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Abstract

Censored targets, such as the time to events in survival

analysis, can generally be represented by intervals on the

real line. In this paper, we propose a novel support vector

technique (named SVCR) for regression on censored tar-

gets. SVCR inherits the strengths of support vector meth-

ods, such as a globally optimal solution by convex program-

ming, fast training speed and strong generalization capac-

ity. In contrast to ranking approaches to survival analysis,

our approach is able not only to achieve superior order-

ing performance, but also to predict the survival time very

well. Experiments show a significant performance improve-

ment when the majority of the training data is censored.

Experimental results on several survival analysis datasets

demonstrate that SVCR is very competitive against classi-

cal survival analysis models.

1 Introduction

Support Vector Machines (SVM) [16, 9] have achieved

enormous success in the last decade. This success is mainly

attributed to four factors: superior generalization capac-

ity, globally optimal solution from a convex optimization

problem, ability to handle non-linear problems using the

so-called “kernel trick”, and the sparseness of the solution

which makes it possible to have specialized fast algorithms

such as the sequential minimal optimization [14, 11]. SVMs

were first proposed for binary classification problems and

then subsequently extended to other problems like regres-

sion, clustering [12], ranking [3], etc. This paper extends

SVM for the case of censored targets in survival analysis.

Survival analysis is a well-established field in statistics

concerned time-to-event data. In the standard case, the

event is death or failure, but the topic is much broader. It

is applied not only in clinical research, but also in reliability

engineering and financial insurance, etc. Classical exam-

ples of survival time measurements may include the time a

kidney graft remains functional, the time a patient with col-

orectal cancer survives once the tumor has been removed by

surgery, and so forth. All these times, named survival time,

are triggered by an initial event followed by a subsequent

event, such as from a kidney graft to graft failure, or from a

surgical procedure to death.

There is one major difference between survival data and

other types of numerical data: the time to the event oc-

curring is not necessarily observed in all cases. Such non-

observed events are quite different from missing data items.

Suppose that some components are studied over a fixed pe-

riod of observation – some of them fail but most of them do

not fail in the observation period. For those components

that do fail, their failure times (target values) are known

precisely. For those components that do not fail, we can

only say that their survival times are longer than the obser-

vation period. Such a target value is referred to as right

censored, meaning we only know a lower bound on the fail-

ure time. Similarly there can be situations where only an

upper bound on the failure time is known resulting in left

censored observations. More generally, there could be ob-

servations for which both an upper and a lower bound are

known. Such intervals are the most general type of obser-

vations since the other types of observations – fixed target,

left censored, right censored – are special cases of it.

To the best of our knowledge, SVMs have not formu-

lated for general interval targets. In this paper we develop

a formulation, called SVCR, to learn from censored targets.

SVCR inherits the strengths of SVM approaches such as a

globally optimal solution, fast training speed, and strong

generalization capacity. An extended version of this paper

[15] has more details and more extensive experiments.

2 Censored Data

In supervised learning, we are given a set of labeled in-

stances (observations) as training data, where an instance

consists of a data vector (explanatory variables, attributes)

plus a target (response variable). Depending on the type of

target we obtain different problems. Point Targets: This is

the case of standard regression where each vector xi ∈ R
m
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has a point target yi ∈ R. Binary Class Labels: The binary

class labels are usually denoted by yi ∈ {±1} while the at-
tributes are still as in regression, that is, xi ∈ R

m. Interval

Targets: These are instances for which we have both an

upper and a lower bound on the target. The tuple (xi, li,ui)
with xi ∈ R

m, li ∈ R,ui ∈ R, li < ui denotes an interval tar-
get. Survival Times: An uncensored observation in sur-

vival analysis is the same as a point target defined above,

while a right censored observation is written as (xi, li,+∞)
whose survival time is greater than li ∈ R. Finally, although

not typical, for the sake of completeness, left censored ob-

servations are written as (xi,−∞,ui) whose target is at most
ui ∈ R.

The definition of interval targets provides a general de-

scription of the above observations. Suppose there is a

dataset (xi, li,ui)
n
i=1 of n observations with interval targets

where li < ui. The aim is to learn a function f : R
m → R

so that the function values approximate the target values. In

the following sections, we discuss performance measures

for learning from such a dataset.

2.1 Average Absolute Error

Ideally, the regression function f : Rm→ R should give

the best guess on the target value of an instance x by f (x)
after learning from the training data. To evaluate the per-

formance on intervals, the following definition of average

absolute error (AAE) - which measures the absolute error

outside the target interval - can be used:

AAE=
1

n

n

∑
i=1

max(0, li− f (xi))+max(0, f (xi)−ui) . (1)

2.2 Swapped Pairs and Rank Score

The Receiver Operating Characteristic (ROC) [17] is a

popular performance metric to measure the quality of or-

dering for classification tasks. In this section an ROC-like

metric is introduced for the censored data which is also

closely related to the so called concordance index [6], a per-

formance measure defined for models of survival analysis.

Given a dataset of n instances, there are
(

n
2

)

= n(n−1)/2
distinct pairs of instances. If we have a perfect ordering

function f , then it would predict f (xi) < f (x j) whenever
ui ≤ l j. However, in practice, a function learned from lim-
ited data does make mistakes. If the actual censored targets

satisfy ui ≤ l j but f (x j) < f (xi) then we call the pair (i, j)
a swapped pair.

Not all the censored targets can be compared. To illus-

trate the definition of comparable pairs, let us consider a

pair of instances, (xi, li,ui) and (x j, l j,u j). The pair can
be compared when ui ≤ l j (or u j ≤ li). To preserve the
order of xi and x j, the optimal function f should satisfy

f (xi) < f (x j) whenever ui ≤ l j . Similarly if u j ≤ li then
the desired function must satisfy f (x j) < f (xi). If neither
of the two conditions (that is, ui ≤ l j or u j ≤ li) is satisfied,
there exists an overlapping region between the two interval

targets. We call such pairs incomparable pairs since there is

no meaningful order of the targets for such pairs. We quan-

tify the quality of an ordering function f by calculating the

fraction of comparable pairs of samples that are correctly

ordered by the function f , thus:

RankScore=
#comparable−#swapped

#comparable
. (2)

If the function f orders every pair of comparable sam-

ples in the right order (according to the actual targets)

then RankScore = 1. If it reverses every pair of sam-
ples, then RankScore = 0. Finally, for random ordering
RankScore would be around 0.5. The RankScore as in (2)
is also closely related to Gehan’s generalization [4] of the

Wilcoxon-Mann-Whitney statistic [13] and thus an AUC-

like metric for our scenario of censored data.

3 A Support Vector Formulation

Consider a censored dataset (xi, li,ui)
n
i=1 as defined in

Section 2. In this setting, we need the predicted value for xi
to be within the interval (li,ui). As long as the output f (xi)
is between li and ui, there is no penalty. We penalize if the

output is more than ui or if it is less than li. Thus, the loss

function for this case becomes:

c( f (xi), li,ui) =max(li− f (xi), f (xi)−ui). (3)

The loss is exactly the absolute error defined in (1).

Note that when li = −∞ or ui = +∞, this loss function
becomes one sided. Let us partition the index set {1,2, . . .n}
into three disjoint sets as follows:

Iu
def
= {i|li > −∞,ui < +∞},

Ir
def
= {i|ui = +∞},

Il
def
= {i|li = −∞}.

Note that there is no overlap between Ir and Il, since no

target takes infinity on both sides.

The set Iu contains the indices of those instances which

have both a finite lower bound and a finite upper bound,

while Ir and Il contain the indices of the instances that are

right censored and left censored, respectively. We further

define two index sets

L
def
= Iu∪ Ir and U

def
= Iu∪ Il, (4)

where L contains the indices of those instances whose tar-

gets have a finite lower bound whileU contains the indices

of those having a finite upper bound.
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We now propose the following formulation for the cen-

sored regression task:

min
w,b,ξ ,ξ ∗

1

2
‖w‖2+C

(

∑
i∈U

ξi+ ∑
i∈L

ξ ∗
i

)

(5a)

s.t. w⊤xi+b−ui≤ ξ ∗
i ∀i ∈U ; (5b)

li−w
⊤xi−b≤ ξi ∀i ∈ L; (5c)

ξi ≥ 0 ∀i ∈U ; ξ ∗
i ≥ 0 ∀i ∈ L. (5d)

As can be seen from the formulation (5), it is making use of

all the information available in the dataset. By introducing

Lagrangian multipliers α∗
i ≥ 0 for the inequalities in (5b)

and αi ≥ 0 for the inequalities in (5c), the dual of the above
formulation can be shown to be:

min
α ,α∗

1

2

n

∑
i, j=1

(αi−α∗
i )(α j−α∗

j )k(xi,x j) (6)

−∑
i∈L

liαi+ ∑
i∈U

uiα
∗
i

s.t. ∑
i∈L

αi− ∑
i∈U

α∗
i = 0;0≤ αi,α

∗
i ≤C ∀1≤ i≤ n.

where αi = 0 ∀i ∈ L, α∗
i = 0 ∀i ∈ U are dummy vari-

ables and k(xi,x j) = x⊤i x j. The dot product x
⊤
i x j can be

replaced by a kernel function to obtain a non-linear func-

tion mapping. At the optimal solution, with the dummy

variables, the function value of x is represented by f (x) =

∑ni=1(αi−α∗
i )k(xi,x)+b.Note that usually a small fraction

of {αi−α∗
i } is non-zero.

Algorithm Complexity The support vector formulation

leads to a standard quadratic programming problem. The

problem size is equal to |U |+ |L|. Fast and scalable algo-
rithms of convex programming, such as SMO [14, 11], can

be easily adapted for the solution. Empirically we show the

algorithm complexity is about O(n2.1). As is the case for
linear SVM, the training cost can be further reduced to be

linear in n [10, 8].

Connections to other Support Vector methods The

standard Support Vector Regression (SVR) and Classifica-

tion (SVC) formulations are just special cases of (5). It is

easy to see that, given a regression dataset (xi,yi)
n
i=1, by

converting each sample to (xi,yi− ε,yi+ ε) where ε > 0
comes from the ε-insensitive loss, (5) reduces to SVR. Sim-
ilarly, in case of classification, a sample (xi,+1) is con-
verted to (xi,1,∞) and a negative sample is converted into
(xi,−∞,−1); it is easy to see that these samples, when
plugged into (5), give rise to SVC constraints.

4 Experiments

In this section we present the experiments that were per-

formed to validate the proposed method. We briefly de-

scribe the competing methods below; further details and re-

sults can be found in [15].

• Support Vector Regression (SVR): This classical
method is used as a baseline. Since SVR can handle

only uncensored point targets, all the censored data

were ignored; only those observations for which the

failure times were known exactly were used.

• Constraint Classification approach (CC-SVM) [5]: In
this approach, two binary classification constraints are

added for each comparable pair to maintain the order;

the resulting classifier is then used as a ranking func-

tion. Note that there is a quadratic blow-up in the num-

ber of constraints added. Also, this approach can only

rank the instances but cannot predict the failure times.

• Gaussian Process Preference Learning (GP-PL) [2] de-
fines an appropriate likelihood function on the target

values and puts a Gaussian process prior. The result-

ing convex optimization can be efficiently solved. Like

CC-SVM, this method also can give only a ranking but

cannot predict survival times.

• Classical Parametric Models (CPM): These models as-
sume that the overall survival of a population follows

one of a family of parametric distributions, such as the

Weibull, exponential, normal etc. These unconditional

models can be turned into regression models (condi-

tional models) by replacing one of the free parameters

with a (suitably transformed) linear predictor. The lin-

ear predictor is simply the inner product of a column

vector w of unknown regression coefficients and the

vector xi of observed attributes for the item of interest.

The linear predictor is usually transformed to satisfy

constraints on the parameter of the unconditional sur-

vival distribution.

4.1 Simulated Censoring

We selected four large regression datasets (xi,yi)
n
i=1 with

yi ∈ R.1 For each dataset, one thousand observations were

drawn uniformly at random for training and the remaining

observations were used as the test set.

4.1.1 All Left Censored

From the one thousand training instances, we randomly se-

lected a fraction η of instances. Different values of η that

1These regression datasets are available at http://www.liacc.up.

pt/∼ltorgo/Regression/DataSets.html.
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Figure 1. Linear Results: left to right: abalone, bank, California and house datasets. For each per-
centage (η) the boxplots from left to right: SVCR, SVR, GP-PL and CC-SVM. The notched-boxes have
lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from

each end of the box to the most extreme data value within 1.5·IQR(Interquartile Range) of the box.
Outliers are data with values beyond the ends of the whiskers, which are displayed by dots.
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Figure 2. Kernel Results: AAE with SVCR and SVR respectively as a function of η with half left
censored data. For each percentage (η) the boxplots from left to right: SVCR and SVR.

we used were 0.5,0.75,0.9,0.95,0.99 and 0.995. For these
selected instances, we changed the targets to be left cen-

sored. That is, each instance (xi,yi) was changed so that
the new instance was (xi,−∞,yi). Thus, instead of having a
fixed target, these instances were changed so that their tar-

gets were at most yi instead of being fixed at yi.

For all the methods, parameters were chosen by two-

fold cross-validation on the training data. Parameters

that minimized the average RankScore over the two folds

were selected. For SVCR and SVR we obtained both the

RankScore and the average absolute error on the entire test

data. However, GP-PL and CC-SVM cannot produce the

actual target output; they can only give an ordering. Thus

we also compared RankScores of the different methods.

The entire experiment was repeated ten times.

Figure 1 shows the results with a linear kernel. As the

fraction η increases, RankScore decreases for all the meth-
ods. However, the drop in RankScore for SVCR is much

less than for the other methods. The boxplots for SVR look

much shorter for η = 0.995 than η = 0.95 in some of the
plots. This is because, at η = 0.995, there is very little in-
formation available for the SVR, and the RankScore corre-

sponds almost to random guessing (RankScore = 0.5). Thus

the resulting variance in RankScore for very high η is much
smaller. We note that it is unreasonable to expect SVCR to

do very well in terms of average absolute error (AAE) in

this case. This is because, for all the censored samples, the

output of SVCR is required to be at most yi, which biases

the prediction greatly. Thus the predictions given by the

SVCR tend to be much less than the actual value for fixed

targets.

4.1.2 Half Left Censored

The experiment setup in this case was very similar to that in

Section 4.1.1, but instead of censoring all the η fraction of
instances to the left, half of them were censored to the left

and the other half were censored to the right. Thus half of

the instances (xi,yi) were converted to (xi,yi,+∞) and the
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Abalone Bank California House

η 0.99 0.995 0.99 0.995 0.99 0.995 0.99 0.995

SVCR 82.0±0.5 82.0±0.5 93.2±0.1 93.2±0.1 83.0±0.2 82.9±0.1 78.5±0.3 78.0±0.3
SVR 78.8±3.6 73.7±13.1 79.7±18.3 79.3±18.7 74.7±11.2 75.3±11.6 67.7±12.2 71.3±6.1
GP-PL 81.9±0.4 82.1±0.4 93.2±0.2 93.3±0.1 82.7±0.3 82.5±0.27 78.0±0.3 77.7±0.2

Table 1. RankScores with polynomial kernel with half left censored data. RankScores have been
multiplied by one hundred.

other half were converted to (xi,−∞,yi). The other settings
in this experiment were the same as in Section 4.1.1. How-

ever, the number of comparable pairs in this setup became

larger. This is because a left censored and a right censored

observation might be comparable, but two left censored ob-

servations can never be compared. Due to lack of space

we only present results with a polynomial kernel of degree

two in this section. Since running CC-SVM in this case

was computationally prohibitive, we do not have results for

that method. Also, in this case, unlike in Section 4.1.1, pre-

dictions are not biased towards one side. Figure 2 shows

the AAE for SVR and SVCR (GP-PL is left out as it only

gives a ranking). As the value of η increases, the AAE
of SVR is significantly higher than the AAE of SVCR, as

one would expect. Table 1 gives the RankScores in this

setup. One can see that our method has an advantage over

the other methods. We conclude this section noting that

SVCR has higher performance potential (over other meth-

ods) when there are significantly many one-sided censored

examples (which would mean less information for the other

methods).

4.2 SVCR Versus Classical Models

In this section we study how the SVCR method com-

pares with the classical parametric models (CPM). While

the experiments in Section 4.1 used simulated censoring,

in this section we performed the experiments on survival

datasets. These datasets are typical datasets that are used in

the survival analysis literature. We compared our method

with several parametric survival distributions: the Weibull,

exponential, normal, logistic, log-normal, and log-logistic

models.

The five datasets that we used were Lung, Heart, Nwtco,

Veteran2 and botdata [1]. In each of these datasets, missing

values, if any, were replaced by the mean of the attribute.

Each of these datasets was divided into two folds of equal

size. Two training runs were then performed. The first run

used the first fold as training data and the second fold as un-

seen test data. Training consisted of model selection and pa-

rameter estimation. Model selection was performed by ex-

haustively trying out all CPM models for different paramet-

ric survival distributions (one of Weibull, exponential, nor-

2These four datasets can be found in the R package “Survival”.

mal, logistic, log-normal, or log-logistic). The model with

the lowest AAE was selected, as determined by five-fold

cross-validation on the training data. The winning model

was then retrained on the entire training data, and the fit-

ted model was used to predict survival times for the unseen

test data. The whole process was repeated a second time

with the role of training and test data reversed. Similarly

SVCR was trained using one fold and was tested on the

other fold. The parameter C of SVCR was chosen by five-

fold cross-validation. The value of C that resulted in the

lowest AAE by cross-validation was then chosen. SVCR

was then trained on the entire fold and was tested on the

unseen test data.

Results are shown in Table 2. It can be seen that SVCR

wins in almost every case in terms of AAE. In terms of

RankScore, the results are not in favor of any one method.

We attribute this to the fact that cross-validation was done

on AAE in the first place for both the methods. We be-

lieve that better RankScores can be achieved if the cross-

validation is done using RankScore as the criterion or if the

objective of SVCR is modified to minimize the RankScore

directly.

4.3 Runtime and Scalability

Instances were chosen randomly from the California

housing regression dataset. They were used for SVCRwith-

out any modification. Appropriate datasets were generated

by comparing the target values for GP-PL and CC-SVM.

For each sample size, the algorithms were run on five dif-

ferent randomly chosen training sets of that size. The user

times were noted for each run and the numbers were aver-

aged to get a final run time for each sample size. A polyno-

mial kernel with degree two was used in each case. SVM-

Light [7] was used for training the CC-SVM.

Figure 3 shows the run times plotted on a log-log plot.

The three lines shown in the plot were obtained by linear

regression on the points plotted for the respective methods.

It is quite evident that SVCR has an advantage over other

methods. The number of samples shown on the x-axis is the

size of the training set beforemodifying them for CC-SVM.

Thus the higher slope of the CC-SVM curve is attributed to

the blow-up in the problem size. We do not show the run-

time of SVR as it is the same as that of SVCR. The slopes

5



lung heart veteran botdata nwtco

CPM SVCR CPM SVCR CPM SVCR CPM SVCR CPM SVCR

AAE

Fold1 154.4 155.5 128.2 135.8 74.9 69.8 22.0 13.3 709.5 441.4

Fold2 148.3 142.2 277.6 174.4 92.4 92.9 23.3 20.5 831.9 510.1

Avg 151.3 148.8 202.9 155.1 83.6 81.3 22.6 16.9 770.7 475.8

RankScore

Fold1 0.633 0.595 0.652 0.623 0.673 0.668 0.790 0.888 0.717 0.671

Fold2 0.615 0.635 0.540 0.576 0.705 0.704 0.769 0.766 0.680 0.598

Avg 0.624 0.615 0.598 0.599 0.689 0.686 0.780 0.827 0.698 0.635

Table 2. AAE and RankScore on survival datasets for classical methods and SVCR. RankScores have

been multiplied by one hundred.
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Figure 3. Run times for different approaches.

Both x-axis and y-axis are on a log scale.

The slopes for SVCR, GP-PL and CC-SVM are
2.0894, 2.3358 and 4.1131 respectively on the

shown plot.

of these lines indicate an empirical run time complexity of

the three algorithms. SVCR run time O(n2.1) compared fa-
vorably to that of preference learningO(n2.3) and CC-SVM
O(n4.1).

5 Conclusion

We studied different approaches that can be applied to

the survival time prediction/ranking; We proposed a new

formulation to handle censored data overcoming some of

the problems with the previous approaches. Experiments

showed significant performance gains in the presence of

higher levels of censoring. SVCR also competes with the

parametric models. SVCR was shown to be scalable and

has favorable run time compared to other methods. We rec-

ommend that SVCR be widely used in survival analysis.
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