
7 Network Models

7.1 Introduction

Extensive synaptic connectivity is a hallmark of neural circuitry. For ex-
ample, a typical neuron in the mammalian neocortex receives thousands of
synaptic inputs. Network models allow us to explore the computational
potential of such connectivity, using both analysis and simulations. As
illustrations, we study in this chapter how networks can perform the fol-
lowing tasks: coordinate transformations needed in visually guided reach-
ing, selective amplification leading to models of simple and complex cells
in primary visual cortex, integration as a model of short-term memory,
noise reduction, input selection, gain modulation, and associative mem-
ory. Networks that undergo oscillations are also analyzed, with applica-
tion to the olfactory bulb. Finally, we discuss network models based on
stochastic rather than deterministic dynamics, using the Boltzmann ma-
chine as an example.

Neocortical circuits are a major focus of our discussion. In the neocor-
tex, which forms the convoluted outer surface of the (for example) human
brain, neurons lie in six vertical layers highly coupled within cylindrical
columns. Such columns have been suggested as basic functional units, cortical columns
and stereotypical patterns of connections both within a column and be-
tween columns are repeated across cortex. There are three main classes
of interconnections within cortex, and in other areas of the brain as well.
Feedforward connections bring input to a given region from another re- feedforward,

recurrent,
and top-down

connections

gion located at an earlier stage along a particular processing pathway. Re-
current synapses interconnect neurons within a particular region that are
considered to be at the same stage along the processing pathway. These
may include connections within a cortical column as well as connections
between both nearby and distant cortical columns within a region. Top-
down connections carry signals back from areas located at later stages.
These definitions depend on the how the region being studied is specified
and on the hierarchical assignment of regions along a pathway. In gen-
eral, neurons within a given region send top-down projections back to the
areas from which they receive feedforward input, and receive top-down
input from the areas to which they project feedforward output. The num-
bers, though not necessarily the strengths, of feedforward and top-down
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fibers between connected regions are typically comparable, and recurrent
synapses typically outnumber feedforward or top-down inputs. We be-
gin this chapter by studying networks with purely feedforward input and
then study the effects of recurrent connections. The analysis of top-down
connections, for which it is more difficult to establish clear computational
roles, is left until chapter 10.

The most direct way to simulate neural networks is to use the methods dis-
cussed in chapters 5 and 6 to synaptically connect model spiking neurons.
This is a worthwhile and instructive enterprise, but it presents significant
computational, calculational, and interpretational challenges. In this chap-
ter, we follow a simpler approach and construct networks of neuron-like
units with outputs consisting of firing rates rather than action potentials.
Spiking models involve dynamics over time scales ranging from channel
openings that can take less than a millisecond, to collective network pro-
cesses that may be several orders of magnitude slower. Firing-rate models
avoid the short time scale dynamics required to simulate action potentials
and thus are much easier to simulate on computers. Firing-rate models
also allow us to present analytic calculations of some aspects of network
dynamics that could not be treated in the case of spiking neurons. Finally,
spiking models tend to have more free parameters than firing-rate models,
and setting these appropriately can be difficult.

There are two additional arguments in favor of firing-rate models. The
first concerns the apparent stochasticity of spiking. The models discussed
in chapters 5 and 6 produce spike sequences deterministically in response
to injected current or synaptic input. Deterministic models can predict
spike sequences accurately only if all their inputs are known. This is un-
likely to be the case for the neurons in a complex network, and network
models typically include only a subset of the many different inputs to indi-
vidual neurons. Therefore, the greater apparent precision of spiking mod-
els may not actually be realized in practice. If necessary, firing-rate models
can be used to generate stochastic spike sequences from a deterministically
computed rate, using the methods discussed in chapters 1 and 2.

The second argument involves a complication with spiking models that
arises when they are used to construct simplified networks. Although cor-
tical neurons receive many inputs, the probability of finding a synaptic
connection between a randomly chosen pair of neurons is actually quite
low. Capturing this feature, while retaining a high degree of connectiv-
ity through polysynaptic pathways, requires including a large number of
neurons in a network model. A standard way of dealing with this problem
is to use a single model unit to represent the average response of several
neurons that have similar selectivities. These “averaging” units can then
be interconnected more densely than the individual neurons of the actual
network, so fewer of them are needed to build the model. If neural re-
sponses are characterized by firing rates, the output of the model unit is
simply the average of the firing rates of the neurons it represents collec-
tively. However, if the response is a spike, it is not clear how the spikes
of the represented neurons can be averaged. The way spiking models are
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typically constructed, an action potential fired by the model unit dupli-
cates the effect of all the neurons it represents firing synchronously. Not
surprisingly, such models tend to exhibit large-scale synchronization un-
like anything seen in a healthy brain.

Firing-rate models also have their limitations. They cannot account for
aspects of spike timing and spike correlations that may be important for
understanding nervous system function. Firing-rate models are restricted
to cases where the firing of neurons in a network is uncorrelated, with little
synchronous firing, and where precise patterns of spike timing are unim-
portant. In such cases, comparisons of spiking network models with mod-
els that use firing-rate descriptions have shown that they produce similar
results. Nevertheless, the exploration of neural networks undoubtedly re-
quires the use of both firing-rate and spiking models.

7.2 Firing-Rate Models

As discussed in chapter 1, the sequence of spikes generated by a neuron
is completely characterized by the neural response function ρ(t), which
consists of δ function spikes located at times when the neuron fired action
potentials. In firing-rate models, the exact description of a spike sequence
provided by the neural response function ρ(t) is replaced by the approxi-
mate description provided by the firing rate r(t). Recall from chapter 1 that
r(t) is defined as the probability density of firing and is obtained from ρ(t)
by averaging over trials. The validity of a firing-rate model depends on
how well the trial-averaged firing rate of network units approximates the
effect of actual spike sequences on the dynamic behavior of the network.

The replacement of the neural response function by the corresponding fir-
ing rate is typically justified by the fact that each network neuron has a
large number of inputs. Replacing ρ(t), which describes an actual spike
train, with the trial-averaged firing rate r(t) is justified if the quantities of
relevance for network dynamics are relatively insensitive to the trial-to-
trial fluctuations in the spike sequences represented by ρ(t). In a network
model, the relevant quantities that must be modeled accurately are the
total inputs for the neurons within the network. For any single synaptic
input, the trial-to-trial variability is likely to be large. However, if we sum
the input over many synapses activated by uncorrelated presynaptic spike
trains, the mean of the total input typically grows linearly with the number
of synapses, while its standard deviation grows only as the square root of
the number of synapses. Thus, for uncorrelated presynaptic spike trains,
using presynaptic firing rates in place of the actual presynaptic spike trains
may not significantly modify the dynamics of the network. Conversely, a
firing-rate model will fail to describe a network adequately if the presy-
naptic inputs to a substantial fraction of its neurons are correlated. This
can occur, for example, if the presynaptic neurons fire synchronously.

The synaptic input arising from a presynaptic spike train is effectively fil-
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tered by the dynamics of the conductance changes that each presynaptic
action potential evokes in the postsynaptic neuron (see chapter 5) and the
dynamics of propagation of the current from the synapse to the soma. The
temporal averaging provided by slow synaptic or membrane dynamics
can reduce the effects of spike-train variability and help justify the approx-
imation of using firing rates instead of presynaptic spike trains. Firing-rate
models are more accurate if the network being modeled has a significant
amount of synaptic transmission that is slow relative to typical presynap-
tic interspike intervals.

The construction of a firing-rate model proceeds in two steps. First, we
determine how the total synaptic input to a neuron depends on the fir-
ing rates of its presynaptic afferents. This is where we use firing rates to
approximate neural response functions. Second, we model how the firing
rate of the postsynaptic neuron depends on its total synaptic input. Firing-
rate response curves are typically measured by injecting current into the
soma of a neuron. We therefore find it most convenient to define the total
synaptic input as the total current delivered to the soma as a result of all
the synaptic conductance changes resulting from presynaptic action po-
tentials. We denote this total synaptic current by Is. We then determinesynaptic current Is
the postsynaptic firing rate from Is. In general, Is depends on the spa-
tially inhomogeneous membrane potential of the neuron, but we assume
that, other than during action potentials or transient hyperpolarizations,
the membrane potential remains close to, but slightly below, the thresh-
old for action potential generation. An example of this type of behavior
is seen in the upper panels of figure 7.2. Is is then approximately equal to
the synaptic current that would be measured from the soma in a voltage-
clamp experiment, except for a reversal of sign. In the next section, we
model how Is depends on presynaptic firing rates.

In the network models we consider, both the output from, and the input
to, a neuron are characterized by firing rates. To avoid a proliferation of
sub- and superscripts on the quantity r(t), we use the letter u to denote a
presynaptic firing rate, and v to denote a postsynaptic rate. Note that v isinput rate u

output rate v used here to denote a firing rate, not a membrane potential. In addition,
we use these two letters to distinguish input and output firing rates in
network models, a convention we retain through the remaining chapters.
When we consider multiple input or output neurons, we use vectors u and
v to represent their firing rates collectively, with the components of theseinput rate vector u

output rate vector v vectors representing the firing rates of the individual input and output
units.

The Total Synaptic Current

Consider a neuron receiving Nu synaptic inputs labeled by b = 1,2, . . . , Nu

(figure 7.1). The firing rate of input b is denoted by ub, and the input rates
are represented collectively by the Nu-component vector u. We model how
the synaptic current Is depends on presynaptic firing rates by first consid-
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output v

input u
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Figure 7.1 Feedforward inputs to a single neuron. Input rates u drive a neuron at
an output rate v through synaptic weights given by the vector w.

ering how it depends on presynaptic spikes. If an action potential arrives
at input b at time 0, we write the synaptic current generated in the soma
of the postsynaptic neuron at time t as wbKs(t), where wb is the synaptic
weight and Ks(t) is called the synaptic kernel. Collectively, the synap-
tic weights are represented by a synaptic weight vector w, which has Nu synaptic weights w
components wb. The amplitude and sign of the synaptic current generated
by input b are determined by wb. For excitatory synapses, wb > 0, and for
inhibitory synapses, wb < 0. In this formulation of the effect of presynaptic
spikes, the probability of transmitter release from a presynaptic terminal is
absorbed into the synaptic weight factor wb, and we do not include short-
term plasticity in the model (although this can be done by making wb a
dynamic variable).

The synaptic kernel, Ks(t) ≥ 0, describes the time course of the synaptic synaptic
kernel Ks(t)current in response to a presynaptic spike arriving at time t=0. This time

course depends on the dynamics of the synaptic conductance activated by
the presynaptic spike, and also on both the passive and the active prop-
erties of the dendritic cables that carry the synaptic current to the soma.
For example, long passive cables broaden the synaptic kernel and slow its
rise from 0. Cable calculations or multi-compartment simulations, such as
those discussed in chapter 6, can be used to compute Ks(t) for a specific
dendritic structure. To avoid ambiguity, we normalize Ks(t) by requiring
its integral over all positive times to be 1. At this point, for simplicity, we
use the same function Ks(t) to describe all synapses.

Assuming that the effects of the spikes at a single synapse sum linearly,
the total synaptic current at time t arising from a sequence of presynaptic
spikes occurring at input b at times ti is given by

wb

∑

ti<t

Ks(t − ti) = wb

∫ t

−∞
dτ Ks(t − τ)ρb(τ) . (7.1)

In the second expression, we have used the neural response function,
ρb(τ) = ∑

i δ(τ − ti), to describe the sequence of spikes fired by presy-
naptic neuron b. The equality follows from integrating over the sum of δ

functions in the definition of ρb(τ). If there is no nonlinear interaction be-
tween different synaptic currents, the total synaptic current coming from
all presynaptic inputs is obtained simply by summing,

Is =
Nu∑

b=1

wb

∫ t

−∞
dτ Ks(t − τ)ρb(τ) . (7.2)



234 Network Models

As discussed previously, the critical step in the construction of a firing-rate
model is the replacement of the neural response function ρb(τ) in equa-
tion 7.2 with the firing rate of neuron b, ub(τ), so that we write

Is =
Nu∑

b=1

wb

∫ t

−∞
dτ Ks(t − τ)ub(τ) . (7.3)

The synaptic kernel most frequently used in firing-rate models is an expo-
nential, Ks(t) = exp(−t/τs)/τs. With this kernel, we can describe Is by a
differential equation if we take the derivative of equation 7.3 with respect
to t,

τs
dIs

dt
= −Is +

Nu∑

b=1

wbub = −Is + w · u . (7.4)

In the second equality, we have expressed the sum
∑

wbub as the dot prod-
uct of the weight and input vectors, w · u. In this and the following chap-dot product
ters, we primarily use the vector versions of equations such as 7.4, but
when we first introduce an important new equation, we often write it in
its subscripted form as well.

Recall that K describes the temporal evolution of the synaptic current due
to both synaptic conductance and dendritic cable effects. For an electro-
tonically compact dendritic structure, τs will be close to the time constant
that describes the decay of the synaptic conductance. For fast synaptic
conductances such as those due to AMPA glutamate receptors, this may
be as short as a few milliseconds. For a long, passive dendritic cable, τs
may be larger than this, but its measured value is typically quite small.

The Firing Rate

Equation 7.4 determines the synaptic current entering the soma of a post-
synaptic neuron in terms of the firing rates of the presynaptic neurons. To
finish formulating a firing-rate model, we must determine the postsynap-
tic firing rate from our knowledge of Is. For constant synaptic current,
the firing rate of the postsynaptic neuron can be expressed as v = F(Is),
where F is the steady-state firing rate as a function of somatic input cur-
rent. F is also called an activation function. F is sometimes taken to beactivation

function F(Is) a saturating function such as a sigmoid function. This is useful in cases
where the derivative of F is needed in the analysis of network dynamics.
It is also bounded from above, which can be important in stabilizing a net-
work against excessively high firing rates. More often, we use a threshold
linear function F(Is) = [Is − γ]+, where γ is the threshold and the notationthreshold γ

[ ]+ denotes half-wave rectification, as in previous chapters. For conve-
nience, we treat Is in this expression as if it were measured in units of a
firing rate (Hz), that is, as if Is is multiplied by a constant that converts its
units from nA to Hz. This makes the synaptic weights dimensionless. The
threshold γ also has units of Hz.
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For time-independent inputs, the relation v = F(Is) is all we need to know
to complete the firing-rate model. The total steady-state synaptic current
predicted by equation 7.4 for time-independent u is Is = w · u. This gener-
ates a steady-state output firing rate v = v∞ given by

v∞ = F(w · u) . (7.5)

The steady-state firing rate tells us how a neuron responds to constant cur-
rent, but not to a current that changes with time. To model time-dependent
inputs, we need to know the firing rate in response to a time-dependent
synaptic current Is(t). The simplest assumption is that this is still given
by the activation function, so v = F(Is(t)) even when the total synaptic
current varies with time. This leads to a firing-rate model in which the
dynamics arises exclusively from equation 7.4, firing-rate model

with current
dynamicsτs

dIs

dt
= −Is + w · u with v = F(Is) . (7.6)

An alternative formulation of a firing-rate model can be constructed by
assuming that the firing rate does not follow changes in the total synaptic
current instantaneously, as was assumed for the model of equation 7.6. Ac-
tion potentials are generated by the synaptic current through its effect on
the membrane potential of the neuron. Due to the membrane capacitance
and resistance, the membrane potential is, roughly speaking, a low-pass
filtered version of Is (see the Mathematical Appendix). For this reason, the
time-dependent firing rate is often modeled as a low-pass filtered version
of the steady-state firing rate,

τr
dv

dt
= −v + F(Is(t)) . (7.7)

The constant τr in this equation determines how rapidly the firing rate
approaches its steady-state value for constant Is, and how closely v can
follow rapid fluctuations for a time-dependent Is(t). Equivalently, it mea-
sures the time scale over which v averages F(Is(t)). The low-pass filtering
effect of equation 7.7 is described in the Mathematical Appendix in the
context of electrical circuit theory. The argument we have used to moti-
vate equation 7.7 would suggest that τr should be approximately equal to
the membrane time constant of the neuron. However, this argument really
applies to the membrane potential, not the firing rate, and the dynamics
of the two are not the same. Some network models use a value of τr that
is considerably less than the membrane time constant. We re-examine this
issue in the following section.

The second model that we have described involves the pair of equa-
tions 7.4 and 7.7. If one of these equations relaxes to its equilibrium point
much more rapidly than the other, the pair can be reduced to a single
equation. We discuss cases in which this occurs in the following section.
For example, if τr � τs, we can make the approximation that equation 7.7
rapidly sets v = F(Is(t)), and then the second model reduces to the first
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model that is defined by equation 7.6. If instead, τr � τs, we can make
the approximation that equation 7.4 comes to equilibrium quickly com-
pared with equation 7.7. Then we can make the replacement Is = w · u in
equation 7.7 and writefiring-rate equation

τr
dv

dt
= −v + F(w · u) . (7.8)

For most of this chapter, we analyze network models described by the
firing-rate dynamics of equation 7.8, although occasionally we consider
networks based on equation 7.6.

Firing-Rate Dynamics

The firing-rate models described by equations 7.6 and 7.8 differ in their
assumptions about how firing rates respond to and track changes in the
input current to a neuron. In one case (equation 7.6), it is assumed that
firing rates follow time-varying input currents instantaneously, without
attenuation or delay. In the other case (equation 7.8), the firing rate is a
low-pass filtered version of the input current. To study the relationship
between input current and firing rate, it is useful to examine the firing rate
of a spiking model neuron in response to a time-varying injected current,
I(t). The model used for this purpose in figure 7.2 is an integrate-and-fire
neuron receiving balanced excitatory and inhibitory synaptic input along
with a current injected into the soma that is the sum of constant and oscil-
lating components. This model was discussed in chapter 5. The balanced
synaptic input is used to represent background input not included in the
computation of Is, and it acts as a source of noise. The noise prevents
effects, such as locking of the spiking to the oscillations of the injected cur-
rent, that would invalidate a firing-rate description.

Figure 7.2 shows the firing rates of the model integrate-and-fire neuron
in response to an input current I(t) = I0 + I1 cos(ωt). The firing rate is
plotted at different times during the cycle of the input current oscillations
for ω corresponding to frequencies of 1, 50, and 100 Hz. For the panels
on the left side, the constant component of the injected current (I0) was
adjusted so the neuron never stopped firing during the cycle. In this case,
the relation v(t) = F(I(t)) (solid curves) provides an accurate description
of the firing rate for all of the oscillation frequencies shown. As long as
the neuron keeps firing fairly rapidly, the low-pass filtering properties of
the membrane potential are not relevant for the dynamics of the firing
rate. Low-pass filtering is irrelevant in this case, because the neuron is
continually being shuttled between the threshold and reset values, so it
never has a chance to settle exponentially anywhere near its steady-state
value.

The right panels in figure 7.2 show that the situation is different if the
input current is below the threshold for firing through a significant part
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Figure 7.2 Firing rate of an integrate-and-fire neuron receiving balanced excitatory
and inhibitory synaptic input and an injected current consisting of a constant and
a sinusoidally varying term. For the left panels, the constant component of the in-
jected current was adjusted so the firing never stopped during the oscillation of the
varying part of the injected current. For the right panel, the constant component
was lowered so the firing stopped during part of the cycle. The upper panels show
two representative voltage traces of the model cell. The histograms beneath these
traces were obtained by binning spikes generated over multiple cycles. They show
the firing rate as a function of the time during each cycle of the injected current os-
cillations. The different rows correspond to 1, 50, and 100 Hz oscillation frequen-
cies for the injected current. The solid curves show the fit of a firing-rate model
that involves both instantaneous and low-pass filtered effects of the injected cur-
rent. For the left panel, this reduces to the simple prediction v = F(I(t)). (Adapted
from Chance, 2000.)

of the oscillation cycle. In this case, the firing is delayed and attenuated
at high frequencies, as would be predicted by equation 7.7. In this case,
the membrane potential stays below threshold for long enough periods of
time that its dynamics become relevant for the firing of the neuron.

The essential message from figure 7.2 is that neither equation 7.6 nor equa-
tion 7.8 provides a completely accurate prediction of the dynamics of the
firing rate at all frequencies and for all levels of injected current. A more
complex model can be constructed that accurately describes the firing rate
over the entire range of input current amplitudes and frequencies. The
solid curves in figure 7.2 were generated by a model that expresses the fir-
ing rate as a function of both I from equation 7.6 and v from equation 7.8.
In other words, it is a combination of the two models discussed in the pre-
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output v

input u
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Figure 7.3 Feedforward and recurrent networks. (A) A feedforward network with
input rates u, output rates v, and a feedforward synaptic weight matrix W. (B)
A recurrent network with input rates u, output rates v, a feedforward synaptic
weight matrix W, and a recurrent synaptic weight matrix M. Although we have
drawn the connections between the output neurons as bidirectional, this does not
necessarily imply connections of equal strength in both directions.

vious section with the firing rate given neither by F(I) nor by v but by
another function, G(I, v). This compound model provides quite an accu-
rate description of the firing rate of the integrate-and-fire model, but it is
more complex than the models used in this chapter.

Feedforward and Recurrent Networks

Figure 7.3 shows examples of network models with feedforward and re-
current connectivity. The feedforward network of figure 7.3A has Nv out-
put units with rates va (a = 1,2, . . . , Nv), denoted collectively by the vector
v, driven by Nu input units with rates u. Equations 7.8 and 7.6 can easily be
extended to cover this case by replacing the vector of synaptic weights w
with a matrix W, with the matrix component Wab representing the strength
of the synapse from input unit b to output unit a. Using the formulation of
equation 7.8, the output firing rates are then determined byfeedforward model

τr
dv
dt

= −v + F(W · u) or τr
dva

dt
= −v + F

(
Nu∑

b=1

Wabub

)
. (7.9)

We use the notation W · u to denote the vector with components
∑

b Wabub.
The use of the dot to represent a sum of a product of two quantities over
a shared index is borrowed from the notation for the dot product of two
vectors. The expression F(W · u) represents the vector with components
F(

∑
Wabub) for a = 1,2, . . . , Nv.

The recurrent network of figure 7.3B also has two layers of neurons with
rates u and v, but in this case the neurons of the output layer are intercon-
nected with synaptic weights described by a matrix M. Matrix element
Maa′ describes the strength of the synapse from output unit a′ to output
unit a. The output rates in this case are determined byrecurrent model

τr
dv
dt

= −v + F(W · u + M · v) . (7.10)
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It is often convenient to define the total feedforward input to each neuron
in the network of figure 7.3B as h = W · u. Then, the output rates are
determined by the equation

τr
dv
dt

= −v + F(h + M · v) . (7.11)

Neurons are typically classified as either excitatory or inhibitory, meaning
that they have either excitatory or inhibitory effects on all of their postsy-
naptic targets. This property is formalized in Dale’s law, which states that Dale’s law
a neuron cannot excite some of its postsynaptic targets and inhibit others.
In terms of the elements of M, this means that for each presynaptic neuron
a′, Maa′ must have the same sign for all postsynaptic neurons a. To im-
pose this restriction, it is convenient to describe excitatory and inhibitory
neurons separately. The firing-rate vectors vE and vI for the excitatory and
inhibitory neurons are then described by a coupled set of equations iden-
tical in form to equation 7.11, excitatory-

inhibitory
networkτE

dvE

dt
= −vE + FE (hE + MEE · vE + MEI · vI) (7.12)

and

τI
dvI

dt
= −vI + FI (hI + MIE · vE + MII · vI) . (7.13)

There are now four synaptic weight matrices describing the four possible
types of neuronal interactions. The elements of MEE and MIE are greater
than or equal to 0, and those of MEI and MII are less than or equal to
0. These equations allow the excitatory and inhibitory neurons to have
different time constants, activation functions, and feedforward inputs.

In this chapter, we consider several recurrent network models described
by equation 7.11 with a symmetric weight matrix, Maa′ = Ma′a for all a and
a′. Requiring M to be symmetric simplifies the mathematical analysis, but symmetric coupling
it violates Dale’s law. Suppose, for example, that neuron a, which is exci-
tatory, and neuron a′, which is inhibitory, are mutually connected. Then,
Maa′ should be negative and Ma′a positive, so they cannot be equal. Equa-
tion 7.11 with symmetric M can be interpreted as a special case of equa-
tions 7.12 and 7.13 in which the inhibitory dynamics are instantaneous
(τI → 0) and the inhibitory rates are given by vI = MIEvE. This produces
an effective recurrent weight matrix M = MEE + MEI · MIE, which can be
made symmetric by the appropriate choice of the dimension and form of
the matrices MEI and MIE. The dynamic behavior of equation 7.11 is re-
stricted by requiring the matrix M to be symmetric. For example symmet-
ric coupling typically does not allow for network oscillations. In the latter
part of this chapter, we consider the richer dynamics of models described
by equations 7.12 and 7.13.
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Continuously Labeled Networks

It is often convenient to identify each neuron in a network by using a pa-
rameter that describes some aspect of its selectivity rather than the integer
label a or b. For example, neurons in primary visual cortex can be charac-
terized by their preferred orientation angles, preferred spatial phases and
frequencies, or other stimulus-related parameters (see chapter 2). In many
of the examples in this chapter, we consider stimuli characterized by a
single angle �, which represents, for example, the orientation of a visual
stimulus. Individual neurons are identified by their preferred stimulus
angles, which are typically the values of � for which they fire at maxi-
mum rates. Thus, neuron a is identified by an angle θa. The weight of
the synapse from neuron b or neuron a′ to neuron a is then expressed as a
function of the preferred stimulus angles θb, θa′ and θa of the pre- and post-
synaptic neurons, Wab = W(θa, θb) or Maa′ = M(θa, θa′ ). We often consider
cases in which these synaptic weight functions depend only on the differ-
ence between the pre- and postsynaptic angles, so that Wab = W(θa − θb)

or Maa′ = M(θa − θa′ ).

In large networks, the preferred stimulus parameters for different neurons
will typically take a wide range of values. In the models we consider, the
number of neurons is large and the angles θa, for different values of a,
cover the range from 0 to 2π densely. For simplicity, we assume that this
coverage is uniform, so that the density of coverage, the number of neu-
rons with preferred angles falling within a unit range, which we denote
by ρθ, is constant. For mathematical convenience in these cases, we al-density of

coverage ρθ low the preferred angles to take continuous values rather than restricting
them to the actual discrete values θa for a = 1,2, . . . , N. Thus, we label
the neurons by a continuous angle θ and express the firing rate as a func-
tion of θ, so that u(θ) and v(θ) describe the firing rates of neurons with
preferred angles θ. Similarly, the synaptic weight matrices W and M are
replaced by functions W(θ, θ′) and M(θ, θ′) that characterizes the strength
of synapses from a presynaptic neuron with preferred angle θ′ to a post-
synaptic neuron with preferred angle θ in the feedforward and recurrent
cases, respectively.

If the number of neurons in a network is large and the density of cover-
age of preferred stimulus values is high, we can approximate the sums in
equation 7.10 by integrals over θ′. The number of postsynaptic neurons
with preferred angles within a range 	θ′ is ρθ	θ′, so, when we take the
limit 	θ′ → 0, the integral over θ′ is multiplied by the density factor ρθ.
Thus, in the case of continuous labeling of neurons, equation 7.10 becomes
(for constant ρθ)continuous model

τr
dv(θ)

dt
= −v(θ) + F

(
ρθ

∫ π

−π

dθ′ W(θ, θ′)u(θ′) + M(θ, θ′)v(θ′)
)

. (7.14)

As we did in equation 7.11, we can write the first term inside the integral
of this expression as an input function h(θ). We make frequent use of
continuous labeling for network models, and we often approximate sums
over neurons by integrals over their preferred stimulus parameters.
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sg
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Figure 7.4 Coordinate transformations during a reaching task. (A, B) The location
of the target (the gray square) relative to the body is the same in A and B, and
thus the movements required to reach toward it are identical. However, the image
of the object falls on different parts of the retina in A and B due to a shift in the
gaze direction produced by an eye rotation that shifts the fixation point F. (C) The
angles used in the analysis: s is the angle describing the location of the stimulus
(the target) in retinal coordinates, that is, relative to a line directed to the fixation
point; g is the gaze angle, indicating the direction of gaze relative to an axis straight
out from the body. The direction of the target relative to the body is s + g.

7.3 Feedforward Networks

Substantial computations can be performed by feedforward networks in
the absence of recurrent connections. Much of the work done on feed-
forward networks centers on plasticity and learning, as discussed in the
following chapters. Here, we present an example of the computational
power of feedforward circuits, the calculation of the coordinate transfor-
mations needed in visually guided reaching tasks.

Neural Coordinate Transformations

Reaching for a viewed object requires a number of coordinate transforma-
tions that turn information about where the image of the object falls on
the retina into movement commands in shoulder-, arm-, or hand-based
coordinates. To perform a transformation from retinal to body-based co-
ordinates, information about the retinal location of an image and about
the direction of gaze relative to the body must be combined. Figure 7.4A
and B illustrate, in a one-dimensional example, how a rotation of the eyes
affects the relationship between gaze direction, retinal location, and loca-
tion relative to the body. Figure 7.4C introduces the notation we use. The
angle g describes the orientation of a line extending from the head to the
point of visual fixation. The visual stimulus in retinal coordinates is given
by the angle s between this line and a line extending out to the target. The
angle describing the reach direction, the direction to the target relative to
the body, is the sum s + g.

Visual neurons have receptive fields fixed to specific locations on the
retina. Neurons in motor areas can display visually evoked responses that
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Figure 7.5 Tuning curves of a visually responsive neuron in the premotor cortex
of a monkey. Incoming objects approaching at various angles provided the visual
stimulation. (A) When the monkey fixated on the three points denoted by the cross
symbols, the response tuning curve did not shift with the eyes. In this panel, un-
like B and C, the horizontal axis refers to the stimulus location in body-based, not
retinal, coordinates (s + g, not s). (B) Turning the monkey’s head by 15◦ produced
a 15◦ shift in the response tuning curve as a function of retinal location, indicating
that this neuron encoded the stimulus direction in a body-based system. (C) Model
tuning curves based on equation 7.15 shift their retinal tuning to remain constant
in body-based coordinates. The solid, heavy dashed, and light dashed curves refer
to g = 0◦, 10◦, and −20◦ respectively. The small changes in amplitude arise from
the limited range of preferred retinal location and gaze angles in the model. (A, B
adapted from Graziano et al., 1997; C adapted from Salinas and Abbott, 1995.)

are not tied to specific retinal locations but, rather, depend on the relation-
ship of a visual image to various parts of the body. Figures 7.5A and B
show tuning curves of a neuron in the premotor cortex of a monkey that
responded to visual images of approaching objects. Surprisingly, when the
head of the monkey was held stationary during fixation on three different
targets, the tuning curves did not shift as the eyes rotated (figure 7.5A).
Although the recorded neurons respond to visual stimuli, the responses
do not depend directly on the location of the image on the retina. When
the head of the monkey is rotated but the fixation point remains the same,
the tuning curves shift by precisely the amount of the head rotation (fig-
ure 7.5B). Thus, these neurons encode the location of the image in a body-
based, not a retinal, coordinate system.

To account for these data, we need to construct a model neuron that is
driven by visual input, but that nonetheless has a tuning curve for image
location that is not a function of s, the retinal location of the image, but
of s + g, the location of the object in body-based coordinates. A possible
basis for this construction is provided by a combined representation of s
and g by neurons in area 7a in the posterior parietal cortex of the monkey.
Recordings made in area 7a reveal neurons that fire at rates that depend on
both the location of the stimulating image on the retina and the direction
of gaze (figure 7.6A). The response tuning curves, expressed as functions
of the retinal location of the stimulus, do not shift when the direction of
gaze is varied. Instead, shifts of gaze direction affect the magnitude of the
visual response. Thus, responses in area 7a exhibit gaze-dependent gain
modulation of a retinotopic visual receptive field.gain modulation
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Figure 7.6 Gaze-dependent gain modulation of visual responses of neurons in pos-
terior parietal cortex. (A) Average firing-rate tuning curves of an area 7a neuron
as a function of the location of the spot of light used to evoke the response. Stim-
ulus location is measured as an angle around a circle of possible locations on the
screen and is related to, but not equal to, our stimulus variable s. The two curves
correspond to the same visual images but with two different gaze directions. (B)
A three-dimensional plot of the activity of a model neuron as a function of both
retinal position and gaze direction. The striped bands correspond to tuning curves
with different gains similar to those shown in A. (A adapted from Brotchie et al.,
1995; B adapted from Pouget and Sejnowski, 1995.)

Figure 7.6B shows a mathematical description of a gain-modulated tuning
curve. The response tuning curve is expressed as a product of a Gaussian
function of s−ξ, where ξ is the preferred retinal location (ξ=−20◦ in fig-
ure 7.6B), and a sigmoidal function of g − γ, where γ is the gaze direction
producing half of the maximum gain (γ =20◦ in figure 7.6B). Although it
does not correspond to the maximum neural response, we refer to γ as the
“preferred” gaze direction.

To model a neuron with a body-centered response tuning curve, we con-
struct a feedforward network with a single output unit representing, for
example, the premotor cortex neuron shown in figure 7.5. The input layer
of the network consists of a population of area 7a neurons with gain-
modulated responses similar to those shown in figure 7.6B. Neurons with
gains that both increase and decrease as a function of g are included in the
model. The average firing rates of the input layer neurons are described
by tuning curves u = fu(s−ξ, g−γ), with the different neurons taking dif-
ferent ξ and γ values.

We use continuous labeling of neurons, and replace the sum over presy-
naptic neurons by an integral over their ξ and γ values, inserting the ap-
propriate density factors ρξ and ργ , which we assume are constant. The
steady-state response of the single output neuron is determined by the
continuous analog of equation 7.5. The synaptic weight from a presynap-
tic neuron with preferred stimulus location ξ and preferred gaze direction
γ is denoted by w(ξ, γ), so the steady-state response of the output neuron
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is given by

v∞ = F
(
ρξργ

∫
dξdγ w(ξ, γ) fu(s − ξ, g − γ)

)
. (7.15)

For the output neuron to respond to the stimulus location in body-based
coordinates, its firing rate must be a function of s+g. To see if this is
possible, we shift the integration variables in 7.15 by ξ → ξ−g and γ →
γ+g. Ignoring effects from the end points of the integration (which is valid
if s and g are not too close to these limits), we find

v∞ = F
(
ρξργ

∫
dξdγ w(ξ − g, γ + g) fu(s + g − ξ,−γ)

)
. (7.16)

This is a function of s+g provided that w(ξ − g, γ + g) = w(ξ, γ), which
holds if w(ξ, γ) is a function of the sum ξ + γ. Thus, the coordinate trans-
formation can be accomplished if the synaptic weight from a given neuron
depends only on the sum of its preferred retinal and gaze angles. It has
been suggested that weights of this form can arise naturally from random
hand and gaze movements through correlation-based synaptic modifica-
tion of the type discussed in chapter 8.

Figure 7.5C shows responses predicted by equation 7.15 when the synaptic
weights are given by a function w(ξ+ γ). The retinal location of the tuning
curve shifts as a function of gaze direction, but would remain stationary if
it were plotted instead as a function of s + g. This can be seen by noting
that the peaks of all three curves in figure 7.5C occur at s + g = 0.

Gain-modulated neurons provide a general basis for combining two dif-
ferent input signals in a nonlinear way. In the network we studied, it is
possible to find appropriate synaptic weights w(ξ, γ) to generate output
neuron responses with a wide range of different dependencies on s and
g. The mechanism by which sensory and modulatory inputs combine in
a multiplicative way in gain-modulated neurons is not known. Later in
this chapter, we discuss a recurrent network model for generating gain-
modulated responses.

7.4 Recurrent Networks

Recurrent networks have richer dynamics than feedforward networks, but
they are more difficult to analyze. To get a feel for recurrent circuitry, we
begin by analyzing a linear model, that is, a model for which the rela-
tionship between firing rate and synaptic current is linear, F(h + M · v) =
h + M · v. The linear approximation is a drastic one that allows, among
other things, the components of v to become negative, which is impossi-
ble for real firing rates. Furthermore, some of the features we discuss in
connection with linear, as opposed to nonlinear, recurrent networks can
also be achieved by a feedforward architecture. Nevertheless, the linear
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model is extremely useful for exploring properties of recurrent circuits,
and this approach will be used both here and in the following chapters. In
addition, the analysis of linear networks forms the basis for studying the
stability properties of nonlinear networks. We augment the discussion of
linear networks with results from simulations of nonlinear networks.

Linear Recurrent Networks

Under the linear approximation, the recurrent model of equation 7.11 takes
the form linear recurrent

model
τr

dv
dt

= −v + h + M · v . (7.17)

Because the model is linear, we can solve analytically for the vector of
output rates v in terms of the feedforward inputs h and the initial values
v(0). The analysis is simplest when the recurrent synaptic weight matrix is
symmetric, and we assume this to be the case. Equation 7.17 can be solved
by expressing v in terms of the eigenvectors of M. The eigenvectors eµ for
µ = 1,2, . . . , Nv satisfy eigenvector e

M · eµ = λµeµ (7.18)

for some value of the constant λµ, which is called the eigenvalue. For a eigenvalue λ

symmetric matrix, the eigenvectors are orthogonal, and they can be nor-
malized to unit length so that eµ · eν = δµν. Such eigenvectors define an
orthogonal coordinate system or basis that can be used to represent any
Nv-dimensional vector. In particular, we can write eigenvector

expansion

v(t) =
Nv∑

µ=1

cµ(t)eµ , (7.19)

where cµ(t) for µ = 1,2, . . . , Nv are a set of time-dependent coefficients
describing v(t).

It is easier to solve equation 7.17 for the coefficients cµ than for v directly.
Substituting the expansion 7.19 into equation 7.17 and using property 7.18,
we find that

τr

Nv∑

µ=1

dcµ

dt
eµ = −

Nv∑

µ=1

(1 − λµ)cµ(t)eµ + h . (7.20)

The sum over µ can be eliminated by taking the dot product of each side of
this equation with one of the eigenvectors, eν, and using the orthogonality
property eµ · eν = δµν to obtain

τr
dcν

dt
= −(1 − λν)cν(t) + eν · h . (7.21)
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The critical feature of this equation is that it involves only one of the co-
efficients, cν. For time-independent inputs h, the solution of equation 7.21
is

cν(t) = eν · h
1 − λν

(
1 − exp

(
− t(1 − λν)

τr

))
+ cν(0)exp

(
− t(1 − λν)

τr

)
,

(7.22)

where cν(0) is the value of cν at time 0, which is given in terms of the initial
firing-rate vector v(0) by cν(0) = eν · v(0).

Equation 7.22 has several important characteristics. If λν >1, the exponen-
tial functions grow without bound as time increases, reflecting a funda-
mental instability of the network. If λν <1, cν approaches the steady-state
value eν · h/(1 − λν) exponentially with time constant τr/(1 − λν). This
steady-state value is proportional to eν · h, which is the projection of the
input vector onto the relevant eigenvector. For 0<λν <1, the steady-state
value is amplified relative to this projection by the factor 1/(1 −λν), which
is greater than 1. The approach to equilibrium is slowed relative to the ba-
sic time constant τr by an identical factor. The steady-state value of v(t),
which we call v∞, can be derived from equation 7.19 assteady state v∞

v∞ =
Nv∑

ν=1

(eν · h)

1 − λν

eν . (7.23)

This steady-state response can also arise from a purely feedforward
scheme if the feedforward weight matrix is chosen appropriately, as we
invite the reader to verify as an exercise.

Selective Amplification

Suppose that one of the eigenvalues of a recurrent weight matrix, denoted
by λ1, is very close to 1, and all the others are significantly smaller than 1.
In this case, the denominator of the ν=1 term on the right side of equa-
tion 7.23 is near 0, and, unless e1 · h is extremely small, this single term
will dominate the sum. As a result, we can write

v∞ ≈ (e1 · h)e1

1 − λ1
. (7.24)

Such a network performs selective amplification. The response is domi-
nated by the projection of the input vector along the axis defined by e1,
and the amplitude of the response is amplified by the factor 1/(1 − λ1),
which may be quite large if λ1 is near 1. The steady-state response of such
a network, which is proportional to e1, therefore encodes an amplified pro-
jection of the input vector onto e1.

Further information can be encoded if more eigenvalues are close to 1.
Suppose, for example, that two eigenvectors, e1 and e2, have the same
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eigenvalue, λ1 =λ2, close to but less than 1. Then, equation 7.24 is replaced
by

v∞ ≈ (e1 · h)e1 + (e2 · h)e2

1 − λ1
, (7.25)

which shows that the network now amplifies and encodes the projection
of the input vector onto the plane defined by e1 and e2. In this case, the ac-
tivity pattern of the network is not simply scaled when the input changes.
Instead, changes in the input shift both the magnitude and the pattern of
network activity. Eigenvectors that share the same eigenvalue are termed
degenerate, and degeneracy is often the result of a symmetry. Degener-
acy is not limited to just two eigenvectors. A recurrent network with n
degenerate eigenvalues near 1 can amplify and encode a projection of the
input vector from the N-dimensional space in which it is defined onto the
n-dimensional subspace spanned by the degenerate eigenvectors.

Input Integration

If the recurrent weight matrix has an eigenvalue exactly equal to 1, λ1 = 1,
and all the other eigenvalues satisfy λν < 1, a linear recurrent network can
act as an integrator of its input. In this case, c1 satisfies the equation

τr
dc1

dt
= e1 · h , (7.26)

obtained by setting λ1 = 1 in equation 7.21. For arbitrary time-dependent
inputs, the solution of this equation is

c1(t) = c1(0) + 1
τr

∫ t

0
dt′ e1 · h(t′) . (7.27)

If h(t) is constant, c1(t) grows linearly with t. This explains why equa-
tion 7.24 diverges as λ1 → 1. Suppose, instead, that h(t) is nonzero for a
while, and then is set to 0 for an extended period of time. When h = 0,
equation 7.22 shows that cν → 0 for all ν 	= 1, because for these eigenvec-
tors λν < 1. Assuming that c1(0) = 0, this means that after such a period,
the firing-rate vector is given, from equations 7.27 and 7.19, by network

integration

v(t) ≈ e1

τr

∫ t

0
dt′ e1 · h(t′) . (7.28)

This shows that the network activity provides a measure of the running
integral of the projection of the input vector onto e1. One consequence of
this is that the activity of the network does not cease if h = 0, provided that
the integral up to that point in time is nonzero. The network thus exhibits
sustained activity in the absence of input, which provides a memory of the
integral of prior input.

Networks in the brain stem of vertebrates responsible for maintaining eye
position appear to act as integrators, and networks similar to the one we
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Figure 7.7 Cartoon of burst and integrator neurons involved in horizontal eye po-
sitioning. The upper trace represents horizontal eye position during two saccadic
eye movements. Motion of the eye is driven by burst neurons that move the eyes
in opposite directions (second and third traces from top). The steady-state firing
rate (labeled persistent activity) of the integrator neuron is proportional to the time
integral of the burst rates, integrated positively for the ON-direction burst neuron
and negatively for the OFF-direction burst neuron, and thus provides a memory
trace of the maintained eye position. (Adapted from Seung et al., 2000.)

have been discussing have been suggested as models of this system. As
outlined in figure 7.7, eye position changes in response to bursts of ac-
tivity in ocular motor neurons located in the brain stem. Neurons in the
medial vestibular nucleus and prepositus hypoglossi appear to integrate
these motor signals to provide a persistent memory of eye position. The
sustained firing rates of these neurons are approximately proportional to
the angular orientation of the eyes in the horizontal direction, and activ-
ity persists at an approximately constant rate when the eyes are held fixed
(bottom trace in figure 7.7).

The ability of a linear recurrent network to integrate and display persis-
tent activity relies on one of the eigenvalues of the recurrent weight matrix
being exactly 1. Any deviation from this value will cause the persistent ac-
tivity to change over time. Eye position does indeed drift, but matching
the performance of the ocular positioning system requires fine-tuning of
the eigenvalue to a value extremely close to 1. Including nonlinear inter-
actions does not alleviate the need for a precisely tuned weight matrix.
Synaptic modification rules can be used to establish the necessary synap-
tic weights, but it is not clear how such precise tuning is accomplished in
the biological system.

Continuous Linear Recurrent Networks

For a linear recurrent network with continuous labeling, the equation for
the firing rate v(θ) of a neuron with preferred stimulus angle θ is a linear
version of equation 7.14,

τr
dv(θ)

dt
= −v(θ) + h(θ) + ρθ

∫ π

−π

dθ′ M(θ − θ′)v(θ′) , (7.29)
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where h(θ) is the feedforward input to a neuron with preferred stimulus
angle θ, and we have assumed a constant density ρθ. Because θ is an angle,
h, M, and v must all be periodic functions with period 2π. By making M a
function of θ− θ′, we are imposing a symmetry with respect to translations
or shifts of the angle variables. In addition, we assume that M is an even
function, M(θ − θ′) = M(θ′ − θ). This is the analog, in a continuously
labeled model, of a symmetric synaptic weight matrix.

Equation 7.29 can be solved by methods similar to those used for discrete
networks. We introduce eigenfunctions that satisfy

ρθ

∫ π

−π

dθ′ M(θ − θ′)eµ(θ′) = λµeµ(θ) . (7.30)

We leave it as an exercise to show that the eigenfunctions (normalized so
that ρθ times the integral from −π to π of their square is 1) are 1/(2πρθ)

1/2,
corresponding to µ = 0, and cos(µθ)/(πρθ)

1/2 and sin(µθ)/(πρθ)
1/2 for

µ = 1,2, . . . . The eigenvalues are identical for the sine and cosine eigen-
functions and are given (including the case µ = 0) by

λµ = ρθ

∫ π

−π

dθ′ M(θ′) cos(µθ′) . (7.31)

The steady-state firing rates for a constant input are given by the continu-
ous analog of equation 7.23,

v∞(θ) = 1
1 − λ0

∫ π

−π

dθ′

2π
h(θ′)

+
∞∑

µ=1

cos(µθ)

1 − λµ

∫ π

−π

dθ′

π
h(θ′) cos(µθ′)

+
∞∑

µ=1

sin(µθ)

1 − λµ

∫ π

−π

dθ′

π
h(θ′) sin(µθ′) . (7.32)

The integrals in this expression are the coefficients in a Fourier series for Fourier series
the function h and are known as cosine and sine Fourier integrals (see the
Mathematical Appendix).

Figure 7.8 shows an example of selective amplification by a linear recur-
rent network. The input to the network, shown in panel A of figure 7.8, is
a cosine function that peaks at 0◦ to which random noise has been added.
Figure 7.8C shows Fourier amplitudes for this input. The Fourier ampli-
tude is the square root of the sum of the squares of the cosine and sine
Fourier integrals. No particular µ value is overwhelmingly dominant. In
this and the following examples, the recurrent connections of the network
are given by

M(θ − θ′) = λ1

πρθ

cos(θ − θ′) , (7.33)

which has all eigenvalues except λ1 equal to 0. The network model shown
in figure 7.8 has λ1 = 0.9, so that 1/(1 − λ1) = 10. Input amplification can
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Figure 7.8 Selective amplification in a linear network. (A) The input to the neu-
rons of the network as a function of their preferred stimulus angle. (B) The activity
of the network neurons plotted as a function of their preferred stimulus angle in
response to the input of panel A. (C) The Fourier transform amplitudes of the in-
put shown in panel A. (D) The Fourier transform amplitudes of the output shown
in panel B. The recurrent coupling of this network model took the form of equa-
tion 7.33 with λ1 = 0.9. (This figure, and figures 7.9, 7.12, 7.13, and 7.14, were
generated using software from Carandini and Ringach, 1997.)

be quantified by comparing the Fourier amplitude of v∞, for a given µ

value, with the analogous amplitude for the input h. According to equa-
tion 7.32, the ratio of these quantities is 1/(1 − λµ), so, in this case, the
µ = 1 amplitude should be amplified by a factor of 10 while all other am-
plitudes are unamplified. This factor of 10 amplification can be seen by
comparing the µ = 1 Fourier amplitudes in figures 7.8C and D (note the
different scales for the vertical axes). All the other components are unam-
plified. As a result, the output of the network is primarily in the form of a
cosine function with µ = 1, as seen in figure 7.8B.

Nonlinear Recurrent Networks

A linear model does not provide an adequate description of the firing rates
of a biological neural network. The most significant problem is that the
firing rates in a linear network can take negative values. This problem can
be fixed by introducing rectification into equation 7.11 by choosingrectification

F(h + M · r) = [h + M · r − γγγ]+ , (7.34)
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Figure 7.9 Selective amplification in a recurrent network with rectification. (A)
The input h(θ) of the network plotted as a function of preferred angle. (B) The
steady-state output v(θ) as a function of preferred angle. (C) Fourier transform
amplitudes of the input h(θ). (D) Fourier transform amplitudes of the output v(θ).
The recurrent coupling took the form of equation 7.33 with λ1 = 1.9.

where γγγ is a vector of threshold values that we often take to be 000 (we use
the notation 000 to denote a vector with all its components equal to zero).
In this section, we show some examples illustrating the effect of including vector of zeros 000
such a rectifying nonlinearity. Some of the features of linear recurrent net-
works remain when rectification is included, but several new features also
appear.

In the examples given below, we consider a continuous model, similar to
that of equation 7.29, with recurrent couplings given by equation 7.33 but
now including a rectification nonlinearity, so that

τr
dv(θ)

dt
= −v(θ) +

[
h(θ) + λ1

π

∫ π

−π

dθ′ cos(θ − θ′)v(θ′)
]

+
. (7.35)

If λ1 is not too large, this network converges to a steady state for any con-
stant input (we consider conditions for steady-state convergence in a later
section), and therefore we often limit the discussion to the steady-state ac-
tivity of the network.

Nonlinear Amplification

Figure 7.9 shows the nonlinear analog of the selective amplification shown
for a linear network in figure 7.8. Once again, a noisy input (figure 7.9A)
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generates a much smoother output response profile (figure 7.9B). The out-
put response of the rectified network corresponds roughly to the positive
part of the sinusoidal response profile of the linear network (figure 7.8B).
The negative output has been eliminated by the rectification. Because
fewer neurons in the network have nonzero responses than in the linear
case, the value of the parameter λ1 in equation 7.33 has been increased to
1.9. This value, being larger than 1, would lead to an unstable network in
the linear case. While nonlinear networks can also be unstable, the restric-
tion to eigenvalues less than 1 is no longer the relevant condition.

In a nonlinear network, the Fourier analysis of the input and output re-
sponses is no longer as informative as it is for a linear network. Due to
the rectification, the ν = 0,1, and 2 Fourier components are all amplified
(figure 7.9D) compared to their input values (figure 7.9C). Nevertheless,
except for rectification, the nonlinear recurrent network amplifies the in-
put signal selectively in a manner similar to the linear network.

A Recurrent Model of Simple Cells in Primary Visual Cortex

In chapter 2, we discussed a feedforward model in which the elongated
receptive fields of simple cells in primary visual cortex were formed by
summing the inputs from neurons of the lateral geniculate nucleus (LGN)
with their receptive fields arranged in alternating rows of ON and OFF
cells. While this model quite successfully accounts for a number of fea-
tures of simple cells, such as orientation tuning, it is difficult to reconcile
with the anatomy and circuitry of the cerebral cortex. By far the majority
of the synapses onto any cortical neuron arise from other cortical neurons,
not from thalamic afferents. Therefore, feedforward models account for
the response properties of cortical neurons while ignoring the inputs that
are numerically most prominent. The large number of intracortical con-
nections suggests, instead, that recurrent circuitry might play an impor-
tant role in shaping the responses of neurons in primary visual cortex.

Ben-Yishai, Bar-Or, and Sompolinsky (1995) developed a model in which
orientation tuning is generated primarily by recurrent rather than feed-
forward connections. The model is similar in structure to the model of
equations 7.35 and 7.33, except that it includes a global inhibitory inter-
action. In addition, because orientation angles are defined over the range
from −π/2 to π/2, rather than over the full 2π range, the cosine functions
in the model have extra factors of 2 in them. The basic equation of the
model, as we implement it, is

τr
dv(θ)

dt
= −v(θ) +

[
h(θ) +

∫ π/2

−π/2

dθ′

π

(−λ0 + λ1 cos(2(θ − θ′))
)
v(θ′)

]

+
,

(7.36)

where v(θ) is the firing rate of a neuron with preferred orientation θ.
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The input to the model represents the orientation-tuned feedforward in-
put arising from ON-center and OFF-center LGN cells responding to an
oriented image. As a function of preferred orientation, the input for an
image with orientation angle � = 0 is

h(θ) = Ac (1 − ε + ε cos(2θ)) , (7.37)

where A sets the overall amplitude and c is equal to the image contrast.
The factor ε controls how strongly the input is modulated by the orien-
tation angle. For ε= 0, all neurons receive the same input, while ε= 0.5
produces the maximum modulation consistent with a positive input. We
study this model in the case when ε is small, which means that the input
is only weakly tuned for orientation and any strong orientation selectivity
must arise through recurrent interactions.

To study orientation selectivity, we want to examine the tuning curves of
individual neurons in response to stimuli with different orientation an-
gles �. The plots of network responses that we have been using show the
firing rates v(θ) of all the neurons in the network as a function of their
preferred stimulus angles θ when the input stimulus has a fixed value,
typically � = 0. As a consequence of the translation invariance of the net-
work model, the response for other values of � can be obtained simply by
shifting this curve so that it plots v(θ − �). Furthermore, except for the
asymmetric effects of noise on the input, v(θ −�) is a symmetric function.
These features follow from the fact that the network we are studying is
invariant with respect to translations and sign changes of the angle vari-
ables that characterize the stimulus and response selectivities. An impor-
tant consequence of this result is that the curve v(θ), showing the response
of the entire population, can also be interpreted as the tuning curve of a
single neuron. If the response of the population to a stimulus angle � is
v(θ − �), the response of a single neuron with preferred angle θ = 0 is
v(−�) = v(�) from the symmetry of v. Because v(�) is the tuning curve
of a single neuron with θ = 0 to a stimulus angle �, the plots we show
of v(θ) can be interpreted as both population responses and individual
neuronal tuning curves.

Figure 7.10A shows the feedforward input to the model network for four
different levels of contrast. Because the parameter ε was chosen to be 0.1,
the modulation of the input as a function of orientation angle is small.
Due to network amplification, the response of the network is much more
strongly tuned to orientation (figure 7.10B). This is the result of the selec-
tive amplification of the tuned part of the input by the recurrent network.
The modulation and overall height of the input curve in figure 7.10A in-
crease linearly with contrast. The response shown in figure 7.10B, inter-
preted as a tuning curve, increases in amplitude for higher contrast but
does not broaden. This can be seen by noting that all four curves in fig-
ure 7.10B go to 0 at the same two points. This effect, which occurs because
the shape and width of the response tuning curve are determined primar-
ily by the recurrent interactions within the network, is a feature of orien-
tation curves of real simple cells, as seen in figure 7.10C. The width of the
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Figure 7.10 The effect of contrast on orientation tuning. (A) The feedforward in-
put as a function of preferred orientation. The four curves, from top to bottom,
correspond to contrasts of 80%, 40%, 20%, and 10%. (B) The output firing rates
in response to different levels of contrast as a function of orientation preference.
These are also the response tuning curves of a single neuron with preferred orien-
tation 0. As in A, the four curves, from top to bottom, correspond to contrasts of
80%, 40%, 20%, and 10%. The recurrent model had λ0 = 7.3, λ1 = 11, A = 40 Hz,
and ε = 0.1. (C) Tuning curves measured experimentally at four contrast levels, as
indicated in the legend. (C adapted from Sompolinsky and Shapley, 1997 based on
data from Sclar and Freeman, 1982.)

tuning curve can be reduced by including a positive threshold in the re-
sponse function of equation 7.34, or by changing the amount of inhibition,
but it stays roughly constant as a function of stimulus strength.

A Recurrent Model of Complex Cells in Primary Visual Cortex

In the model of orientation tuning discussed in the previous section, recur-
rent amplification enhances selectivity. If the pattern of network connec-
tivity amplifies nonselective rather than selective responses, recurrent in-
teractions can also decrease selectivity. Recall from chapter 2 that neurons
in the primary visual cortex are classified as simple or complex, depend-
ing on their sensitivity to the spatial phase of a grating stimulus. Simple
cells respond maximally when the spatial positioning of the light and dark
regions of a grating matches the locations of the ON and OFF regions of
their receptive fields. Complex cells do not have distinct ON and OFF re-
gions in their receptive fields, and respond to gratings of the appropriate
orientation and spatial frequency relatively independently of where their
light and dark stripes fall. In other words, complex cells are insensitive to
spatial phase.

Chance, Nelson, and Abbott (1999) showed that complex cell responses
could be generated from simple cell responses by a recurrent network. As
in chapter 2, we label spatial phase preferences by the angle φ. The feed-
forward input h(φ) in the model is set equal to the rectified response of
a simple cell with preferred spatial phase φ (figure 7.11A). Each neuron
in the network is labeled by the spatial phase preference of its feedfor-
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Figure 7.11 A recurrent model of complex cells. (A) The input to the network as
a function of spatial phase preference. The input h(φ) is equivalent to that of a
simple cell with spatial phase preference φ responding to a grating of 0 spatial
phase. (B) Network response, which can also be interpreted as the spatial phase
tuning curve of a network neuron. The network was given by equation 7.38 with
λ1 = 0.95. (Adapted from Chance et al., 1999.)

ward input. The network neurons also receive recurrent input given by
the weight function M(φ − φ′) = λ1/(2πρφ), which is the same for all con-
nected neuron pairs. As a result, their firing rates are determined by

τr
dv(φ)

dt
= −v(φ) +

[
h(φ) + λ1

2π

∫ π

−π

dφ′ v(φ′)
]

+
. (7.38)

In the absence of recurrent connections (λ1 = 0), the response of a neu-
ron labeled by φ is v(φ)= h(φ), which is equal to the response of a sim-
ple cell with preferred spatial phase φ. However, for λ1 sufficiently close
to 1, the recurrent model produces responses that resemble those of com-
plex cells. Figure 7.11B shows the population response, or equivalently the
single-cell response tuning curve, of the model in response to the tuned in-
put shown in Figure 7.11A. The input, being the response of a simple cell,
shows strong tuning for spatial phase. The output tuning curve, however,
is almost constant as a function of spatial phase, like that of a complex
cell. The spatial-phase insensitivity of the network response is due to the
fact that the network amplifies the component of the input that is inde-
pendent of spatial phase, because the eigenfunction of M with the largest
eigenvalue is spatial-phase invariant. This changes simple cell inputs into
complex cell outputs.

Winner-Takes-All Input Selection

For a linear network, the response to two superimposed inputs is simply
the sum of the responses to each input separately. Figure 7.12 shows one
way in which a rectifying nonlinearity modifies this superposition prop-
erty. In this case, the input to the recurrent network consists of activity
centered around two preferred stimulus angles, ±90◦. The output of the
nonlinear network shown in figure 7.12B is not of this form, but instead
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Figure 7.12 Winner-takes-all input selection by a nonlinear recurrent network. (A)
The input to the network consisting of two peaks. (B) The output of the network
has a single peak at the location of the higher of the two peaks of the input. The
model is the same as that used in figure 7.9.

has a single peak at the location of the input bump with the larger am-
plitude (the one at −90◦). This occurs because the nonlinear recurrent
network supports the stereotyped unimodal activity pattern seen in fig-
ure 7.12B, so a multimodal input tends to generate a unimodal output.
The height of the input peak has a large effect in determining where the
single peak of the network output is located, but it is not the only feature
that determines the response. For example, the network output can favor
a broader, lower peak over a narrower, higher one.

Gain Modulation

A nonlinear recurrent network can generate an output that resembles
the gain-modulated responses of posterior parietal neurons shown in fig-
ure 7.6, as noted by Salinas and Abbott (1996). To obtain this result, we
interpret the angle θ as a preferred direction in the visual field in retinal
coordinates (the variable we called s earlier in the chapter). The signal cor-
responding to gaze direction (what we called g before) is represented as a
constant input to all neurons irrespective of their preferred stimulus angle.
Figure 7.13 shows the effect of adding such a constant term to the input of
the nonlinear network. The input shown in figure 7.13A corresponds to
a visual target located at a retinal position of 0◦. The different lines show
different values of the constant input, representing three different gaze di-
rections.

The responses shown in figure 7.13B all have localized activity centered
around θ = 0◦, indicating that the individual neurons have fixed tuning
curves expressed in retinal coordinates. The effect of the constant input,
representing gaze direction, is to scale up or gain-modulate these tuning
curves, producing a result similar to that shown in figure 7.6. The additive
constant in the input shown in figure 7.13A has a multiplicative effect on
the output activity shown in 7.13B. This is primarily due to the fact that the
width of the activity profiles is fixed by the recurrent network interaction,
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Figure 7.13 Effect of adding a constant to the input of a nonlinear recurrent net-
work. (A) The input to the network consists of a single peak to which a constant
factor has been added. (B) The gain-modulated output of the nonlinear network.
The three curves correspond to the three input curves in panel A, in the same order.
The model is the same as that used in figures 7.9 and 7.12.

so a constant positive input raises (and a negative input lowers) the peak
of the response curve without broadening the base of the curve.

Sustained Activity

The effects illustrated in figures 7.12 and 7.13 arise because the nonlinear
recurrent network has a stereotyped pattern of activity that is largely de-
termined by interactions with other neurons in the network rather than
by the feedforward input. If the recurrent connections are strong enough,
the pattern of population activity, once established, can become indepen-
dent of the structure of the input. For example, the recurrent network we
have been studying can support a pattern of activity localized around a
given preferred stimulus value, even when the input is uniform. This is
seen in figure 7.14. The neurons of the network initially receive inputs that
depend on their preferred angles, as seen in figure 7.14A. This produces
a localized pattern of network activity (figure 7.14B). When the input is
switched to the same constant value for all neurons (figure 7.14C), the net-
work activity does not become uniform. Instead, it stays localized around
the value θ = 0 (figure 7.14D). This means that constant input can main-
tain a state that provides a memory of previous localized input activity.
Networks similar to this have been proposed as models of sustained activ-
ity in the head-direction system of the rat and in prefrontal cortex during
tasks involving working memory.

This memory mechanism is related to the integration seen in the linear
model of eye position maintenance discussed previously. The linear net-
work has an eigenvector e1 with eigenvalue λ1 =1. This allows v= c1e1 to
be a static solution of the equations of the network (7.17) in the absence
of input for any value of c1. As a result, the network can preserve any
initial value of c1 as a memory. In the case of figure 7.14, the steady-state
activity in the absence of tuned input is a function of θ − �, for any value
of the angle �. As a result, the network can preserve any initial value of
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Figure 7.14 Sustained activity in a recurrent network. (A) Input to the neurons of
the network consisting of localized excitation and a constant background. (B) The
activity of the network neurons in response to the input of panel A. (C) Constant
network input. (D) Response to the constant input of panel C when it immediately
followed the input in A. The model is the same as that used in figures 7.9, 7.12,
and 7.13.

� as a memory (� = 0◦ in the figure). The activities of the units v(θ) de-
pend on � in an essentially nonlinear manner, but if we consider linear
perturbations around this nonlinear solution, there is an eigenvector with
eigenvalue λ1 = 1 associated with shifts in the value of �. In this case,
it can be shown that λ1 = 1 because the network was constructed to be
translationally invariant.

Maximum Likelihood and Network Recoding

Recurrent networks can generate characteristic patterns of activity even
when they receive complex inputs (figure 7.9), and can maintain these
patterns while receiving constant input (figure 7.14). Pouget et al. (1998)
suggested that the location of the characteristic pattern (i.e., the value of
� associated with the peak of the population activity profile) could be in-
terpreted as a match of a fixed template curve to the input activity profile.
This curve-fitting operation is at the heart of the maximum likelihood de-
coding method we described in chapter 3 for estimating a stimulus vari-
able such as �. In the maximum likelihood method, the fitting curve is
determined by the tuning functions of the neurons, and the curve-fitting
procedure is defined by the characteristics of the noise perturbing the in-
put activities. If the properties of the recurrent network match these op-
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Figure 7.15 Recoding by a network model. (A) The noisy initial inputs h(θ) to 64
network neurons are shown as dots. The standard deviation of the noise is 0.25 Hz.
After a short settling time, the input is set to a constant value of h(θ) = 10. (B) The
smooth activity profile that results from the recurrent interactions. The network
model was similar to that used in figure 7.9, except that the recurrent synaptic
weights were in the form of a Gabor-like function rather than a cosine, and the
recurrent connections had short-range excitation and long-range inhibition. (see
Pouget et al., 1998.)

timal characteristics, the network can approximate maximum likelihood
decoding. Once the activity of the population of neurons has stabilized to
its stereotyped shape, a simple decoding method such as vector decoding
(see chapter 3) can be applied to extract the estimated value of �. This
allows the accuracy of a vector decoding method to approach that of more
complex optimal methods, because the computational work of curve fit-
ting has been performed by the nonlinear recurrent interactions.

Figure 7.15 shows how this idea works in a network of 64 neurons re-
ceiving inputs that have Gaussian (rather than cosine) tuning curves as a
function of �. Vector decoding applied to the reconstruction of � from
the activity of the network or its inputs turns out to be almost unbiased.
The way to judge decoding accuracy is therefore to compute the standard
deviation of the decoded � values (chapter 3). The noisy input activity
in figure 7.15A shows a slight bump around the value θ = 10◦. Vector de-
coding applied to input activities with this level of noise gives a standard
deviation in the decoded angle of 4.5◦. Figure 7.15B shows the output of
the network obtained by starting with initial activities v(θ) = 0 and input
h(θ) as in figure 7.15A, and then setting h(θ) to a constant (θ-independent)
value to maintain sustained activity. This generates a smooth pattern of
sustained population activity. Vector decoding applied to the output ac-
tivities generated in this way gives a standard deviation in the decoded
angle of 1.7◦. This is not too far from the Cramér-Rao bound, which gives
the maximum possible accuracy for any unbiased decoding scheme ap-
plied to this system (see chapter 3), which is 0.88◦.
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Network Stability

When a network responds to a constant input by relaxing to a steady state
with dv/dt=000, it is said to exhibit fixed-point behavior. Almost all the net-fixed-point
work activity we have discussed thus far involves such fixed points. This
is by no means the only type of long-term activity that a network model
can display. In a later section of this chapter, we discuss networks that os-
cillate, and chaotic behavior is also possible. But if certain conditions are
met, a network will inevitably reach a fixed point in response to constant
input. The theory of Lyapunov functions, to which we give an informal
introduction, can be used to prove when this occurs.

It is easier to discuss the Lyapunov function for a network if we use the
firing-rate dynamics of equation 7.6 rather than equation 7.8. For a net-
work model, this means expressing the vector of network firing rates as
v = F(I), where I is the total synaptic current vector (i.e., Ia represents the
total synaptic current for unit a). We assume that F′(I) > 0 for all I, where
F′ is the derivative of F. I obeys the dynamic equation derived from gen-
eralizing equation 7.6 to a network situation,recurrent model

with current
dynamics τs

dI
dt

= −I + h + M · F(I) . (7.39)

Note that we have made the substitution v = F(I) in the last term of the
right side of this equation. Equation 7.39 can be used instead of equa-
tion 7.11 to provide a firing-rate model of a recurrent network.

For the form of firing-rate model given by equation 7.39 with a symmet-
ric recurrent weight matrix, Cohen and Grossberg (1983) showed that the
functionLyapunov

function L
L(I) =

Nv∑

a=1

(∫ Ia

0
dza zaF′(za) − haF(Ia) − 1

2

Nv∑

a′=1

F(Ia)Maa′ F(Ia′ )

)
(7.40)

has dL/dt < 0 whenever dI/dt 	= 000. To see this, take the time derivative of
equation 7.40 and use 7.39 to obtain

dL(I)
dt

= − 1
τs

Nv∑

a=1

F′(Ia)

(
dIa

dt

)2

. (7.41)

Because F′ > 0, L decreases unless dI/dt = 000. If L is bounded from below,
it cannot decrease indefinitely, so I = h + M · v must converge to a fixed
point. This implies that v must converge to a fixed point as well.

We have required that F′(I) > 0 for all values of its argument I. However,
with some technical complications, it can be shown that the Lyapunov
function we have presented also applies to the case of the rectifying ac-
tivation function F(I) = [I]+, even though it is not differentiable at I = 0
and F′(I) = 0 for I < 0. Convergence to a fixed point, or one of a set of
fixed points, requires the Lyapunov function to be bounded from below.
One way to ensure this is to use a saturating activation function, so that
F(I) is bounded as I →∞. Another way is to keep the eigenvalues of M
sufficiently small.
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Associative Memory

The models of memory discussed previously in this chapter store informa-
tion by means of persistent activity. This is called working or short-term
memory. In biological systems, persistent activity appears to play a role
in retaining information over periods of seconds to minutes. Retention of
long-term memories, over periods of hours to years, is thought to involve
storage by means of synaptic strengths rather than persistent activity. One
general idea is that synaptic weights in a recurrently connected network
are set when a memory is stored so that the network can, at a later time, in-
ternally recreate the pattern of activity that represents the stored memory.
In such networks, persistent activity is used to signal memory recall and
to register the identity of the retrieved item, but the synaptic weights pro-
vide the long-term storage of the possible memory patterns. The pattern of
activity of the units in the network at the start of memory retrieval deter-
mines which memory is recalled through its relationship to, or association
with, the pattern of activity representing that memory. Such associative
networks have been used to model regions of the mammalian brain impli-
cated in various forms of memory, including area CA3 of the hippocampus
and parts of the prefrontal cortex.

In an associative (or more strictly, autoassociative) memory, a partial or
approximate representation of a stored item is used to recall the full item.
Unlike a standard computer memory, recall in an associative memory is
based on content rather than on an address. An example would be re-
calling every digit of a familiar phone number, given a few of its digits
as an initial clue. In a network associative memory, recurrent weights are
adjusted so that the network has a set of discrete fixed points identical (or
very similar) to the patterns of activity that represent the stored memories.
In many cases, the dynamics of the network are governed by a Lyapunov
function (equation 7.40), ensuring the existence of fixed points. Provided
that not too many memories are stored, these fixed points can perfectly, or
at least closely, match the memory patterns. During recall, an associative
memory network performs the computational operation of pattern match-
ing by finding the fixed-point that most closely matches the initial state of
the network. Each memory pattern has a basin of attraction, defined as
the set of initial activities from which the network evolves to that partic-
ular fixed point. These basins of attraction define the pattern-matching
properties of the network.

Associative memory networks can be constructed from units with either
continuous-valued or binary (typically on or off) activities. We consider a
network of continuous-valued units described by equation 7.11 with h = 000.
To use this model for memory storage, we define a set of memory patterns,
denoted by vm with m = 1,2, . . . , Nmem, that we wish to store and recall. memory

patterns vmNote that vm does not signify a component of a vector, but rather an entire
number of

memories Nmem

vector identified by the superscript m. Associative recall is achieved by
starting the network in an initial state that is similar to one of the memory
patterns. That is, v(0) ≈ vm for one of the m values, where “approximately
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equal” means that a significant number, but not necessarily all, of the ele-
ments of v(0) are close to the corresponding elements of vm. The network
then evolves according to equation 7.11. If recall is successful, the dy-
namics converge to a fixed point equal (or at least significantly more sim-
ilar than v(0)) to the memory pattern associated with the initial state (i.e.,
v(t) → vm for large t). Failure of recall occurs if the fixed point reached by
the network is not similar to vm, or if a fixed point is not reached at all.

For exact recall to occur, vm must be a fixed point of the network dynamics,
which means it must satisfy the equation

vm = F(M · vm) . (7.42)

Therefore, we examine conditions under which such solutions exist for all
the memory patterns. The capacity of a network is determined in partmemory capacity
by the number of different pre-specified vectors that can simultaneously
satisfy equation 7.42 for an appropriate choice of M. In the limit of large
Nv, the capacity is typically proportional to Nv. Capacity is not the only
relevant measure of the performance of an associative memory. Memory
function can be degraded if there are spurious fixed points of the network
dynamics in addition to the fixed points that represent the memory pat-
terns. Finally, useful pattern matching requires each fixed point to have a
sufficiently large basin of attraction. Analyzing spurious fixed points and
the sizes of basins of attraction is beyond the scope of this text.

Although the units in the network have continuous-valued activities, we
consider the simple case in which the units are either inactive or active
in the memory patterns themselves. Inactive units correspond to compo-
nents of vm that are equal to 0, and active units, to components that are
equal to some constant value c. To simplify the discussion, we assume
that each of the memory patterns has exactly αNv active and (1 − α)Nv

inactive units. The choice of which units are active in each pattern is ran-
dom, and independent of the other patterns. The parameter α is known
as the sparseness of the memory patterns. As α decreases, making thesparseness α

patterns more sparse, more of them can be stored but each contains less
information.

To build an associative memory network, we need to construct a matrix
that allows all the memory patterns to satisfy equation 7.42. To begin,
suppose that we knew of a matrix K for which all the memory patterns
were degenerate eigenvectors with eigenvalue λ,

K · vm = λvm (7.43)

for all m. Then, consider the matrix

M = K − nn
αNv

or Maa′ = Kaa′ − 1
αNv

. (7.44)

Here n is a vector that has each of its Nv components equal to 1. The termvector of ones n
nn in the matrix represents uniform inhibition between network units. M
satisfies

M · vm = λvm − cn (7.45)
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for any memory pattern vm. The second term on the right side follows
from the fact that n · vm = cαNv. Treated component by component, equa-
tion 7.42 for this matrix separates into two conditions: one for the compo-
nents of vm that are 0 and another for the components of vm equal to c,

F(−c) = 0 and c = F(c(λ − 1)) . (7.46)

It is relatively easy to find conditions for which these equations have a
solution. For positive c, the first condition is automatically satisfied for
a rectifying activation function, F(I) = 0 for I ≤ 0. For such a function
satisfying F′(I) > 0 for all positive I, the second equation will be satisfied
and equation 7.11 will have a stable fixed-point solution with c > 0 if, for
example, λ > 1, (λ − 1)F′(0) > 1, and F(c(λ − 1)) grows more slowly than
c for large c.

The existence of spurious fixed points decreases the usefulness of a net-
work associative memory. This might seem to be a problem in the example
we are discussing because the degeneracy of the eigenvalues means that
any linear combination of memory patterns also satisfies equation 7.43.
However, the nonlinearity in the network can prevent linear combina-
tions of memory patterns from satisfying equation 7.42, even if they sat-
isfy equation 7.43, thereby eliminating at least some of the spurious fixed
points.

The problem of constructing an associative memory network thus reduces
to finding the matrix K of equation 7.43, or at least constructing a matrix
with similar properties. Because the choice of active units in each memory
pattern is independent, the probability that a given unit is active in two
different memory patterns is α2. Thus, vn · vm ≈ α2c2Nv if m 	= n. Consider
the dot product of one of the memory patterns, vm, with the vector vn −
αcn, for some value of n. If m = n, (vn −αcn) · vm = c2αNv(1 −α), whereas
if m 	= n, (vn − αcn) · vm ≈ c2Nv(α

2 − α2) = 0. It follows from these results
that the matrix

K = λ

c2αNv(1 − α)

Nmem∑

n=1

vn(vn − αcn) (7.47)

has properties similar to those of the matrix in equation 7.43, that is, K ·
vm ≈ λvm for all m.

Recall that the Lyapunov function in equation 7.40 guarantees that the net-
work has fixed points only if it is bounded from below and the matrix M
is symmetric. Bounding of the Lyapunov function can be achieved if the
activation function saturates. However, the recurrent weight matrix ob-
tained by substituting expression 7.47 into equation 7.44 is not likely to
be symmetric. A symmetric form of the recurrent weight matrix can be
constructed by writing

M = λ

c2αNv(1 − α)

Nmem∑

n=1

(vn − αcn)(vn − αcn) − nn
αNv

. (7.48)
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The reader is urged to verify that, due to the additional terms in the sum
over memory patterns, the conditions that must be satisfied when using
7.48 are slightly modified from 7.46 to

F(−c(1 + αλ)) = 0 and c = F(c(λ − 1 − αλ)) . (7.49)

One way of looking at the recurrent weights in equation 7.48 is in terms of
a learning rule used to construct the matrix. In this learning rule, an exci-
tatory contribution to the coupling between two units is added whenever
both of them are either active or inactive for a particular memory pattern.
An inhibitory term is added whenever one unit is active and the other is
not. The learning rule associated with equation 7.48 is called a covariance
rule because of its relationship to the covariance matrix of the memory pat-
terns. Learning rules for constructing networks that perform associative
memory and other tasks are discussed in chapter 8.

Figure 7.16 shows an associative memory network of Nv = 50 units that
stores four patterns, using the matrix from equation 7.48. Two of these
patterns were generated randomly as discussed above. The other two pat-
terns were assigned nonrandomly to make them easy to identify in the
figure. Recall of these two nonrandom patterns is shown in figures 7.16B
and 7.16C. From an initial pattern of activity only vaguely resembling one
of the stored patterns, the network attains a fixed point very similar to
the best matching memory pattern. The same results apply for the other
two memory patterns stored by the network, but they are more difficult to
identify in a figure because they are random.

The matrix 7.48 that we use as a basis for constructing an associative mem-
ory network satisfies the conditions required for exact storage and recall
of the memory patterns only approximately. This introduces some errors
in recall. As the number of memory patterns increases, the approxima-
tion becomes worse and the performance of the associative memory de-
teriorates, which limits the number of memories that can be stored. The
simple covariance prescription for the weights in equation 7.48 is far from
optimal. Other prescriptions for constructing M can achieve significantly
higher storage capacities.

The basic conclusions from studies of associative memory models is that
large networks can store large numbers of patterns, particularly if they are
sparse (α is small) and if a few errors in recall can be tolerated. The capac-
ity of certain associative memory networks can be calculated analytically.
The number of memory patterns that can be stored is on the order of the
number of neurons in the network, Nv, and depends on the sparseness, α,
as 1/(α log(1/α)). The amount of information that can be stored is propor-
tional to N2

v , which is roughly the number of synapses in the network, but
the information stored per synapse (i.e., the constant of proportionality) is
typically quite small.
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Figure 7.16 Associative recall of memory patterns in a network model. Panel A
shows two representative units, and panels B and C show the firing rates of all
50 units plotted against time. The thickness of the horizontal lines in these plots
is proportional to the firing rate of the corresponding neuron. (A) Firing rates of
representative neurons. The upper panel shows the firing rate of one of the neu-
rons corresponding to a nonzero component of the recalled memory pattern. The
firing rate achieves a nonzero (and nonsaturated) steady-state value. The lower
panel shows the firing rate of a neuron corresponding to a zero component of the
recalled memory pattern. This goes to 0. (B) Recall of one of the stored mem-
ory patterns. The stored pattern had nonzero values for units 18 through 31. The
initial state of the network was random, but with a bias toward this particular pat-
tern. The final state is similar to the memory pattern. (C) Recall of another of the
stored memory patterns. The stored pattern had nonzero values for every fourth
unit. The initial state of the network was again random, but biased toward this
pattern. The final state is similar to the memory pattern. This model uses the
matrix of equation 7.48 with α = 0.25 and λ = 1.25, and the activation function
F(I) = 150 Hz[tanh((I + 20 Hz)/(150 Hz))]+.

7.5 Excitatory-Inhibitory Networks

In this section, we discuss models in which excitatory and inhibitory neu-
rons are described separately by equations 7.12 and 7.13. These models
exhibit richer dynamics than the single population models with symmet-
ric coupling matrices we have analyzed up to this point. In models with
excitatory and inhibitory subpopulations, the full synaptic weight matrix
is not symmetric, and network oscillations can arise. We begin by analyz-
ing a model of homogeneous coupled excitatory and inhibitory popula-
tions. We introduce methods for determining whether this model exhibits
constant or oscillatory activity. We then present two network models in
which oscillations appear. The first is a model of the olfactory bulb, and
the second displays selective amplification in an oscillatory mode.
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Homogeneous Excitatory and Inhibitory Populations

As an illustration of the dynamics of excitatory-inhibitory network mod-
els, we analyze a simple model in which all of the excitatory neurons are
described by a single firing rate, vE, and all of the inhibitory neurons are
described by a second rate, vI. Although we think of this example as a
model of interacting neuronal populations, it is constructed as if it con-
sists of just two neurons. Equations 7.12 and 7.13, with threshold linear
response functions, are used to describe the two firing rates, so that

τE
dvE

dt
= −vE + [MEEvE + MEIvI − γE]+ (7.50)

and

τI
dvI

dt
= −vI + [MIIvI + MIEvE − γI]+ . (7.51)

The synaptic weights MEE, MIE, MEI, and MII are numbers rather than
matrices in this model. In the example we consider, we set MEE = 1.25,
MIE = 1, MII = 0, MEI = −1, γE = −10 Hz, γI = 10 Hz, τE = 10 ms, and
we vary the value of τI. The negative value of γE means that this param-
eter serves as a source of constant background activity rather than as a
threshold.

Phase-Plane Methods and Stability Analysis

The model of interacting excitatory and inhibitory populations given by
equations 7.50 and 7.51 provides an opportunity for us to illustrate some
of the techniques used to study the dynamics of nonlinear systems. This
model exhibits both fixed-point (constant vE and vI) and oscillatory activ-
ity, depending on the values of its parameters. Stability analysis can be
used to determine the parameter values where transitions between these
two types of activity take place.

The firing rates vE(t) and vI(t) arising from equations 7.50 and 7.51 can
be displayed by plotting them as functions of time, as in figures 7.18A
and 7.19A. Another useful way of depicting these results, illustrated in
figures 7.18B and 7.19B, is to plot pairs of points (vE(t), vI(t)) for a range
of t values. As the firing rates change, these points trace out a curve or
trajectory in the vE-vI plane, which is called the phase plane of the model.phase plane
Phase-plane plots can be used to give a geometric picture of the dynamics
of a model.

Values of vE and vI for which the right side of either equation 7.50 or equa-
tion 7.51 vanishes are of particular interest in phase-plane analysis. Sets
of such values form two curves in the phase plane known as nullclines.
The nullclines for equations 7.50 and 7.51 are the straight lines drawn innullcline
figure 7.17A. The nullclines are important because they divide the phase
plane into regions with opposite flow patterns. This is because dvE/dt and
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Figure 7.17 (A) Nullclines, flow directions, and fixed point for the firing-rate model
of interacting excitatory and inhibitory neurons. The two straight lines are the null-
clines along which dvE/dt = 0 or dvI/dt = 0. The filled circle is the fixed point of
the model. The horizontal and vertical arrows indicate the directions that vE (hori-
zontal arrows) and vI (vertical arrows) flow in different regions of the phase plane
relative to the nullclines. (B) Real (upper panel) and imaginary (lower panel) parts
of the eigenvalue determining the stability of the fixed point. To the left of the
point where the imaginary part of the eigenvalue goes to 0, both eigenvalues are
real. The imaginary part has been divided by 2π to give the frequency of oscilla-
tions near the fixed point.

dvI/dt are positive on one side of their nullclines and negative on the other,
as the reader can verify from equations 7.50 and 7.51 Above the nullcline
along which dvE/dt = 0, dvE/dt < 0, and below it dvE/dt > 0. Similarly,
dvI/dt > 0 to the right of the nullcline where dvI/dt = 0, and dvI/dt < 0 to
the left of it. This determines the direction of flow in the phase plane, as de-
noted by the horizontal and vertical arrows in figure 7.17A. Furthermore,
the rate of flow typically slows if the phase-plane trajectory approaches a
nullcline.

At a fixed point of a dynamic system, the dynamic variables remain at con-
stant values. In the model being considered, a fixed point occurs when the
firing rates vE and vI take values that make dvE/dt = dvI/dt = 0. Because
a fixed point requires both derivatives to vanish, it can occur only at an
intersection of nullclines. The model we are considering has a single fixed
point (at vE = 26.67, vI = 16.67) denoted by the filled circle in figure 7.17A.
A fixed point provides a potential static configuration for the system, but
it is critically important whether the fixed point is stable or unstable. If a
fixed point is stable, initial values of vE and vI near the fixed point will be
drawn toward it over time. If the fixed point is unstable, nearby configu-
rations are pushed away from the fixed point, and the system will remain
at the fixed point indefinitely only if the rates are set initially to the fixed-
point values with infinite precision.

Linear stability analysis can be used to determine whether a fixed point
is stable or unstable. To do this we take derivatives of the expressions for
dvE/dt and dvI/dt obtained by dividing the right sides of equations 7.50
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Figure 7.18 Activity of the excitatory-inhibitory firing-rate model when the fixed
point is stable. (A) The excitatory and inhibitory firing rates settle to the fixed point
over time. (B) The phase-plane trajectory is a counterclockwise spiral collapsing to
the fixed point. The open circle marks the initial values vE(0) and vI(0). For this
example, τI = 30 ms.

and 7.51 by τE and τI respectively. We then evaluated these derivatives
at the values of vE and vI that correspond to the fixed point. The four
combinations of derivatives computed in this way can be arranged into a
matrixstability matrix

(
(MEE − 1)/τE MEI/τE

MIE/τI (MII − 1)/τI

)
. (7.52)

As discussed in the Mathematical Appendix, the stability of the fixed point
is determined by the real parts of the eigenvalues of this matrix. The eigen-
values are given by

λ = 1
2



 MEE − 1
τE

+ MII − 1
τI

±
√(

MEE − 1
τE

− MII − 1
τI

)2

+ 4MEI MIE

τEτI



 .

(7.53)

If the real parts of both eigenvalues are less than 0, the fixed point is sta-
ble, whereas if either is greater than 0, the fixed point is unstable. If the
factor under the radical sign in equation 7.53 is positive, both eigenvalues
are real, and the behavior near the fixed point is exponential. This means
that there is exponential movement toward the fixed point if both eigen-
values are negative, or away from the fixed point if either eigenvalue is
positive. We focus on the case when the factor under the radical sign is
negative, so that the square root is imaginary and the eigenvalues form a
complex conjugate pair. In this case, the behavior near the fixed point is
oscillatory and the trajectory either spirals into the fixed point, if the real
part of the eigenvalues is negative, or out from the fixed point if the real
part of the eigenvalues is positive. The imaginary part of the eigenvalue
determines the frequency of oscillations near the fixed point. The real and
imaginary parts of one of these eigenvalues are plotted as a function of τI
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Figure 7.19 Activity of the excitatory-inhibitory firing-rate model when the fixed
point is unstable. (A) The excitatory and inhibitory firing rates settle into periodic
oscillations. (B) The phase-plane trajectory is a counterclockwise spiral that joins
the limit cycle, which is the closed orbit. The open circle marks the initial values
vE(0) and vI(0). For this example, τI = 50 ms.

in figure 7.17B. This figure indicates that the fixed point is stable if τI < 40
ms and unstable for larger values of τI.

Figures 7.18 and 7.19 show examples in which the fixed point is stable
and unstable, respectively. In figure 7.18A, the oscillations in vE and vI
are damped, and the firing rates settle down to the stable fixed point. The
corresponding phase-plane trajectory is a collapsing spiral (figure 7.18B).
In figure 7.19A the oscillations grow, and in figure 7.19B the trajectory is a
spiral that expands outward until the system enters a limit cycle. A limit limit cycle
cycle is a closed orbit in the phase plane indicating periodic behavior. The
fixed point is unstable in this case, but the limit cycle is stable. Without
rectification, the phase-plane trajectory would spiral out from the unstable
fixed point indefinitely. The rectification nonlinearity prevents the spiral
trajectory from expanding past 0 and thereby stabilizes the limit cycle.

There are a number of ways that a nonlinear system can make a transi-
tion from a stable fixed point to a limit cycle. Such transitions are called
bifurcations. The transition seen between figures 7.18 and 7.19 is a Hopf
bifurcation. In this case, a fixed point becomes unstable as a parameter Hopf bifurcation
is changed (in this case τI) when the real part of a complex eigenvalue
changes sign. In a Hopf bifurcation, the limit cycle emerges at a finite fre-
quency, which is similar to the behavior of a type II neuron when it starts
firing action potentials, as discussed in chapter 6. Other types of bifurca-
tions produce type I behavior with oscillations emerging at 0 frequency
(chapter 6). One example of this is a saddle-node bifurcation, which oc- saddle-node

bifurcationcurs when parameters are changed such that two fixed points, one stable
and one unstable, meet at the same point in the phase plane.
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Figure 7.20 (A) Extracellular field potential recorded in the olfactory bulb dur-
ing respiratory waves representing three successive sniffs. (B) Schematic diagram
of the olfactory bulb model. (A adapted from Freeman and Schneider, 1982; B
adapted from Li, 1995.)

The Olfactory Bulb

The olfactory bulb, and analogous olfactory areas in insects, provide ex-
amples of sensory processing involving oscillatory activity. The olfactory
bulb represents the first stage of processing beyond the olfactory receptors
in the vertebrate olfactory system. Olfactory receptor neurons respond to
odor molecules and send their axons to the olfactory bulb. These axons
terminate in glomeruli where they synapse onto mitral and tufted cells, asmitral cells

tufted cells well as local interneurons. The mitral and tufted cells provide the output
of the olfactory bulb by sending projections to the primary olfactory cor-
tex. They also synapse onto the larger population of inhibitory granule
cells. The granule cells in turn inhibit the mitral and tufted cells.granule cells

The activity in the olfactory bulb of many vertebrates is strongly influ-
enced by a sniff cycle in which a few quick sniffs bring odors past the ol-
factory receptors. Figure 7.20A shows an extracellular potential recorded
during three successive sniffs. The three large oscillations in the figure
are due to the sniffs. The oscillations we discuss in this section are the
smaller, higher-frequency oscillations seen around the peak of each sniff
cycle. These arise from oscillatory neural activity. Individual mitral cells
have quite low firing rates, and do not fire on each cycle of the oscillations.
The oscillations are phase-locked across the bulb, in that different neurons
fire at fixed phase lags from each other, but different odors induce oscilla-
tions of different amplitudes and phases.

Li and Hopfield (1989) modeled the mitral and granule cells of the ol-
factory bulb as a nonlinear input-driven network oscillator. Figure 7.20B
shows the architecture of the model, which uses equations 7.12 and 7.13
with MEE = MII = 0. The absence of these couplings in the model is in ac-
cord with the anatomy of the bulb. The rates vE and vI refer to the mitral
and granule cells, respectively. Figure 7.21A shows the activation func-
tions of the model. The time constants for the two populations of cells are
the same, τE = τI = 6.7 ms. hE is the input from the receptors to the mitral
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Figure 7.21 Activation functions and eigenvalues for the olfactory bulb model. (A)
The activation functions FE (solid curve) for the mitral cells, and FI (dashed curve)
for the granule cells. (B) The real (solid line, left axis) and imaginary (dashed line,
right axis) parts of the eigenvalue that determines whether the network model
exhibits fixed-point or oscillatory behavior. These are plotted as a function of time
during a sniff cycle. When the real part of the eigenvalue becomes greater than
1, it determines the growth rate away from the fixed point, and the imaginary
part divided by 2π determines the initial frequency of the resulting oscillations.
(Adapted from Li, 1995.)

cells, and hI is a constant representing top-down input that exists from the
olfactory cortex to the granule cells.

The field potential in figure 7.20A shows oscillations during each sniff,
but not between sniffs. For the model to match this pattern of activity, the
input from the olfactory receptors, hE, must induce a transition between
fixed-point and oscillatory activity. Before a sniff, the network must have
a stable fixed point with low activities. As hE increases during a sniff, this
steady-state configuration must become unstable, leading to oscillatory ac-
tivity. The analysis of the stability of the fixed point and the onset of oscil-
lations is closely related to our previous stability analysis of the model of
homogeneous populations of coupled excitatory and inhibitory neurons.
It is based on properties of the eigenvalues of the linear stability matrix
(see the Mathematical Appendix). In this case, the stability matrix includes
contributions from the derivatives of the activation functions evaluated at
the fixed point. For the fixed point to become unstable, the real part of at
least one of the eigenvalues that arise in this analysis must become larger
than 1. To ensure oscillations, at least one of these destabilizing eigenval-
ues should have a nonzero imaginary part. These requirements impose
constraints on the connections between the mitral and granule cells and
on the inputs.

Figure 7.21B shows the real and imaginary parts of the relevant eigen-
value, labeled λ, during one sniff cycle. About 100 ms into the cycle the
real part of λ gets bigger than 1. Reading off the imaginary part of λ at
this point, we find that this sets off roughly 40 Hz oscillations in the net-
work. These oscillations stop about 300 ms into the sniff cycle when the
real part of λ drops below 1. The input hE from the receptors plays two
critical roles in this process. First, it makes the eigenvalue greater than 1 by
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Figure 7.22 Activities of four of ten mitral (upper) and granule (lower) cells during
a single sniff cycle for two different odors. (Adapted from Li and Hopfield, 1989.)

modifying where the fixed point lies on the activation function curves in
figure 7.21A. Second, it affects which particular neurons are destabilized,
and thus which begin to oscillate. The ultimate pattern of oscillatory ac-
tivity is determined both by the input hE and by the recurrent couplings
of the network.

Figure 7.22 shows the behavior of the network during a single sniff cycle
in the presence of two different odors, represented by two different values
of hE. The top rows show the activity of four mitral cells, and the bottom
rows of four granule cells. The amplitudes and phases of the oscillations
seen in these traces, along with the identities of the mitral cells taking part
in them, provide a signature of the identity of the odor that was presented.

Oscillatory Amplification

As a final example of network oscillations, we return to amplification of
input signals by a recurrently connected network. Two factors control
the amount of selective amplification that is viable in networks such as
that shown in figure 7.9. The most important constraint on the recurrent
weights is that the network must be stable, so the activity does not increase
without bound. Another possible constraint is suggested by figure 7.14D,
where the output shows a tuned response even though the input to the net-
work is constant as a function of θ. Tuned output in the absence of tuned
input can serve as a memory mechanism, but it will produce persistent
perceptions if it occurs in a primary sensory area, for example. Avoiding
this in the network limits the recurrent weights and the amount of ampli-
fication that can be supported.

Li and Dayan (1999) showed that this restriction can be significantly eased
using the richer dynamics of networks of coupled inhibitory and excita-
tory neurons. Figure 7.23 shows an example with continuous neuron la-
beling based on a continuous version of equations 7.12 and 7.13. The input
is hE(θ) = 8 + 5 cos(2θ) in the modulated case (figure 7.23B) or hE(θ) = 8
in the unmodulated case (figure 7.23C). Noise with standard deviation 0.4
corrupts this input. The input to the network is constant in time.
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Figure 7.23 Selective amplification in an excitatory-inhibitory network. (A) Time-
averaged response of the network to a tuned input with � = 0◦ (solid curve) and
to an untuned input (dashed curve). Symbols “o” and “x” mark the 0◦ and −37◦
points seen in B and C. (B) Activities over time of neurons with preferred angles of
θ = 0◦ (solid curve) and θ = −37◦ (dashed curve) in response to a modulated input
with � = 0◦. (C) Activities of the same units shown in B to a constant input. The
lines lie on top of each other, showing that the two units respond identically. The
parameters are τE = τI = 10 ms, hI = 0, MEI = −δ(θ − θ′)/ρθ, MEE = (1/πρθ)[5.9 +
7.8 cos(2(θ − θ′))]+, MIE = 13.3/πρθ, and MII = 0. (After Li and Dayan, 1999.)

The network oscillates in response to either constant or tuned input. Fig-
ure 7.23A shows the time average of the oscillating activities of the neurons
in the network as a function of their preferred angles for noisy tuned (solid
curve) and untuned (dashed curve) inputs. Neurons respond to the tuned
input in a highly tuned and amplified manner. Despite the high degree
of amplification, the average response of the neurons to untuned input is
almost independent of θ. Figures 7.23B and 7.23C show the activities of
individual neurons with θ = 0◦ (“o”) and θ = −37◦ (“x”) over time for the
tuned and untuned inputs respectively. The network does not produce
persistent perception, because the output to an untuned input is itself un-
tuned. In contrast, a nonoscillatory version of this network, with τI = 0,
exhibits tuned sustained activity in response to an untuned input for re-
current weights this strong. The oscillatory network can thus operate in a
regime of high selective amplification without generating spurious tuned
activity.

7.6 Stochastic Networks

Up to this point, we have considered models in which the output of a cell
is a deterministic function of its input. In this section, we introduce a net-
work model called the Boltzmann machine, for which the input-output Boltzmann

machinerelationship is stochastic. Boltzmann machines are interesting from the
perspective of learning, and also because they offer an alternative inter-
pretation of the dynamics of network models.

In the simplest form of Boltzmann machine, the neurons are treated as
binary, so va(t) = 1 if unit a is active at time t (e.g., it fires a spike between
times t and t +	t for some small value of 	t), and va(t) = 0 if it is inactive.
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The state of unit a is determined by its total input current,

Ia(t) = ha(t) +
Nv∑

a′=1

Maa′va′ (t) , (7.54)

where Maa′ = Ma′a and Maa = 0 for all a and a′, and ha is the total feedfor-
ward input into unit a. In the model, units are permitted to change state
only at integral multiples of 	t. At each time step, a single unit is selected,
usually at random, to be updated. This update is based on a probabilistic
rather than a deterministic rule. If unit a is selected, its state at the next
time step is set stochastically to 1 with probability

P[va(t + 	t) = 1] = F(Ia(t)) , with F(Ia) = 1
1 + exp(−Ia)

. (7.55)

It follows that P[va(t + 	t) = 0] = 1 − F(Ia(t)). F is a sigmoidal function,
which has the property that the larger the value of Ia, the more likely unit
a is to take the value 1.

Under equation 7.55, the state of activity of the network evolves as a
Markov chain. This means that the components of v at different times areMarkov chain
sequences of random variables with the property that v(t + 	t) depends
only on v(t), and not on the previous history of the network. Equation 7.55
implements what is known as Glauber dynamics.Glauber dynamics

An advantage of using Glauber dynamics to define the evolution of a net-
work model is that general results from statistical mechanics can be used
to determine the equilibrium distribution of activities. Under Glauber dy-
namics, v does not converge to a fixed point, but can be described by a
probability distribution associated with an energy functionenergy function

E(v) = −h · v − 1
2

v · M · v . (7.56)

The probability distribution characterizing v, once the network has con-
verged to an equilibrium state, is

P[v] = exp(−E(v))

Z
where Z =

∑

v

exp(−E(v)) . (7.57)

The notion of convergence as t → ∞ can be formalized precisely, but in-
formally it means that after repeated updating according to equation 7.55,
the states of the network are described statistically by equation 7.57. Zpartition function
is called the partition function and P[v], the Boltzmann distribution. Un-
der the Boltzmann distribution, states with lower energies are more likely.Boltzmann

distribution In this case, Glauber dynamics implements a statistical operation called
Gibbs sampling for the distribution given in equation 7.57. From now on,
we refer to the update procedure described by equation 7.55 as Gibbs sam-
pling.Gibbs sampling

The Boltzmann machine is inherently stochastic. However, an approxima-mean-field
approximation tion to the Boltzmann machine, known as the mean-field approximation,
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can be constructed on the basis of the deterministic synaptic current dy-
namics of a firing-rate model. In this case, I is determined by the dynamic
equation 7.39 rather than by equation 7.54, with the function F in equa-
tion 7.39 set to the same sigmoidal function as in equation 7.55. The out-
put va is determined from Ia at discrete times (integer multiples of 	t).
The rule used for this is not the deterministic relationship va = F(Ia) used
in the firing-rate version of the model. Instead, va is determined from Ia

stochastically, being set to either 1 or 0 with probability F(Ia) or 1 − F(Ia)

respectively. Thus, although the mean-field formulation for I is determin-
istic, I is used to generate a probability distribution over a binary output
vector v. Because va = 1 has probability F(Ia) and va = 0 has probability
1 − F(Ia), and the units are independent, the probability distribution for
the entire vector v is

Q[v] =
Nv∏

a=1

F(Ia)
va (1 − F(Ia))

1−va . (7.58)

This is called the mean-field distribution for the Boltzmann machine. Note mean-field
distributionthat this distribution (and indeed v itself) plays no role in the dynamics of

the mean-field formulation of the Boltzmann machine. It is, rather, a way
of interpreting the outputs.

We have presented two formulations of the Boltzmann machine, Gibbs
sampling and the mean-field approach, that lead to the two distributions
P[v] and Q[v] (equations 7.57 and 7.58). The Lyapunov function of equa-
tion 7.40, which decreases steadily under the dynamics of equation 7.39
until a fixed point is reached, provides a key insight into the relationship
between these two distributions. In the appendix to this chapter, we show
that this Lyapunov function can be expressed as

L(I) = DKL(Q, P) + K , (7.59)

where K is a constant, and DKL is the Kullback-Leibler divergence (see
chapter 4). DKL(Q, P) is a measure of how different the two distributions
Q and P are from each other. The fact that the dynamics of equation 7.39
reduces the Lyapunov function to a minimum value means that it also
reduces the difference between Q and P, as measured by the Kullback-
Leibler divergence. This offers an interesting interpretation of the mean-
field dynamics; it modifies the current value of the vector I until the distri-
bution of binary output values generated by the mean-field formulation of
the Boltzmann machine matches as closely as possible (finding at least a lo-
cal minimum of DKL(Q, P)) the distribution generated by Gibbs sampling.
In this way, the mean-field procedure can be viewed as an approximation
of Gibbs sampling.

The power of the Boltzmann machine lies in the relationship between the
distribution of output values, equation 7.57, and the quadratic energy
function of equation 7.56. This makes it is possible to determine how
changing the weights M affects the distribution of output states. In chap-
ter 8, we present a learning rule for the weights of the Boltzmann machine
that allows P[v] to approximate a probability distribution extracted from



276 Network Models

a set of inputs. In chapter 10, we study other models that construct output
distributions in this way.

Note that the mean-field distribution Q[v] is simpler than the full Boltz-
mann distribution P[v] because the units are statistically independent.
This prevents Q[v] from providing a good approximation in some cases,
particularly if there are negative weights between units that tend to make
their activities mutually exclusive. The mean-field analysis of the Boltz-
mann machine illustrates the limitations of rate-based descriptions in cap-
turing the full extent of the correlations that can exist between spiking
neurons.

7.7 Chapter Summary

The models in this chapter mark the start of our discussion of computa-
tion, as opposed to coding. Using a description of the firing rates of net-
work neurons, we showed how to construct linear and nonlinear feedfor-
ward and recurrent networks that transform information from one coordi-
nate system to another, selectively amplify input signals, integrate inputs
over extended periods of time, select between competing inputs, sustain
activity in the absence of input, exhibit gain modulation, allow simple de-
coding with performance near the Cramér-Rao bound, and act as content-
addressable memories. We used network responses to a continuous stim-
ulus variable as an extended example. This led to models of simple and
complex cells in primary visual cortex. We described a model of the ol-
factory bulb as an example of a system for which computation involves
oscillations arising from asymmetric couplings between excitatory and in-
hibitory neurons. Linear stability analysis was applied to a simplified ver-
sion of this model. We also considered a stochastic network model called
the Boltzmann machine.

7.8 Appendix

Lyapunov Function for the Boltzmann Machine

Here, we show that the Lyapunov function of equation 7.40 can be reduced
to equation 7.59 when applied to the mean-field version of the Boltzmann
machine. Recall, from equation 7.40, that

L(I) =
Nv∑

a=1

(∫ Ia

0
dza zaF′(za) − haF(Ia) − 1

2

Nv∑

a′=1

F(Ia)Maa′ F(Ia′ )

)
. (7.60)

When F is given by the sigmoidal function of equation 7.55,
∫ Ia

0
dza zaF′(za) = F(Ia) ln F(Ia) + (1 − F(Ia)) ln(1 − F(Ia)) + k , (7.61)
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where k is a constant, as can be verified by differentiating the right side.
The nonconstant part of the right side of this equation is just (minus) the
entropy associated with the binary variable va. In fact,

Nv∑

a=1

∫ Ia

0
dza zaF′(za) = 〈ln Q[v]〉Q + Nvk , (7.62)

where the average is over all values of v weighted by their probabilities
Q[v].

To evaluate the remaining terms in equation 7.60, we note that because the
components of v are binary and independent for the Boltzmann machine,
relations such as 〈va〉Q = F(Ia) and 〈vavb〉Q = F(Ia)F(Ib) (for a 	= b) are
valid. Then, using equation 7.56, we find

Nv∑

a=1

(
−haF(Ia) − 1

2

Nv∑

a′=1

F(Ia)Maa′ F(Ia′ )

)
= 〈E(v)〉Q . (7.63)

Similarly, from equation 7.57, we can show that

〈ln P[v]〉Q = 〈−E(v)〉Q − ln Z . (7.64)

Combining the results of equations 7.62, 7.63, and 7.64, we obtain

L(I) = 〈ln Q[v] − ln P[v]〉Q + Nvk − ln Z . (7.65)

which gives equation 7.59 with K = Nvk − log Z because 〈ln Q[v] −
ln P[v]〉Q is, by definition, the Kullback-Leibler divergence DKL(Q, P).
Note that in this (and subsequent) chapters, we define the Kullback-
Leibler divergence using a natural logarithm, rather than the base 2 log-
arithm used in chapter 4. The two definitions differ only by an overall
multiplicative constant.
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