsymbol{\alpha}}^* - \boldsymbol{q} \cdot \boldsymbol{1}_{n-1}^T \cdot \tilde{\boldsymbol{\alpha}}^* - \tilde{\boldsymbol{y}} = (\boldsymbol{q}^T \cdot \tilde{\boldsymbol{\alpha}}^* - \boldsymbol{Q}_{nn} \cdot (\boldsymbol{1}_{n-1}^T \cdot \tilde{\boldsymbol{\alpha}}^*) - y_n) \cdot \boldsymbol{1}_{n-1} = -b^* \cdot \boldsymbol{1}_{n-1}$$
(9)

where we have used

$$b^* = y_n + \boldsymbol{Q}_{nn} \cdot (\boldsymbol{1}_{n-1}^T \cdot \tilde{\boldsymbol{\alpha}}^*) - \boldsymbol{q}^T \cdot \tilde{\boldsymbol{\alpha}}^*$$
(10)

Rewriting (9) and (10) into matrix form, we have

$$\boldsymbol{Q} \cdot \boldsymbol{\alpha}^* + \boldsymbol{b}^* \cdot \boldsymbol{1}_{\mathbf{n}} = \boldsymbol{y} \tag{11}$$

From (11) and the fact that $\mathbf{1}_n^T \cdot \boldsymbol{\alpha}^* = 0$, it follows that $\boldsymbol{\alpha}^*$ and b^* are the solution of (6) and hence satisfy the optimization problem (2)-(3).

Following Lemma 2, we can use the standard conjugate gradient algorithm (Fletcher, 1987) for the solution of the reduced linear system $\tilde{Q} \cdot \tilde{\alpha} = \tilde{y} - y_n \cdot \mathbf{1}_{n-1}$. Clearly, compared with the scheme proposed by Suykens et al. (1999), our algorithm can save at least 50% of the computational effort. In addition, \tilde{Q} is positive definite and the numerical stability of our approach is the similar to that proposed by Suykens et al. (1999).

3 Numerical Experiments

For comparison purpose, we implemented our proposed algorithm with standard conjugate gradient methods (CG), the algorithm proposed by Suykens et al. (1999), and the SMO algorithm given by Keerthi and Shevade (2003). The stopping conditions used in all three algorithms are the same, and is based on the value of the duality gap, i.e., $P(\boldsymbol{w}, b, \boldsymbol{\xi}) - D(\boldsymbol{\alpha}) \leq \epsilon D(\boldsymbol{\alpha})$, where $P(\boldsymbol{w}, b, \boldsymbol{\xi})$ is defined as in (2), $D(\boldsymbol{\alpha})$ is the dual functional given by $D(\boldsymbol{\alpha}) = \frac{1}{2} \cdot \boldsymbol{\alpha}^T \cdot \boldsymbol{Q} \cdot \boldsymbol{\alpha} - \boldsymbol{\alpha}^T \cdot \boldsymbol{y}$, and $\epsilon = 10^{-6}$. Note that this is not the traditional stopping condition for conjugate gradient algorithm. We have discounted the extra cost caused by computing the stopping condition in CG for a fair comparison. In the implementations, the diagonal entries of \boldsymbol{Q} were cached for efficiency, and we also cached the vector \boldsymbol{q} for our improved CG scheme. The programs used in the experiments were written in ANSI C and executed on a Pentium III 866 PC running on Windows 2000 platform.² Six benchmark data sets were used in these experiments: Banana, Waveform, Image, Splice, MNIST and Computer Activity.³ The Gaussian kernel $K(x, x') = \exp\left(-\frac{\|\boldsymbol{x}-\boldsymbol{x}'\|^2}{2\sigma^2}\right)$ was used as the kernel function. The values of σ^2 used are based on the suggested values given in Duan et al. (2003).

We carried out the numerical experiments on the six data sets with several different regularization factor C, and recorded their results in Table 1 and Table 2 respectively. All the algorithms are stable and closely reach the same dual functional $D(\alpha)$. The computational cost of our approach is about half of that used by the algorithm in Suykens et al. (1999). The increase in computational cost of the SMO algorithm at large C values (greater than 10^3) is sharp as seen from the results on Banana and Image data sets.⁴ For small to medium data sets, the CG algorithm is more efficient than SMO. Experimentally, SMO scales better than the CG methods based on the two large data sets that we have solved. Consequently, there is no clear overall superiority in the performance for either of the methods. We suggest that CG algorithm is suitable for small to moderate data sets i.e., the number of samples is less than two thousands, while SMO is suitable for large data sets.

²The programs and their source code can be accessed at http://guppy.mpe.nus.edu.sg/~chuwei/code/lssvm.zip.

³Image and Splice datasets can be accessed at http://ida.first.gmd.de/~raetsch/data/benchmarks.htm. We used the first partition in the twenty partitions. MNIST is available at http://yann.lecun.com/exdb/mnist/, and we selected the samples of the digit 0 and 8 only to set up the binary classification problem. Computer Activity dataset is available in DELVE at http://www.cs.toronto.edu/~delve/, and it corresponds to a regression problem.

⁴Keerthi and Shevade (2003) argued that too large C values might actually be out of our interest since the optimal C is seldom greater than 10^3 in practice.

4 Conclusion

In this paper, we proposed a new scheme for the numerical solution of LS-SVM using conjugate gradient methods. The new scheme is simple and efficient and involves the solution of the linear system of equations of n-1 order. Numerical results provided shows that the proposed scheme is at least twice as efficient when compared with the algorithm proposed by Suykens et al. (1999). It also has a comparable performance when compared with the SMO approach by Keerthi and Shevade (2003).

Acknowledgments

Wei Chu gratefully acknowledges the financial support provided by the National University of Singapore through Research Scholarship. A part of the revision work was done at Gatsby Computational Neuroscience Unit of University College London supported by the National Institutes of Health (NIH) and its National Institute of General Medical Sciences (NIGMS) division under Grant Number 1 P01 GM63208 (NIH/NIGMS grant title: Tools and Data Resources in Support of Structural Genomics).

References

- Duan, K., S. S. Keerthi, and A. N. Poo. Evaluation of simple performance measures for tuning svm hyperparameters. *Neurocomputing*, 51:41–59, 2003.
- Fletcher, R. Practical methods of optimization. John Wiley and Sons, 1987.
- Keerthi, S. S. and S. K. Shevade. SMO algorithm for least squares SVM formulations. Neural Computation, 15(2), Feb. 2003.
- Platt, J. C. Fast training of support vector machines using sequential minimal optimization. In Schölkopf, B., C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods -Support Vector Learning, pages 185–208. MIT Press, 1999.
- Suykens, J. A. K., L. Lukas, P. Van Dooren, B. De Moor, and J. Vandewalle. Least squares support vector machine classifiers: a large scale algorithm. In Proc. of the European Conference on Circuit Theory and Design (ECCTD'99), pages 839–842, 1999.

- Suykens, J. A. K. and J. Vandewalle. Least squares support vector machine classifiers. *Neural Processing Letters*, 9(3):293–300, 1999.
- Suykens, J. A. K., T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vanthienen. *Least Squares Support Vector Machines*. World Scientific, 2002.
- Van Gestel, T., J. A. K. Suykens, G. Lanckriet, A. Lambrechts, B. De Moor, and J. Vandewalle. A Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel fisher discriminant analysis. *Neural Computation*, 14:1115–1147, 2002.
- Vapnik, V. N. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.

Table 1: Computational costs for SMO and CG algorithms ($\alpha = 0$ initialization) on small-size and medium-size data sets. Kernel denotes the number of kernel evaluations, in which each unit denotes 10⁶ evaluations. CPU denotes the CPU time in seconds consumed by the optimization. $D(\alpha)$ denotes the dual functional at the optimal solution. σ^2 is the parameter in Gaussian kernel, which is chosen as in Duan et al. (2003). *C* is the regularization factor in (2).

		I	Banana Datase	et, 400 samp	les with 2-d	imensional inp	outs, $\sigma^2 = 1.8$	3221,	
	Suyken et al.'s CG		Our CG Approach			SMO			
$\log_{10} C$	Kernel	CPU	$D(oldsymbol{lpha})$	Kernel	CPU	$D(oldsymbol{lpha})$	Kernel	CPU	$D(oldsymbol{lpha})$
-4	0.320	0.080	0.0198	0.239	0.070	0.0198	0.902	0.290	0.0198
-3	0.479	0.120	0.197	0.239	0.070	0.197	0.825	0.260	0.197
-2	0.639	0.160	1.881	0.398	0.111	1.881	0.530	0.171	1.881
-1	1.277	0.380	15.544	0.715	0.221	15.546	0.509	0.160	15.546
0	2.235	0.641	97.214	1.192	0.320	97.232	0.710	0.200	97.232
+1	3.990	1.153	665.313	1.986	0.592	665.397	3.496	1.122	665.396
+2	7.821	2.294	5668.911	3.733	1.013	5669.293	31.350	10.054	5669.291
+3	15.641	4.444	52684.905	1.067	2.104	52687.397	319.759	103.199	52687.378
+4	32.718	9.484	494210.847	15.503	4.010	494245.928	3300.155	1070.269	494245.799
	Waveform Dataset, 400 samples with 21-dimensional inputs, $\sigma^2 = 24.5325$								
	Su	iyken et al.'s	s CG	O	ur CG Appr	oach	SMO		
$\log_{10} C$	Kernel	CPU	$D(\boldsymbol{\alpha})$	Kernel	CPU	$D(oldsymbol{lpha})$	Kernel	CPU	$D(\boldsymbol{\alpha})$
-4	0.320	0.150	0.0176	0.239	0.110	0.0176	0.929	0.450	0.0176
-3	0.479	0.210	0.173	0.239	0.090	0.173	0.910	0.441	0.173
-2	0.639	0.331	1.477	0.318	0.140	1.477	0.517	0.251	1.477
-1	1.118	0.501	9.398	0.636	0.291	9.398	0.413	0.200	9.398
0	2.394	1.112	55.415	1.192	0.560	55.415	0.557	0.250	55.415
+1	6.225	3.025	304.430	2.939	1.485	304.431	2.355	1.141	304.430
+2	14.684	6.541	972.925	7.147	3.183	972.925	10.600	5.138	972.925
+3	23.462	10.447	1428.193	11.514	5.327	1428.192	21.774	10.575	1428.193
+4	27.611	12.316	1510.109	13.340	6.101	1510.110	28.214	14.040	1510.110
		I	mage Dataset	, 1300 sampl	les with 18-o	limensional in	puts, $\sigma^2 = 2$.	7183	I
	Su	I 1yken et al.'s	mage Dataset s CG	, 1300 sampl	les with 18-c ur CG Appr	limensional in oach	puts, $\sigma^2 = 2$.	7183 SMO	<u> </u>
$\log_{10} C$	Su Kernel	I iyken et al.'s CPU	mage Dataset s CG $D(\boldsymbol{\alpha})$, 1300 sampl O Kernel	les with 18-c ur CG Appr CPU	limensional in oach $D(\boldsymbol{\alpha})$	puts, $\sigma^2 = 2$. Kernel	7183 SMO CPU	$D(oldsymbol{lpha})$
log ₁₀ C	Su Kernel 3.379	I nyken et al.'s CPU 1.983	mage Dataset s CG $D(\boldsymbol{\alpha})$ 0.0635	, 1300 sampl Or Kernel 2.532	les with 18-c ur CG Appr CPU 1.642	limensional in oach $D(\boldsymbol{\alpha})$ 0.0635	puts, $\sigma^2 = 2$. Kernel 9.301	7183 SMO CPU 6.830	$D(\boldsymbol{\alpha})$ 0.0635
log ₁₀ C	Su Kernel 3.379 5.067	I nyken et al.'s CPU 1.983 2.654	mage Dataset s CG $D(\alpha)$ 0.0635 0.618	, 1300 sampl O Kernel 2.532 2.532	les with 18-c ur CG Appr CPU 1.642 1.572	limensional in oach $D(\boldsymbol{\alpha})$ 0.0635 0.618	puts, $\sigma^2 = 2$. Kernel 9.301 7.444	7183 SMO CPU 6.830 5.367	$D(\alpha)$ 0.0635 0.618
$\log_{10} C$ -4 -3 -2	Su Kernel 3.379 5.067 8.445	I nyken et al.'s CPU 1.983 2.654 4.897	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050	, 1300 sampl O Kernel 2.532 2.532 4.218	les with 18-c ur CG Appr CPU 1.642 1.572 2.364	limensional in oach $D(\boldsymbol{\alpha})$ 0.0635 0.618 5.050	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166	7183 SMO CPU 6.830 5.367 3.776	$D(oldsymbol{lpha})$ 0.0635 0.618 5.050
$log_{10} C$ -4 -3 -2 -1	Su Kernel 3.379 5.067 8.445 20.266	I nyken et al.'s CPU 1.983 2.654 4.897 11.466	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671	, 1300 sampl Or Kernel 2.532 2.532 4.218 10.962	les with 18-o ur CG Appr CPU 1.642 1.572 2.364 6.350	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833	7183 SMO CPU 6.830 5.367 3.776 3.505	$D(oldsymbol{lpha})$ 0.0635 0.618 5.050 28.671
$log_{10} C$ -4 -3 -2 -1 0	Su Kernel 3.379 5.067 8.445 20.266 48.974	I nyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878	, 1300 sampl Or Kernel 2.532 2.532 4.218 10.962 26.980	les with 18-6 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036	7183 SMO CPU 6.830 5.367 3.776 3.505 4.997	$\begin{array}{c} D(\pmb{\alpha}) \\ 0.0635 \\ 0.618 \\ 5.050 \\ 28.671 \\ 133.878 \end{array}$
$\log_{10} C$ -4 -3 -2 -1 0 +1 +1	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097	I nyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 78.922	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150	, 1300 sampl Or Kernel 2.532 2.532 4.218 10.962 26.980 70.819	les with 18-6 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 5.050 act	7183 SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 24.225	$\frac{D(\alpha)}{0.0635}$ 0.618 5.050 28.671 133.878 574.150
$ \begin{array}{c} \log_{10} C \\ \hline -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ +2 \\ +2 \\ +2 \end{array} $	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097 417.110 1260.004	I nyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 243.238 740.442	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 1454.667	, 1300 sampl Or Kernel 2.532 2.532 4.218 10.962 26.980 70.819 216.667 705.626	les with 18-6 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212 137.470 450.154	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.666	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 253.361 1010 207	7183 SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 187.459 2892 560	$\frac{D(\alpha)}{0.0635}$ 0.618 5.050 28.671 133.878 574.150 2554.950 11554.662
$\begin{tabular}{ c c c c } \hline & -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ +2 \\ +3 \\ +4 \\ \hline \end{tabular}$	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097 417.110 1269.904 4186.289	I nyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 243.238 740.442 2446.655	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.667 39458.945	, 1300 sampl Or Kernel 2.532 2.532 4.218 10.962 26.980 70.819 216.667 705.636 2256.850	les with 18-6 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212 137.470 450.154 1436.888	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.666 39458.946	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 253.361 1910.307 11806.379	7183 SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 187.459 2802.560 17331.135	$D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.950 11554.662 39458.943
$ \begin{array}{c} \log_{10} C \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ +2 \\ +3 \\ +4 \\ \end{array} $	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097 417.110 1269.904 4186.289	I nyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 243.238 740.442 2446.655	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.667 39458.945	, 1300 sampl Or Kernel 2.532 2.532 4.218 10.962 26.980 70.819 216.667 705.636 2256.850	les with 18-6 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212 137.470 450.154 1436.888	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.666 39458.946	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 253.361 1910.307 11806.379	7183 SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 187.459 2802.560 17331.135	$\begin{array}{c} D(\pmb{\alpha}) \\ 0.0635 \\ 0.618 \\ 5.050 \\ 28.671 \\ 133.878 \\ 574.150 \\ 2554.950 \\ 11554.662 \\ 39458.943 \end{array}$
$ \begin{array}{c} \log_{10} C \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ +2 \\ +3 \\ +4 \\ \end{array} $	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097 417.110 1269.904 4186.289	I nyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 243.238 740.442 2446.655 S	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.667 39458.945 plice Dataset,	, 1300 sampl Kernel 2.532 2.532 4.218 10.962 26.980 70.819 216.667 705.636 2256.850 1000 sample	les with 18-0 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212 137.470 450.154 1436.888 es with 60-d	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.666 39458.946	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 253.361 1910.307 11806.379 puts, $\sigma^2 = 29$.	SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 187.459 2802.560 17331.135 9641	$\begin{array}{c} D(\pmb{\alpha}) \\ \hline 0.0635 \\ 0.618 \\ 5.050 \\ 28.671 \\ 133.878 \\ 574.150 \\ 2554.950 \\ 11554.662 \\ 39458.943 \end{array}$
$ \begin{array}{c} \log_{10} C \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ +2 \\ +3 \\ +4 \end{array} $	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097 417.110 1269.904 4186.289 Su	I nyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 243.238 740.442 2446.655 S nyken et al.'s	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.667 39458.945 plice Dataset, s CG	, 1300 sampl Or Kernel 2.532 2.532 4.218 10.962 26.980 70.819 216.667 705.636 2256.850 1000 sample Or	les with 18-0 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212 137.470 450.154 1436.888 es with 60-d ur CG Appr	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.666 39458.946 imensional inpoach	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 253.361 1910.307 11806.379 puts, $\sigma^2 = 29$.	7183 SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 187.459 2802.560 17331.135 9641 SMO	$\begin{array}{c} D(\pmb{\alpha}) \\ \hline 0.0635 \\ 0.618 \\ 5.050 \\ 28.671 \\ 133.878 \\ 574.150 \\ 2554.950 \\ 11554.662 \\ 39458.943 \end{array}$
$ \begin{array}{c} \log_{10} C \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ +2 \\ +3 \\ +4 \\ \end{array} $	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097 417.110 1269.904 4186.289 Su Kernel	I nyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 243.238 740.442 2446.655 S nyken et al.'s CPU	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.667 39458.945 plice Dataset, s CG $D(\alpha)$, 1300 sampl Or Kernel 2.532 2.532 4.218 10.962 26.980 70.819 216.667 705.636 2256.850 1000 sample Or Kernel	les with 18-6 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212 137.470 450.154 1436.888 es with 60-d ur CG Appr CPU	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.666 39458.946 imensional inp oach $D(\alpha)$	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 253.361 1910.307 11806.379 puts, $\sigma^2 = 29$. Kernel	7183 SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 187.459 2802.560 17331.135 9641 SMO CPU	$\frac{D(\alpha)}{0.0635}$ 0.618 5.050 28.671 133.878 574.150 2554.950 11554.662 39458.943 $D(\alpha)$
$\begin{tabular}{ c c c c } \hline & & & & & \\ \hline & & & & & & \\ & & & & &$	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097 417.110 1269.904 4186.289 Su Kernel 1.000	I nyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 243.238 740.442 2446.655 S nyken et al.'s CPU 2.113	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.667 39458.945 plice Dataset, s CG $D(\alpha)$ 0.0499	, 1300 sampl Or Kernel 2.532 2.532 4.218 10.962 26.980 70.819 216.667 705.636 2256.850 1000 sample Or Kernel 0.999	les with 18-6 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212 137.470 450.154 1436.888 es with 60-d ur CG Appr CPU 2.143	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.666 39458.946 imensional inp oach $D(\alpha)$ 0.0499	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 253.361 1910.307 11806.379 puts, $\sigma^2 = 29$. Kernel 4.726	7183 SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 187.459 2802.560 17331.135 9641 SMO CPU 8.262	$\frac{D(\alpha)}{0.0635}$ 0.618 5.050 28.671 133.878 574.150 2554.950 11554.662 39458.943 $D(\alpha)$ 0.0499
$ \begin{array}{c} \log_{10} C \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ +2 \\ +3 \\ +4 \\ \end{array} $ $ \begin{array}{c} \log_{10} C \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ -4 \\ -3 \\ -2 \\ -1 \\ -3 \\ -2 \\ -1 \\ -3 \\ -2 \\ -1 \\ -3 \\ -2 \\ -1 \\ -3 \\ -2 \\ -1 \\ -3 \\ -2 \\ -1 \\ -3 \\ -2 \\ -1 \\ -3 \\ -2 \\ -1 \\ -3 \\ -4 \\ -3 \\ -2 \\ -4 \\ -3 \\ -2 \\ -4 \\ -3 \\ -2 \\ -4 \\ -3 \\ -2 \\ -4 \\ -3 \\ -2 \\ -4 \\ -3 \\ -2 \\ -4 \\ -3 \\ -2 \\ -4 \\ -3 \\ -2 \\ -4 \\ -3 \\ -2 \\ -4 \\ -3 \\ -2 \\ -4 \\ -3 \\ -2 \\ -4 \\ -3 \\ -2 \\ -4 \\ -3 \\ -2 \\ -4 \\ -3 \\ -2 \\ $	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097 417.110 1269.904 4186.289 Su Kernel 1.000 1.999	I nyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 243.238 740.442 2446.655 S nyken et al.'s CPU 2.113 4.216	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.667 39458.945 plice Dataset, s CG $D(\alpha)$ 0.0499 0.497	, 1300 sampl Or Kernel 2.532 2.532 4.218 10.962 26.980 70.819 216.667 705.636 2256.850 1000 sample Or Kernel 0.999 1.498	les with 18-0 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212 137.470 450.154 1436.888 es with 60-d ur CG Appr CPU 2.143 3.215	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.666 39458.946 imensional inp oach $D(\alpha)$ 0.0499 0.497	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 253.361 1910.307 11806.379 puts, $\sigma^2 = 29$. Kernel 4.726 4.364 4.364	7183 SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 187.459 2802.560 17331.135 9641 SMO CPU 8.262 7.551	$\frac{D(\alpha)}{0.0635}$ 0.618 5.050 28.671 133.878 574.150 2554.950 11554.662 39458.943 $D(\alpha)$ 0.0499 0.497
$ \begin{array}{c} \log_{10} C \\ \hline \begin{array}{c} -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ +2 \\ +3 \\ +4 \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \log_{10} C \\ -4 \\ -3 \\ -2 \\ 1 \end{array} $	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097 417.110 1269.904 4186.289 Su Kernel 1.000 1.999 2.998 5.007	I nyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 243.238 740.442 2446.655 S nyken et al.'s CPU 2.113 4.216 6.319	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.667 39458.945 plice Dataset, s CG $D(\alpha)$ 0.0499 0.497 4.775 26.150	, 1300 sampl Or Kernel 2.532 2.532 4.218 10.962 26.980 70.819 216.667 705.636 2256.850 1000 sample Or Kernel 0.999 1.498 1.996 2.402	les with 18-6 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212 137.470 450.154 1436.888 es with 60-d ur CG Appr CPU 2.143 3.215 4.325 7.521	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.666 39458.946 imensional inp oach $D(\alpha)$ 0.0499 0.497 4.775 26.450	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 253.361 1910.307 11806.379 puts, $\sigma^2 = 29$. Kernel 4.726 4.364 2.925 2.120	7183 SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 187.459 2802.560 17331.135 9641 SMO CPU 8.262 7.551 5.088 5.400	$\frac{D(\alpha)}{0.0635}$ 0.618 5.050 28.671 133.878 574.150 2554.950 11554.662 39458.943 $D(\alpha)$ 0.0499 0.497 4.775 26.450
$ \begin{array}{c} \log_{10} C \\ \hline \\ \\ \\ $	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097 417.110 1269.904 4186.289 Su Kernel 1.000 1.999 2.998 5.995 12.032	I nyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 243.238 740.442 2446.655 S nyken et al.'s CPU 2.113 4.216 6.319 12.628 27.250	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.667 39458.945 plice Dataset, s CG $D(\alpha)$ 0.0499 0.497 4.775 36.459	, 1300 sampl Or Kernel 2.532 2.532 4.218 10.962 26.980 70.819 216.667 705.636 2256.850 1000 sample Or Kernel 0.999 1.498 1.996 3.492 6.492	les with 18-6 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212 137.470 450.154 1436.888 es with 60-d ur CG Appr CPU 2.143 3.215 4.325 7.531 14.001	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.666 39458.946 imensional inp oach $D(\alpha)$ 0.0499 0.497 4.775 36.459 150.000	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 253.361 1910.307 11806.379 puts, $\sigma^2 = 29$. Kernel 4.726 4.364 2.925 3.120 2.120	7183 SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 187.459 2802.560 17331.135 9641 SMO CPU 8.262 7.551 5.088 5.408 5.408	$\frac{D(\alpha)}{0.0635}$ 0.618 5.050 28.671 133.878 574.150 2554.950 11554.662 39458.943 $D(\alpha)$ 0.0499 0.497 4.775 36.459 150.000
$\begin{array}{c} \begin{array}{c} \log_{10} C \\ \hline -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ +2 \\ +3 \\ +4 \\ \end{array}$	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097 417.110 1269.904 4186.289 Su Kernel 1.000 1.999 2.998 5.995 12.988 20.971	I nyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 243.238 740.442 2446.655 S nyken et al.'s CPU 2.113 4.216 6.319 12.628 27.350 63.261	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.667 39458.945 plice Dataset, s CG $D(\alpha)$ 0.0499 0.497 4.775 36.459 159.990 300.240	, 1300 sampl Or Kernel 2.532 2.532 4.218 10.962 26.980 70.819 216.667 705.636 2256.850 1000 sample Or Kernel 0.999 1.498 1.996 3.492 6.483 16.951	les with 18-6 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212 137.470 450.154 1436.888 es with 60-d ur CG Appr CPU 2.143 3.215 4.325 7.531 14.001 26.916	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.666 39458.946 imensional inp oach $D(\alpha)$ 0.0499 0.497 4.775 36.459 159.990 309.240	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 253.361 1910.307 11806.379 puts, $\sigma^2 = 29$. Kernel 4.726 4.364 2.925 3.120 3.120 5.201	7183 SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 187.459 2802.560 17331.135 9641 SMO CPU 8.262 7.551 5.088 5.408 5.348 9.464	$\frac{D(\alpha)}{0.0635}$ 0.618 5.050 28.671 133.878 574.150 2554.950 11554.662 39458.943 $D(\alpha)$ 0.0499 0.497 4.775 36.459 159.990 300.240
$\begin{array}{c c} & & \\ \hline & & \\ -4 & & \\ -3 & & \\ -2 & & \\ -1 & & \\ 0 & & \\ +1 & & \\ +2 & & \\ +3 & & \\ +4 & & \\ \hline & & \\ \log_{10} C & & \\ -4 & & \\ -3 & & \\ -2 & & \\ -1 & & \\ 0 & & \\ +1 & & \\ +2 & & \\ \end{array}$	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097 417.110 1269.904 4186.289 Su Kernel 1.000 1.999 2.998 5.995 12.988 29.971 65.935	I nyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 243.238 740.442 2446.655 S nyken et al.'s CPU 2.113 4.216 6.319 12.628 27.350 63.261 138.911	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.667 39458.945 plice Dataset, s CG $D(\alpha)$ 0.0499 0.497 4.775 36.459 159.990 309.340 348.659	, 1300 sampl Or Kernel 2.532 2.532 4.218 10.962 26.980 70.819 216.667 705.636 2256.850 1000 sample Or Kernel 0.999 1.498 1.996 3.492 6.483 16.951 35.396	les with 18-6 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212 137.470 450.154 1436.888 es with 60-d ur CG Appr CPU 2.143 3.215 4.325 7.531 14.001 36.816 77.757	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.666 39458.946 imensional inp oach $D(\alpha)$ 0.0499 0.497 4.775 36.459 159.990 309.340 348.659	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 253.361 1910.307 11806.379 puts, $\sigma^2 = 29$. Kernel 4.726 4.364 2.925 3.120 3.120 5.391 10.767	7183 SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 187.459 2802.560 17331.135 9641 SMO CPU 8.262 7.551 5.088 5.408 5.348 9.464 18.697	$\frac{D(\alpha)}{0.0635}$ 0.618 5.050 28.671 133.878 574.150 2554.950 11554.662 39458.943 $\frac{D(\alpha)}{0.0499}$ 0.497 4.775 36.459 159.990 309.340 348.659
$\begin{array}{c} \begin{array}{c} \log_{10} C \\ \hline -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ +2 \\ +3 \\ +4 \\ \end{array}$	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097 417.110 1269.904 4186.289 Su Kernel 1.000 1.999 2.998 5.995 12.988 29.971 65.935 89.911	I tyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 243.238 740.442 2446.655 S tyken et al.'s CPU 2.113 4.216 6.319 12.628 27.350 63.261 138.911 189.836	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.667 39458.945 plice Dataset, s CG $D(\alpha)$ 0.0499 0.497 4.775 36.459 309.340 348.659 353.380	, 1300 sampl Kernel 2.532 2.532 4.218 10.962 26.980 70.819 216.667 705.636 2256.850 1000 sample Or Kernel 0.999 1.498 1.996 3.492 6.483 16.951 35.396 55.834	les with 18-6 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212 137.470 450.154 1436.888 es with 60-d ur CG Appr CPU 2.143 3.215 4.325 7.531 14.001 36.816 77.757 120.547	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.666 39458.946 imensional inp oach $D(\alpha)$ 0.0499 0.497 4.775 36.459 159.990 309.340 348.659 353.380	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 253.361 1910.307 11806.379 puts, $\sigma^2 = 29$. Kernel 4.726 4.364 2.925 3.120 3.120 5.391 10.767 32.722	SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 187.459 2802.560 17331.135 9641 SMO CPU 8.262 7.551 5.088 5.408 5.348 9.464 18.697 56.892	$\frac{D(\alpha)}{0.0635}$ 0.618 5.050 28.671 133.878 574.150 2554.950 11554.662 39458.943 $\frac{D(\alpha)}{0.0499}$ 0.497 4.775 36.459 159.990 309.340 348.659 353.380
$\begin{array}{c} \begin{array}{c} \log_{10} C \\ \hline -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ +2 \\ +3 \\ +4 \\ \end{array}$	Su Kernel 3.379 5.067 8.445 20.266 48.974 135.097 417.110 1269.904 4186.289 Su Kernel 1.000 1.999 2.998 5.995 12.988 29.971 65.935 89.911 111.889	I tyken et al.'s CPU 1.983 2.654 4.897 11.466 28.452 78.922 243.238 740.442 2446.655 S tyken et al.'s CPU 2.113 4.216 6.319 12.628 27.350 63.261 138.911 189.836 232.535	mage Dataset s CG $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.667 39458.945 plice Dataset, s CG $D(\alpha)$ 0.0499 0.497 4.775 36.459 309.340 348.659 353.886	, 1300 sampl Kernel 2.532 2.532 4.218 10.962 26.980 70.819 216.667 705.636 2256.850 1000 sample Or Kernel 0.999 1.498 1.996 3.492 6.483 16.951 35.396 55.834 62.813	les with 18-6 ur CG Appr CPU 1.642 1.572 2.364 6.350 16.873 39.212 137.470 450.154 1436.888 es with 60-d ur CG Appr CPU 2.143 3.215 4.325 7.531 14.001 36.816 77.757 120.547 134.298	limensional in oach $D(\alpha)$ 0.0635 0.618 5.050 28.671 133.878 574.150 2554.951 11554.666 39458.946 imensional inp oach $D(\alpha)$ 0.0499 0.497 4.775 36.459 159.990 309.340 348.659 353.380	puts, $\sigma^2 = 2$. Kernel 9.301 7.444 5.166 4.833 7.036 33.935 253.361 1910.307 11806.379 puts, $\sigma^2 = 29$. Kernel 4.726 4.364 2.925 3.120 3.120 5.391 10.767 32.722 119.222	7183 SMO CPU 6.830 5.367 3.776 3.505 4.997 24.225 187.459 2802.560 17331.135 9641 SMO CPU 8.262 7.551 5.088 5.408 5.348 9.464 18.697 56.892 207.278	$\frac{D(\alpha)}{0.0635}$ 0.618 5.050 28.671 133.878 574.150 2554.950 11554.662 39458.943 $\frac{D(\alpha)}{0.0499}$ 0.497 4.775 36.459 159.990 309.340 348.659 353.886

Table 2: Computational costs for SMO and CG algorithms ($\alpha = 0$ initialization) on large-size data sets. Computer activity is a regression problem. Kernel denotes the number of kernel evaluations, in which each unit denotes 10^6 evaluations. CPU denotes the CPU time in seconds consumed by the optimization. $D(\alpha)$ denotes the dual functional at the optimal solution. σ^2 is the parameter in Gaussian kernel, which is set to an appropriate value. C is the regularization factor in (2).

	MNIST Dataset, 11739 samples with 400-dimensional inputs, $\sigma^2=0.0025$									
	Ou	ır CG Approad	ch	SMO						
$\log_{10} C$	Kernel	CPU	$D(oldsymbol{lpha})$	Kernel	CPU	$D(oldsymbol{lpha})$				
-2 -1 0 +1 +2	$\begin{array}{c} 413.302 \\ 757.752 \\ 1722.135 \\ 4064.206 \\ 9643.847 \end{array}$	$\begin{array}{c} 5611.010\\ 10284.239\\ 23495.622\\ 56682.010\\ 134222.101\end{array}$	56.136 493.689 2685.667 4965.833 5558.749	$\begin{array}{c} 401.397\\ 403.956\\ 420.814\\ 669.879\\ 1257.794 \end{array}$	3515.685 3540.721 3688.304 5872.334 11027.597	56.136 493.689 2685.668 4965.836 5558.752				
	Computer Activity, 8192 samples with 21-dimensional inputs, $\sigma^2 = 20$									
	Computer	r Activity, 819	2 samples w	ith 21-dime	nsional inputs	s, $\sigma^2 = 20$				
	Computer	r Activity, 819 1r CG Approad	2 samples w ch	ith 21-dime	nsional inputs SMO	s, $\sigma^2 = 20$				
$\log_{10} C$	Computer Ou Kernel	r Activity, 819 ur CG Approac CPU	2 samples w ch $D(\boldsymbol{\alpha})$	ith 21-dime Kernel	nsional inputs SMO CPU	s, $\sigma^2 = 20$ $D(\boldsymbol{\alpha})$				