Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems MIT Press ISBN 0-262-04199-5 Peter Dayan LF Abbott

Errata

December 4, 2022

Page	Location	Error	Scourge
xv	last line of second paragraph	Ketchen Zhang \Rightarrow Kechen Zhang	
41	eqn 1.43	$s(t) \Rightarrow s(\tau)$ and $\exp(i\omega t) \Rightarrow \exp(i\omega \tau)$	Angela Yu
41	formula 2 lines above margin label <i>periodogram</i>	$s(t) \Rightarrow s(m\Delta t)$	Angela Yu
57	eqns 2.13-2.17	Link to an extended discussion.	Alex Loebel
72	eighth line of the caption to fig 2.21	$\alpha = 20 \text{ms} \Rightarrow 1/\alpha = 20 \text{ms}$	Sune Nørhøj Jespersen
95	8 lines from the end	likelihood \Rightarrow likelihood ratio	Angela Yu
110	eqn 3.44	had we used the full $P[\mathbf{r} s]$ of eqn 3.30, rather than the approximation in eqn 3.31, it would have been apparent that the term $\dots - f_a''(s)/f_a(s)$ in the sum in eqn 3.44 would cancel <i>even for asymmetric tuning</i> <i>curves</i>	Ed Snelson
112	eqn 3.48	both expressions should be <i>divided</i> rather than multiplied by <i>D</i>	Ed Snelson
134	eqn 4.29	$p_a[r_a] \Rightarrow p[r_a]$	Tatsuo Okubo
155	4 th , 12 th lines	Avagadro \Rightarrow Avogadro	Rafael Yuste
158	12 th line	$mm \Rightarrow mm^2$	Larry Abbott
170	eqn 5.20	$A_{\alpha} \exp(-qB_{\alpha}/k_{\rm B}T) \Rightarrow A_{\alpha} \exp(-qB_{\alpha}V/k_{\rm B}T)$	Jihwan Myung
181	5 th line below eqn 5.30	The rise time is $1/(\alpha_s + \beta_s) = 0.9$ ms; we are not employing the approximation of eqn 5.28 that $\alpha_s \gg \beta_s$	Sune Nørhøj Jespersen
187	last paragraph	all instances of <i>r</i> should be r	Tatsuo Okubo
226	eqn 6.45	The symbol A_{μ} in the equation for D_{μ} denotes the surface area of compartment μ of the cable, it is not the coefficient denoted by A_{μ} that appears in the upper left equation and in equation 6.44. Different symbols should have been used for these two quantities.	David Simon
234	5 lines from the top	$\exp(-t/\tau_r)/\tau_r \Rightarrow \exp(-t/\tau_s)/\tau_s$	Angela Yu
235	eqn 7.6	$\ldots v = F(I_s(t))$	Ming Hang
238	rightmost term in eqn 7.9	$-\mathbf{v} \Rightarrow -v_a$	Geoff Goodhill
296	6 th line below eqn 8.22	$N \Rightarrow N_u$	Tatsuo Okubo
296	3 rd line below eqn 8.23	$matrix \Rightarrow vector$	Tatsuo Okubo
299	2 nd line of 3 rd paragraph	the \Rightarrow that	Iain Murray
301	2 nd line below eqn 8.27	$\mathbf{v} \Rightarrow v$	Tatsuo Okubo
338	4 lines from the top	stimulus \Rightarrow reward	Angela Yu
412	eqn A.69	$\tau \int_{z(0)}^{z(t)} dz' \frac{1}{z'} \Rightarrow \int_{z(0)}^{z(t)} dz' \frac{1}{z'}$	Alexander Lerchner
	Exercise 2.14	we are only interested in the spatial recep- tive field of the LGN neuron, so the values of α and β are extraneous	Jack Kilgallen

Peter Dayan and L.F. Abbott

Theoretical Neuroscience