
S0 Initial state

S1 Food delivered

S3 Food obtained

S2 No reward

S2 No reward

Press
lever

Enter
magazine

*

*

Supplementary Figure 1

Value propagation in tree search, after 50 steps of learning the task in Figure 1a. The inset plots show the
distributions over state-action values, tree

s a,Q , computed by the tree system from the learned distributions
over the values of the terminal states (shown in black) and over the transition structure of the task. The
distributions are plotted as the probability assigned to each possible value q . Their moments are given by
iteration on Equations 5 and 6 in Supplementary Methods — each value distribution is a function of the
value distributions for the best action (marked with an asterisk) at each possible successor state. Arrows
represent the most likely transition for each state and action, and their widths are proportional to the
likelihoods (the full set of mean transition probabilities is illustrated in Fig. 4). The better actions were
better explored and hence more certain (narrower value distributions); distributions at each state were
similar to the distributions at the most likely successor state, and more so when transition to that state was
more likely. As iterations progressed backwards, distributions got broader.

Prior at state s Successor states’ values Posteriors at state s

0.5 10 0.5 10 0.5 10
qq q

Supplementary Figure 2

Example of learning in the cache algorithm, following a single transition from state s to s′ having taken
action a . The leftmost panel shows the prior distribution cache

s a,Q . The middle panel plots the distribution
over the value of the successor state s′ (specifically, the distribution cache

s a′ ′,
Q for the best action a′ in s′).

The curves illustrate two different successors, a more and less favorable state. For both of the successor
states, the right panel plots the posterior distribution (whose moments are given by Equations 3 and 4 in
Supplementary Methods) over the original state and action, cache

s a,Q , as updated following the visit to s′ .
The effect of learning was to nudge the predecessor state’s value distribution in the direction of the value of
the successor state.

Supplementary methods

Here, we describe our implementation of uncertainty-tracking in the caching and tree-

search systems, and then report the parameters governing these models and comment on

the effect of slow changes in the task.

Recall that the goal of each system is to estimate, for each state s and action a, a (fac-

torial) distribution Qs,a over the future expected value Q(s, a). The latter is defined:

Q(s, a) ≡

R(s) s is terminal (a=∅)∑

s′ T (s, a, s′) · maxa′ [Q(s′, a′)] otherwise
(1)

where ∅ stands in for the fact that no action is possible at a terminal state. Tree and cache

systems use different approximations for value estimation, and we use the uncertainty as

a measure of how appropriate these methods are in particular circumstances. However,

the uncertainty computation itself requires a number of further shortcuts. In our imple-

mentation, these were matched between the systems so far as possible in the hope that

even though the absolute values of the uncertainty measurements are likely erroneous,

the errors should be similar between systems and thus their relative uncertainties should

be informative about the actual reliabilities of the underlying value estimation methods.

Caching algorithm

We learned Qcache from experience using “Bayesian Q-learning”1 (for a different Bayesian

formulation see Engel et al.2), adapted to our simplified class of MDPs. Notionally, the

1

method involves assuming prior distributions Qcache
s,a describing uncertainty about the

value of each state and action, and then updating them using Bayes’ theorem to reflect

subsequent experience. We made four simplifying assumptions: that the distributions

Qcache
s,a were at each step expressed as beta distributions Beta(αs,a, βs,a); that the distri-

bution Qcache
s,a was independent of Qcache

s′,a′ for s 6= s′ or a 6= a′; that the distribution of the

maximum (with respect to action choice) of a state-action value was just the distribution

of values, Qcache
s,a , for the action a optimizing the mean 〈Qcache

s,a 〉; and that the bootstrapped

posterior distribution for a nonterminal state was specified by Dearden et al.’s1 “mixture

update” approximation. See Dearden et al.1 for a full discussion of the merits of these

simplifications; the most serious is the assumption that different states’ values were inde-

pendent, contrary to the coupling inherent in their definition (Equation 1). Our assump-

tions differ from Dearden’s mainly in our use of a beta distribution for the posterior. We

evaluated this last simplification against the same method implemented with an arbitrary

posterior (finely discretized for numerical estimation), and found it innocuous. (In par-

ticular, over 500 steps of our task, the largest deviation between the methods’ variance or

mean estimates at any state was 0.5%). We nonetheless stress that the numerical accuracy

of the approximate Bayesian computations is not key to our argument — we intended

rather to implement both caching and tree-search learning using similar approximations,

so that any computational biases impacted both similarly.

For the details of the method, consider being in state s — either s is a terminal state

and we receive reward r ∈ {0, 1}, or we take action a and transition to another state s′. For

2

terminal states s with prior Beta(αs,∅, βs,∅) and reward r, Bayes’ theorem specifies that

the posterior value distribution Qcache
s,∅ will be distributed as Beta(αs,∅ +r, βs,∅ +(1−r)).

For nonterminal states s followed by s′, we wish to treat the successor state’s mean value

〈Qcache
s′,a′ 〉 (for the action a′ optimizing that mean) as a bootstrapped sample of the pre-

decessor state’s mean value; the question is how to take into account uncertainty about

the two states’ values. If the successor state’s value were 0 ≤ q ≤ 1 we might, by anal-

ogy with the terminal state case, take the predecessor state’s value posterior Qcache
s,a as

Beta(αs,a+q, βs,a+(1−q)). Following Dearden et al.1, we used the mixture of such distri-

butions with respect to the successor state value distribution Qcache
s′,a′ :

∫ 1

0

Beta(αs,a+q, βs,a+(1−q))Qcache
s′,a′ (q)dq (2)

Though this integral is neither readily solvable nor itself a beta distribution, its mean and

variance are analytic, and we thus approximated the predecessor state’s posterior value

Qcache
s,a as the beta distribution matching those moments. They are:

µcache
s,a =

αs,a + 〈q〉cache
s′,a′

ns,a + 1
(3)

(σ2)cache
s,a =

1

(ns,a + 2)(ns,a + 1)
(α2

s,a + αs,a + 〈q2〉cache
s′,a′ + (2αs,a + 1)〈q〉cache

s′,a′) − (µ2)cache
s,a (4)

where 〈q〉cache
s′,a′ and 〈q2〉cache

s′,a′ are respectively the first and second moments of the beta dis-

tribution Qcache
s′,a′ and ns,a = αs,a + βs,a.

To model outcome devaluation (e.g., treatments in which the animal is allowed to

3

sample the outcome in the devalued state, but not in the context of the task), we replaced

the distribution Qcache
s,∅ for the terminal state s corresponding to the devalued outcome,

reducing its expected value. Absent further learning with samples of trajectories ending

in this state, this has no effect on the cached values of any other states.

Tree-search algorithm

A Bayesian tree-search method3–5 involves two stages: model identification, and value

computation. To identify the MDP, we assumed beta priors over the reward functions

and, for each state and action, a Dirichlet prior over the vector of successor state prob-

abilities. For these simulations, we assumed the number of states and their terminal or

nonterminal status were known. As experience accrues, these distributions can be up-

dated exactly by Bayes’ theorem, simply by counting state transitions and rewards.

Given posterior distributions over the state transition and reward functions, a stan-

dard “certainty equivalent” method for estimating expected values Q(s, a) would be to

assume the true MDP is described by the means of those distributions and then to solve

for the values using value iteration, or repeated application of Equation 16. This is roughly

equivalent to using tree search to compute the values of all states in parallel. Here we

wish to quantify the uncertainty about the values that results from the uncertainty about

the transition and reward functions. An optimal (if impractical) way to do so would be

to repeat the value iteration process for all possible combinations of transition and re-

ward functions, weighting each resulting set of state-action values by the probability of

4

the transition and reward functions that produced it. Such an approach can be directly

approximated by sampling from the distribution over MDPs3,4. Here, we used a set of ap-

proximations more closely matched to the Bayesian Q-learning methods discussed above

— by performing not a set of iterations over future value for different trees, but rather

a single iteration on the distributions over the future values implied by the distributions

over the trees5. We assumed, as before, that at all search steps k the distributions Qtree,k
s,a

were expressed as beta distributions; that these distributions were, at each step, inde-

pendent of one another for different states or actions, as were the posterior distributions

over transition and reward functions; and that the distribution of the maximum (with

respect to action choice) of a state-action value was the distribution corresponding to the

single, apparently optimal action. See Mannor et al.5 for analysis and experiments on the

accuracy of a similar approach.

In particular, we initialized the 0-step value distribution Qtree,0
s,a ,∀(s, a) as equal to the

beta distribution over reward probability R(s). We did this for both terminal and nonter-

minal states — the immediate reward distribution for nonterminal states was determined

from the same prior by conditioning on the absence of reward each time the state is vis-

ited since in our simplified MDPs, reward is only available at terminal states. Then, for

nonterminal states s, we repeatedly searched a further step down the tree, estimating the

k-step value distributions Qtree,k
s,a as a function of the k−1-step value distributions Qtree,k−1

s,a .

As before, a Q distribution was approximated by the beta distribution matching the mean

and variance of the (complicated) exact distribution. These are just the moments of Equa-

5

tion 1 (which describes the probability of future reward if the transition and successor

state value functions were known) with respect to the distributions over those functions.

After action a in state s, the probabilities t1 . . . tn of transitioning to states s1 . . . sn are

Dirichlet-distributed, and the successor states’ values q1 . . . qn are beta-distributed (each

state’s as Qtree,k−1
si,ai

for the apparently best action ai). Taking into account our independence

assumptions, the mean and variance of Qtree,k
s,a are:

µtree,k
s,a =

n∑
i=1

〈ti〉〈qi〉 (5)

(σ2)tree,k
s,a =

∑
i,j:i6=j

〈titj〉〈qi〉〈qj〉 +
n∑

i=1

〈t2i 〉〈q2
i 〉 − (µ2)tree,k

s,a (6)

where the bracketed values are standard Dirichlet and beta moments for the distribu-

tion over T and the successor state Q distribution. This iteration was repeated until the

distributions converged.

In more realistic domains with many states, it is impractical to re-compute value distri-

butions at every state. This can be addressed by a number of methods, including pruning

(examining only certain paths out of each state at each step). We modeled the “com-

putational noise” or inaccuracy that would result as extra variance accumulating over

each step of tree search. In particular, at each step k, we added a penalty to the variance

(σ2)tree,k
s,a of a constant ν times the probability that the successor state s′ was nonterminal.

To model reward devaluation, we replaced the distribution over R(s), the reward

probability for the terminal state corresponding to the devalued outcome, reducing its

6

expected value. Through the value iteration, this immediately impacted all subsequently

computed estimates Qtree
s,a .

Noise model, priors, and parameters

The final complexity is that we assumed a nonstationary task — that is, that the MDP

functions T and R could change randomly over time. Rather than employing an explicit,

generative model of change, we captured nonstationarity using an exponential forgetting

heuristic, whereby at each timestep, the parameters defining the cache system’s distri-

butions Qcache and the tree system’s distributions over transition and reward functions

decayed exponentially (with factor γ) toward their respective priors at each timestep.

Such decay captures the decline in relevance of past samples given possible interven-

ing change. As the decay factors were matched between controllers (as were the priors),

this corresponds to equivalent time horizons on past data — i.e., equivalent assumptions

about the speed of change of the MDP.

While the qualitative effects we demonstrated are robust, our theory has a number

of free parameters. One advantage of a normative approach is that these are often not

arbitrary quantities (like a “learning rate”) but rather assertions about regularities in the

external environment, such as how quickly tasks change. Thus, although they are at

present chosen rather arbitrarily, they suggest directions for future experimental test.

Parameters for our simulations were as follows. The softmax parameter β was 5. The

tree system’s prior over the transition functions was a symmetric Dirichlet with parame-

7

ter α=1.0 and over the reward functions was Beta(0.1, 0.1) (encoding a prior assumption

that outcome utilities are likely deterministic). The cache system’s priors over the Q func-

tions were matched: Beta(0.1, 0.1) for terminal states, and for nonterminal states the same

beta distribution implied by tree search on the tree system’s prior over MDPs. The step

penalty ν was 0.005, and the reward distribution for a devalued outcome in both tree and

cache systems was Beta(1, 15). The exponential forgetting factor γ was 0.98.

Simulations were run 250-1,000 times and means reported (results vary between runs

due to stochastic action choice). In all cases, confidence intervals on the plotted quantities

(s.e.m.) were too small to visualize; error bars were thus omitted.

References

1. Dearden, R., Friedman, N. & Russell, S.J. Bayesian Q-learning. in Proceedings of the 15th

National Conference on Artificial Intelligence (AAAI) 761–768 (1998).

2. Engel, Y., Mannor, S. & Meir, R. Bayes meets Bellman: The Gaussian process approach

to temporal difference learning. in Proceedings of the 20th International Conference on

Machine Learning (ICML) 154–161 (2003).

3. Dearden, R., Friedman, N. & Andre, D. Model based Bayesian exploration. in Proceed-

ings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI) 150–159 (1999).

4. Strens, M. A Bayesian framework for reinforcement learning. in Proceedings of the 17th

International Conference on Machine Learning (ICML) 943–950 (2000).

8

5. Mannor, S., Simester, D., Sun, P. & Tsitsiklis, J.N. Bias and variance in value function

estimation. in Proceedings of the 21st International Conference on Machine Learning (ICML)

568–575 (2004).

6. Sutton, R.S. & Barto, A.G. Reinforcement Learning: An Introduction (MIT Press, Cam-

bridge, MA, 1998).

9

