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ABSTRACT

Recommender systems are widely used in online e-commerce
applications to improve user engagement and then to in-
crease revenue. A key challenge for recommender systems
is providing high quality recommendation to users in “cold-
start” situations. We consider three types of cold-start prob-
lems: 1) recommendation on existing items for new users;
2) recommendation on new items for existing users; 3) rec-
ommendation on new items for new users. We propose
predictive feature-based regression models that leverage all
available information of users and items, such as user de-
mographic information and item content features, to tackle
cold-start problems. The resulting algorithms scale effi-
ciently as a linear function of the number of observations.
We verify the usefulness of our approach in three cold-start
settings on the MovieLens and EachMovie datasets, by com-
paring with five alternatives including random, most popu-
lar, segmented most popular, and two variations of Vibes
affinity algorithm widely used at Yahoo! for recommenda-
tion.
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1. INTRODUCTION

Recommender systems automate the familiar social pro-
cess of friends endorsing products to others in their commu-
nity. Widely deployed on the web, such systems help users
explore their interests in many domains, including movies,
music, books, and electronics. Recommender systems are
widely applied from independent, community-driven web
sites to large e-commerce powerhouses like Amazon.com.
Recommender systems can improve users’ experience by per-
sonalizing what they see, often leading to greater engage-
ment and loyalty. Merchants, in turn, receive more explicit
preference information that paints a clearer picture of their
customers. Two different approaches are widely adopted
to design recommender systems: content-based filtering and
collaborative filtering.

Content-based filtering generates a profile for a user based
on the content descriptions of the items previously rated by
the user. The major benefit of this approach is that it can
recommend users new items, which have not been rated by
any users. However, content-based filtering cannot provide
recommendations to new users who have no historical rat-
ings. To provide new user recommendation, content-based
filtering often asks new users to answer a questionnaire that
explicitly states their preferences to generate initial profiles
of new users. As a user consumes more items, her profile is
updated and content features of the items that she consumed
will receive more weights. One drawback of content-based
filtering is that the recommended items are similar to the
items previously consumed by the user. For example, if a
user has watched only romance movies, then content-based
filtering would recommend only romance movies. It often
causes low satisfaction of recommendations due to lack of
diversity for new or casual users who may reveal only small
fraction of their interests. Another limitation of content-
based filtering is that its performance highly depends on the
quality of feature generation and selection.

On the other hand, collaborative filtering typically asso-
ciates a user with a group of like-minded users, and then
recommends items enjoyed by others in the group. Col-
laborative filtering has a few merits over content-based fil-
tering. First, collaborative filtering does not require any
feature generation and selection method and it can be ap-
plied to any domains if user ratings (either explicit or im-
plicit) are available. In other words, collaborative filtering
is content-independent. Second, collaborative filtering can
provide “serendipitous finding”, whereas content-based filter-
ing cannot. For example, even though a user has watched



only romance movies, a comedy movie would be recom-
mended to the user if most other romance movie fans also
love it. Collaborative filtering captures this kind of hidden
connections between items by analyzing user consumption
history (or user ratings on items) over the population. Note
that content-based filtering uses a profile of individual user
but does not exploit profiles of other users.

Even though collaborative filtering often performs better
than content-based filtering when lots of user ratings are
available, it suffers from the cold-start problems where no
historical ratings on items or users are available. A key
challenge in recommender systems including content-based
and collaborative filtering is how to provide recommenda-
tions at early stage when available data is extremely sparse.
The problem is of course more severe when the system newly
launches and most users and items are new. However, the
problem never goes away completely, since new users and
items are constantly coming in any healthy recommender
system. We consider three types of cold-start setting in this
paper: 1) recommending existing items for new users, 2)
recommending new items for existing users, and 3) recom-
mending new items for new users.

We realize that there are additional information on users
and items often available in real-world recommender sys-
tems. We can request users’ preference information by en-
couraging them to fill in questionnaires or simply collect
user-declared demographic information (i.e. age and gen-
der) at registration. We can also utilize item information by
accessing the inventory of most on-line enterpriser. These
legally accessible information is valuable for both recom-
mending new items and serving new users. To attack the
cold-start problem, we propose new hybrid approaches which
exploit not only user ratings but also user and item features.
We construct tensor profiles for user/item pairs from their
individual features. Within the tensor regression frame-
work, we optimize the regression coefficients by minimiz-
ing pairwise preference loss. The resulting algorithm scales
efficiently as a linear function of the number of observed
ratings. We evaluate our approach with two standard movie
data sets: MovieLens and EachMovie. We cannot use the
Netflix data since it does not provide any user information.
Note that one of our goals is providing reasonable recom-
mendation to even new users with no historical ratings but
only a few demographic information.

We split user ratings into four partitions. We randomly
select half of users as new users and the rest as existing
users. Similarly, we randomly split items as new and existing
items. Figure 1 illustrates data partition. Then we use
partition I for training and partition II, ITI, and IV for test.
We summarize available techniques for each partition in the
following:

e Partition I (recommendation on existing items for ex-
isting users): This is the standard case for most ex-
isting collaborative filtering techniques, such as user-
user, item based collaborative filtering, singular value
decomposition (SVD), etc.;

e Partition II (recommendation on existing items for new
users): For new users without historical ratings, “most
popular” strategy that recommends the highly-rated
items to new users serves as a strong baseline;

e Partition III (recommendation on new items for ex-
isting users): Content-based filtering can effectively
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Figure 1: Data partition: We randomly select 50%
users as new users and the rest as existing users.
Similarly half of items are randomly selected as new
items and the others as existing items. We use the
partition I for training and the partition II, ITI, and
IV for test.

recommend new items to existing users based on the
users’ historical ratings and features of items;

e Partition VI (recommendation on new items for new
users): This is a hard case, where “random” strategy
is the basic means of collecting ratings.

We evaluate performance of recommender systems based
on the correctness of ranking rather than prediction accu-
racy, the normalized Discounted Cumulative Gain (nDCG),
widely used in information retrieval (IR), as performance
metric. We compare against five recommendation approaches
including Random, Most Popular (MP), Segmented Most
Popular (SMP), and two variations of Vibes Affinity algo-
rithm (Affinity) [21] widely used at Yahoo!.

The paper is organized as follows: We describe our algo-
rithm in Section 2; We review related work in Section 3; We
report experimental results with comparison against five ex-
isting competitive approaches in Section 4; We conclude in
Section 5.

2. METHODOLOGY

In this section, we propose a regression approach based on
profiles (TR) for cold-start recommendation. In many real
recommender systems, users sometimes declare their demo-
graphical information, such as age, gender, residence, and
etc., whereas the recommender systems also maintain infor-
mation of items when items are either created or acquired,
which may include product name, manufacturer, genre, pro-
duction year, etc. Our key idea is to build a predictive model
for user/item pairs by leveraging all available information of
users and items, which is particularly useful for cold-start
recommendation including new user and new item recom-
mendation. In the following, we describe our approach in
three subsections. The first subsection presents profile con-
struction, and the last two subsections cover algorithm de-
sign.



2.1 Profile Construction

It is crucial to generate and maintain profiles of items of
interest for effective cold-start strategies. For example, we
collect item contents (i.e. genre, cast, manufacturer, pro-
duction year etc.) as the initial part of the profile for movie
recommendation. In addition to these static attributes, we
also estimate items’ popularity/quality from available his-
torical ratings in training data, e.g. indexed by averaged
scores in different user segments, where user segments could
be simply defined by demographical descriptors or advanced
conjoint analysis.

Generally we can construct user profiles as well by col-
lecting legally usable user-specific features that effectively
represent a user’s preferences and recent interests. The user
features usually consist of demographical information and
historical behavior aggregated to some extent.

In this way, each item is represented by a set of features,
denoted as a vector z, where z € RP and D is the number
of item features. Similarly, each user is represented by a set
of user features, denoted as x, where x € R® and C is the
number of user features. Note that we append a constant
feature to the user feature set for all users. A new user
with no information is represented as [0, ...,0, 1] instead of
a vector of zero entries.

In traditional collaborative filtering (CF), the ratings given
by users on items of interest are used as user profiles to
evaluate commonalities between users. In our regression ap-
proach, we separate these feedbacks from user profiles. The
ratings are utilized as targets that reveal affinities between
user features to item features.

We have collected three sets of data, including item fea-
tures, user profiles and the ratings on items given by users.
Let index the u-th user as x, and the i-th content item as
z;, and denote by r,; the interaction between the user x,
and the item z;. We only observe interactions on a small
subset of all possible user/item pairs, and denote by O the
index set of observations {ru;}.

2.2 Regression on Pairwise Preference

A predictive model relates a pair of vectors, x,, and z;, to
the rating 7,; on the item z; given by the user x,,. There are
various ways to construct joint feature space for user/item
pairs. We focus on the representation via outer products,
i.e., each pair is represented as x, ® z; , a vector of CD
entries {Xu,q%ip} where z;p denotes the b-th feature of z;
and x,,, denotes the a-th feature of x,,.

We define a parametric indicator as a bilinear function of
X, and z; in the following:

Cc D
Sui = g g Lu,aZi,bWab,

a=1b=1

(1)

where C' and D are the dimensionality of user and content
features respectively, a,b are feature indices. The weight
variable wgp is independent of user and content features and
characterizes the affinity of these two factors .. and z;p
in interaction. The indicator can be equivalently rewritten
as

Sui = xuVVziT = WT(

z; ® Xu), (2)

where W is a matrix containing entries {was}, W denotes a
column vector stacked from W, and z; ®x,, denotes the outer
product of x, and z;, a column vector of entries {Zu,a2i,b}-
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The regression coefficients can be optimized in regulariza-
tion framework, i.e.

argmin > (rui — sus)” + A|wl3 ®)

ui€0

where A is a tradeoff between empirical error and model
complexity. Least squares loss coupled with 2-norm of w,
is widely applied in practice due to computational advan-
tages.! The optimal solution of w is unique and has a closed
form of matrix manipulation, i.e.

-1
wh = (Z 2z, @ XuX, +)\I> (Z Tui B ®Xu> (4)

ui€0 ui€0

where I is an CD by CD identity matrix. By exploiting
the tensor structure, the matrix preparation costs O(NC? +
MC?D?) where M and N are the number of items and users
respectively. The matrix inverse costs O(C®D?), which be-
comes the most expensive part if M < CD and N < M D?.

The tensor idea can be traced back to the Tucker family
[33] and the PARAFAC family [16]. Recently exploratory
data analysis with tensor product has been applied to im-
age ensembles [34], DNA microarray data intergration [22]
and semi-infinite stream analysis [32] etc. To our best knowl-
edge, tensor regression hasn’t been applied to cold-start rec-
ommendation yet.

In recommender systems, users may enjoy different rat-
ing criteria. Thus the ratings given by different users are
not comparable due to user-specific bias. We can lessen
the effect by introducing a bias term for each user in the
above regression formulation, however it not only enlarges
the problem size dramatically from C'D to CD + N where
N denotes the number of users and usually N > CD, but
also increases uncertainty in the modelling. Another concern
is that the least squares loss is favorable for RMSE metric
but may result in inferior ranking performance. Pairwise
loss is widely used for preference learning and ranking, e.g.
RankRLS [23] and RankSVM [17], for superior performance.

In this paper, we introduce a personalized pairwise loss in
the regression framework. For each user x,,, the loss function
is generalized as

ni Z Z ((rui — Tuj) — (Sui — 5uj))”

“ €0y, jEO,

()

where O, denotes the index set of all items the user x, have
rated, ny, = |Oy| the number of ratings given by the user
Xu, and Sy is defined as in eq(l). Replacing the squares
loss by the personalized pairwise loss in the regularization
framework, we have the following optimization problem:

S ST ((rai = ras) = (i — 5ui)? | FAIwIB

Y €0y jEO,
(6)

where u runs over all users. The optimal solution can be

min E
w
u

! Other loss functions could be applied as well, e.g. the hinge
loss in support vector machines, while advanced quadratic
programming has to be applied.



computed in a closed form as well, i.e.

—1
w' = (A + %I) B

A= Z Z zi(z; — Zu)T ® XuXI

u 1€Q,
B=> Y rulzi— %) ®xu (9)
u €0,
. 1
Zoy = e Z; (10)
1€0,,

The size in matrix inverse is still C'D and the matrix prepa-
ration costs O(NC? + MC?D?) same as that of the least
squares loss.

When matrix inversion with very large C'D becomes com-

putationally prohibitive, we can instead apply gradient-descent

techniques for a solution. The gradient can be evaluated by
Aw — B. There is no matrix inversion involved in each eval-
uation, and the most expensive step inside is to construct
the matrix A once only. Usually it would take hundreds of
iterations for a gradient-descent package to get close to the
minimum. Note that this is a convex optimization problem
with a unique solution at the minimum.

3. RELATED WORK

Two different approaches have been widely used to build
recommender systems: content-based filtering and collabo-
rative filtering. Content-based filtering uses behavioral data
about a user to recommend items similar to those consumed
by the user in the past while collaborative filtering compares
one user’s behavior against a database of other users’ be-
haviors in order to identify items that like-minded users are
interested in. The major difference between two approaches
is that content-based filtering uses a single user information
while collaborative filtering uses community information.

Even though content-based filtering is efficient in filter-
ing out unwanted information and generating recommenda-
tions for a user from massive information, it often suffers
from lack of diversity on the recommendation. Content-
based filtering requires a good feature generation and selec-
tion method while collaborative filtering only requires user
ratings. Content-based filtering finds few if any coinciden-
tal discoveries while collaborative filtering systems enables
serendipitous discoveries by using historical user data. Hun-
dreds of collaborative filtering algorithms have been pro-
posed and studied, including K nearest neighbors [30, 18,
28], Bayesian network methods [10], classifier methods [9],
clustering methods [35], graph-based methods [4], proba-
bilistic methods [19, 26], ensemble methods [13], taxonomy-
driven [36], and combination of KNN and SVD [8§].

Although collaborative filtering provides recommendations
effectively where massive user ratings are available such as
in the Netflix data set, it does not perform well where user
rating data is extremely sparse. Several linear factor mod-
els have been proposed to attack the data sparsity. Singular
Value Decomposition (SVD), Principal Component Analysis
(PCA), or Maximum Margin Matrix Factoriation (MMMF)
has been used to reduce the dimensions of the user-item
matrix and smoothing out noise [9, 27, 14]. However, those
linear factor models do not solve the cold-start problems for
new users or new items. Several hybrid methods, which of-
ten combine information filtering and collaborative filtering
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techniques, have been proposed. Fab [5] is the first hybrid
recommender system, which builds user profiles based on
content analysis and calulates user similarities based on user
profiles. Basu et al. [7] generated three different features:
collaborative features (i.e. users who like the movie X), con-
tent features, and hybrid features (i.e. users who like comedy
movies). Then, an inductive learning system, Ripper, is used
to learn rules and rule-based prediction was generated for the
recommendation. Claypool et al. [12] built an online news-
paper recommender system, called Tango, that scored items
based on collaborative filtering and content-based filtering
separately. Then two scores are linearly combined: As users
provide ratings, absolute errors of two scores are measured
and weights of two algorithms are adjusted to minimize er-
ror. Good et al. [15] experimented with a number of types of
filterbots, including including Ripper-Bots, DGBots, Genre-
Bots and MegaGenreBot. A filterbot is an automated agent
that rates all or most items algorithmically. The filterbots
are then treated as additional users in a collaborative filter-
ing system. Park et al. [24] improved the scalability and
performance of filterbots in cold-start situations by adding
a few global bots instead of numerous personal bots and
applying item-based instead of user-user collaborative fil-
tering. Melville et al. [20] used content-based filtering to
generate default ratings for unrated items to make a user-
item matrix denser. Then traditional user-user collaborative
filtering is performed using this denser matrix. Schein et
al. [29] extended Hofmann’s aspect model to combine item
contents and user ratings under a single probabilistic frame-
work. Even though hybrid approaches potentially improve
the quality of the cold-start recommendation, the main focus
of many hybrid methods is improving prediction accuracy
over all users by using multiple data rather than directly
attacking the cold-start problem for new users and items.
Note that all above approaches only lessen the cold-start
problem where a target user has rated at least few ratings
but do not work for new user or new item recommendation.

There are a few existing hybrid approaches which are able
to make new user and new item recommendation. Pazzani
[25] proposed a hybrid method that recommends items based
on vote of four different algorithms: user-user collaborative
filtering, content-based, demographic-based, and collabora-
tion via content. This approach can provide new user recom-
mendation by assembling several independent models. Our
approach provides a unified framework of learning user-item
affinity from all heterogeneous data simultaneously. Basilico
and Hofmann [6] proposed an online perceptron algorithm
coupled with combinations of multiple kernel functions that
unify collaborative and content-based filtering. The result-
ing algorithm is capable of providing recommendations for
new users and new items, but the performance has not been
studied yet. The computational complexity in the proposed
kernel machine scales as a quadratic function of the num-
ber of observations, which limits its applications to large-
scale data sets. Agarwal and Merugu [3] proposed a sta-
tistical method to model dyadic response as a function of
available predictor information and unmeasured latent fac-
tors through a predictive discrete latent factor model. Even
though the proposed approach can potentially solve the cold-
start problems, its main focus is improving quality of recom-
mendation in general cases and its performance in cold-start
settings is not fully studied yet. Chu and Park [11] proposed
a predictive bilinear regression model in “dynamic content



environment”, where the popularity of items changes tem-
porally, lifetime of items is very short (i.e. few hours), and
recommender systems are forced to recommend only new
items. This work suggests to maintain profiles for both con-
tents and users, where temporal characteristics of contents,
e.g. popularity and freshness, are updated in real-time. In
their setting, only tens of items are available at each mo-
ment and the goal is recommending the best among these
active items to users. In our setting, item space is rather
static but the number of items available at any moment is
much larger (i.e. few thousands), and the user attributes are
limited to demographic information only. Recently, Stern et
al. [31] proposed a probabilistic model that combines user
and item meta data with users’ historical ratings to pre-
dict the users’ interaction on items. Agarwal and Chen [2]
also independently proposed a regression-based latent factor
model for cold-start recommendation with the same spirit.
In these models, dyadic response matrix Y is estimated by
a latent factor model such as Y ~ U7V, where latent fac-
tor matrices, U and V, are estimated by regression such as
U~ FX and V = MZ. X and Z denote user attribute
and item feature matrices, and F and M are weight ma-
trices learnt by regression. These approaches have similar
spirit to our model, while the key difference lies on method-
ology to estimate the weights. In our approach, we estimate
the weight matrix W as in eq(2) by solving a convex op-
timization, whereas in the above works the weight matrix
is approximated by a low-rank matrix decomposition, such
as W ~ FTM, and latent components are then estimated
by either approximate Bayesian inference or expectation-
maximization techniques. We note the latent components
are rotation-invariant in their own space, that means there
are numerous local minima in the solution space which may
make the estimation complicated.

4. EXPERIMENTS

In this section we report experimental results on two movie
recommendation data sets, MovieLens and EachMovie. We
first describe existing competitive algorithms we implemented
for comparison purpose. Then we describe our testing pro-
cedure and report empirical results with the MoiveLens and
EachMovie data.

4.1 Competitive approaches

We implemented three alternative recommendation ap-
proaches for comparison.

4.1.1 Most popular

Most Popular (MP) provides the same recommendation
to all users based on global popularity of items. The global
popularity of an item is measured as following:

Ti*xn; +T*x«

Si =
n; + o

(11)
where the average rating 7; is defined as n% ZuG@,; Tui, the
support n; = |Q;| is the number of users who have rated the
i-th item, 7 denotes the average of all ratings and « denotes
a shrinkage parameter which is inspired by [8]. Here 7 = 3.6
for the MovieLens data and 7 = 4.32 for the EachMovie
data, which were measured in the partition I, shown in the
figure 1. When a = 0, s; is purely based on its average rating
7;. When a > 0, s; will be close to the overall average
7 if only few users have rated the item i. We set o = 2
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both on MovieLens and EachMovie, which yields the best
performance in validation.

4.1.2 Segmented most popular

Segmented Most Popular (SMP) divides users into several
user segments based on user features (i.e. age or gender) and
computes predictions of items based on their local popularity
within the user segment which a target user belongs to:

Tei ¥MNei +T %«

Sci =
Nei +

(12)
where 7.; and n., denote the average rating of an item
¢ within a user segment ¢ and the number of users who
have rated the item ¢ within the user segment c. We have
tested three different segmentation methods based on gen-
der only, age only, and the combination of age and gender
(age*gender). There are two gender groups, male and female
(one additional age group “unknown” for EachMovie due to
missing entries), and seven age groups, i.e. under 18, 18-
24, 25-34, 35-44, 45-49, 50-55, and above 56 (one additional
“unknown” age group for EachMovie). The parameter a was
determined by validation. We found the best SMP model is
with a = 9 on MovieLens and o = 5 for EachMovie.

4.1.3 Vibes Affinity

The Vibes Affinity algorithm [21] is used at several Yahoo
properties including Yahoo! Shopping, Yahoo! Auto and
Yahoo! Real Estate. The algorithm computes item-item
affinity based on conditional probability such as
N;
where N; and N;; denote the number of users who consumed
(e.g. clicked) an item 7 and the number of users who con-
sumed the item ¢ and j. Then preference score of each item
j for a user u is computed as following;:

suj =y f(i—j)

i€ly

fi =) = Pr(jli) = (13)

(14)

where I,, denotes a set of items the user w has consumed.
To provide cold start recommendation we slightly modi-
fied the algorithm. For the partition II (existing item rec-
ommendation for new users), we modified the equation (13)
and (14) to measure user attribute-item affinity such as

Fla— g) = ek (15)
suj= y_ fla—=j) (16)
a€Ay

where N,; denotes the number of users who have an at-
tribute a and have consumed an item j. A, is a set of
attributes the user u has. Ngjike denotes the number of
users who like 7 among the users who have an attribute a
and have consumed an item j. We consider that a user like
an item if she rated it higher than the average rating, shown
in the Table 1. We call this variation of the affinity model as
Affinity1 hereafter. For the partition IIT and IV, we measure
user attribute-item feature affinity such as

_ Naf;like 7

fla— f) = Detne ()

suj= Y Y fla=f) (18)
a€Ay f€Fj



Table 1: Basic statistics of the MovieLens and Each-

Movie data.
MovieLens | EachMovie
Range of ratings 1~ 5 1~6
# of users 6,040 61,131
# of items 3,706 1,622
# of ratings 1,000,209 2,559,107
Average rating 3.58 4.34

where F; denotes a set of features the item j has. Ny is a
number of user-item pairs in the training data, which contain
both a user attribute a and an item feature f. Nag.ike
denotes the number of positive preference pairs (e.g. rating
higher than the average rating) in N,y. We call this variant
affinity model as Affinity2 hereafter.

4.2 Testing Procedure & Metric

We used two movie rating data sets: MovieLens and Each-
Movie. In the EachMovie data, we first removed all “sounds
awful” ratings since those ratings (which have a weight less
than one) were not real ratings but represented users’ im-
pressions on items. In addition to rating data, both data
sets also contain some user attributes and movie informa-
tion. As described in Section 2.1, we collected user and
movie features for the MovieLens and EachMovie datasets
respectively. The features we collected are summarized in
Table 2. The age/gender categories are same as those de-
fined in Segmented Most Popular, see Subsection 4.1.2. In
MovieLens, there are 21 occupation categories for users and
18 genre categories for movies. The movie-released year
was categorized into 13 groups, {>=2000, 1999, 1998, 1997,
1996, 1995, 1994-1990, 80’s, 70’s, 60’s, 50’s, 40’s, <1940}.
In EachMovie, there are two “status” categories for movies,
“theater-status” and “video-status”. We also grouped users
into three location categories based on zip code, including
“US”, “international” and “unknown”.

In addition to item features from data, we used fourteen
filterbots [24] as item features for our proposed approach.
These bots rate all or most of the items algorithmically ac-
cording to attributes of the items or users. For example,
an actor bot would rate all items in the database according
to whether a specific actor was present in the movie or not.
The MPBot rates items based on their global popularity
computed by the equation (11). The VTBot rates items ac-
cording to their “user support” such as r; = log V; /3, where
V; is the number of users who have rated an item 4 (or user
support on the item ¢) and f is a normalization factor that
caps ratings at the maximum rating (5 for MovieLens and 6
for EachMovie). The GenreBot first calculates average rat-
ings of each genre. Then it rates items based on the average
rating of the genre which a movie belongs to. If a movie has
more than one genre, GenreBot rates the item based on aver-
age of genre ratings. We also built eleven SMPBots, which
rates items based on their popularity in eleven segments
(three gender and eight age-group segments) computed by
the equation (12).

We split user ratings into four partitions. We randomly
selected half of users as new users and the rest as existing
users. Similarly, we randomly split items as new and exist-
ing items. Figure 1 illustrates data partition. Then we used
partition I for training and partition II, III, and IV for test.
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Table 2: User attributes and movie features in
MovieLens and EachMovie we used.
MovieLens | EachMovie
User # of gender 2 3
Attributes # of age 7 8
# of occupation 21 0
# of location 0 3
constant feature 1 1
Movie # of year 13 0
Features # of genre 18 10
# of status 0 2
# from filterbots 12 14
constant term 1 1

We generated 20 partitions with different random seeds. We
used the following test procedure: for each user in the parti-
tion II, III, and IV, we clustered items based on ratings given
by each user. For example, if a user rated an item a and b
five and ¢ and d three, then the user would have two item
clusters; one containing a and b and the other containing ¢
and d. We considered only the items rated by each user.
Then we randomly sampled one item for each cluster. We
filtered out users who have only one item cluster. In such a
way, each test user is associated with a set of sampled items
with size from two to five and with different ratings. Then
we measured nDCG}, as following;:

1 DCOGY
DCGy = —— Tk 19
T £z TDCG (19)
R |
DOGY 2
CG Z log2(1 + %) (20)

where Ryi, Ur, and IDCG]}, are defined as the real rating
of a user u on the i-th ranked item, a set of users in the
test data, and the best possible DCGY} for the user u. We
measured nDCG where £k = 1 and 5 and observe similar
results.

One potential question might be why not to measure nDCG1
for all items that a user has rated in the test data. The rea-
son is that there might be lots of 5 rated items for certain
users in the test data and any algorithm that places one of
those 5 rated items at the first place would have the best
possible performance. If the number of 5 rated items for a
user is larger, then the test becomes easier since algorithms
just need to place one of those many 5 rated items at the
first place. To remove performance bias to heavy or gen-
erous users, we sampled one item for each rating cluster to
have only one best item in the test item set. For each of
20 partition sets, we sampled 500 times for each user and
average nDCG1 over those 500 runs. Then we reported the
mean nDCG; and the standard deviations over 10,000 runs.
All fourteen filterbots were imported as item features when
our approach was tested on the partition II (existing item
recommendation for new users). For the partition III and
IV, only GenreBot was imported.

4.3 Empirical Results

We conducted experiments on three types of cold-start
recommendation tasks: (1) recommendation on existing items
for new users, (2) recommendation on new items for exist-
ing users, and (3) recommendation on new items for new



Table 3: Test results: Average nDCG; and standard deviation (STD) over 10,000 runs with twenty partitions
are measured. Random, Most Popular (MP), Segmented Most Popular (SMP: Age segmentation), two vari-
ations of the Affinity model (Affinityl and Affinity2), and Tensor Pairwise Regression (Pairwise) approaches
are tested on three cold-start settings. Bold-face represents the best.

Cold-start setting | Algorithm MovieLens EachMovie
nDCG: | STD | nDCG: | STD
Random 0.4163 | 0.0068 | 0.4553 | 0.0055
Existing item MP 0.6808 | 0.0083 [ 0.6798 | 0.0166
recommendation SMP 0.6803 | 0.0078 | 0.6868 | 0.0146
for new users Affinity1 0.6800 | 0.0077 | 0.6698 | 0.0134
Affinity2 0.4548 | 0.0091 | 0.5442 | 0.0154
Pairwise | 0.6888 | 0.0078 | 0.6853 | 0.0149
New item Random 0.4158 | 0.0059 | 0.4539 | 0.0052
recommendation Affinity2 0.4489 | 0.0094 [ 0.5215 | 0.0149
for existing users Pairwise 0.4972 | 0.0145 | 0.5821 | 0.0176
New item Random 0.4154 | 0.0065 | 0.4540 | 0.0046
recommendation Affinity2 0.4439 | 0.0102 | 0.5212 | 0.0145
for new users Pairwise 0.4955 | 0.0141 | 0.5821 | 0.0172

users. The first type of cold-start recommendation task is
executed when new users request recommendation at any
system while the second and third cold-start recommenda-
tion usually happens in News domain or newly-launched sys-
tems where a recommender is always forced to recommend
new items.

In the first recommendation task, we compared our ap-
proach to five alternative recommendation methods: Ran-
dom, Most popular, Segmented Most Popular, and two vari-
ations of the Affinity algorithm. We found that SMP and
our approach perform better than others but performance
differences among MP, SMP, Affinityl and our approach are
not significant. Our results show that item popularity fea-
tures such as global popularity (MP) or popularity within
a segment (SMP) provide much stronger signals than any
other item features and it makes MP and SMP hard-to-beat
baselines, which is also shown in [1, 11].

In the second and third tasks, since all items we can rec-
ommend are new items without any historical ratings, MP,
SMP, and Affinityl cannot work. With absent of item pop-
ularity features, we clearly see our approach significantly
outperforms over random and Affinity2. We would like to
note that our approach can be used to estimate initial guess
of item popularity for new items in online recommender sys-
tems such as Yahoo! Front Page Today Module [1].

5. CONCLUSIONS

In many real recommender systems, great portion of users
are new users and converting new users to active users is a
key of success for online enterprisers. We developed hybrid
approaches which exploit not only user ratings but also fea-
tures of users and items for cold-start recommendation. We
constructed profiles for user/item pairs by outer product
over their individual features, and built predictive models
in regression framework on pairwise user preferences. The
unique solution is found by solving a convex optimization
problem and the resulting algorithms scale efficiently for
large scale data sets. Although the available features of
items and users are simple and sometimes incomplete in our
experiments, our methods performed consistently and sig-
nificantly better than two baseline algorithms, random and
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Affinity2, on new user and new item recommendation. As
for future work, we would like to extensively compare with
other existing variants along the direction of feature-based
modeling on ranking quality in cold-start situations.
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