Theoretical Neuroscience:

Computational and Mathematical Modeling of Neural Systems
MIT Press ISBN 0-262-04199-5
Peter Dayan LF Abbott

Errata to Second Printing

December 4, 2022

Page	Location	Error	Scourge
28	line 14 of second paragraph	$N_{m}=\langle n\rangle \rightarrow N_{0}=\langle n\rangle$	Philip Jonkers
46	second line after eq 2.2	are identical \rightarrowtake the same mathematical forms	John van Opstal
72	eighth line of the caption to fig 2.21	$\alpha=20 \mathrm{~ms} \Rightarrow 1 / \alpha=20 \mathrm{~ms}$	Sune Nørhøj Jespersen
134	eqn 4.29	$p_{a}\left[r_{a}\right] \Rightarrow p\left[r_{a}\right]$	Tatsuo Okubo
181	$5^{\text {th }}$ line below eqn 5.30	The rise time is $1 /\left(\alpha_{s}+\beta_{s}\right)=0.9 \mathrm{~ms} ;$ we are not employing the approximation of eqn 5.28 that $\alpha_{s}>\beta_{s}$	Sune Nørhøj Jespersen
194	The Connor-Stevens Model	the model we discuss is actually due to Connor, Walter, \& McKown (1977)	Sebastian Seung
187	last paragraph	all instances of r should be r	Tatsuo Okubo
235	eqn 7.6	$\ldots v=F\left(I_{s}(t)\right)$	Ming Hang
238	rightmost term in eqn 7.9	$-\mathbf{v} \Rightarrow-v_{a}$	Geoff Goodhill
296	$6^{\text {th }}$ line below eqn 8.22	$N \Rightarrow N_{u}$	Tatsuo Okubo
296	$3^{\text {rd }}$ line below eqn 8.23	matrix \Rightarrow vector	Tatsuo Okubo
301	$2^{\text {nd }}$ line below eqn 8.27	$\mathbf{v} \Rightarrow v$	Tatsuo Okubo
	Exercise 2.14	we are only interested in the spatial recep- tive field of the LGN neuron, so the values of α and β are extraneous	Jack Kilgallen

