Theoretical Neuroscience:

Computational and Mathematical Modeling of Neural Systems MIT Press ISBN 0-262-04199-5 Peter Dayan LF Abbott

Errata to Second Printing

December 4, 2022

Page	Location	Error	Scourge
28	line 14 of second paragraph	$N_m = \langle n \rangle \to N_0 = \langle n \rangle$	Philip Jonkers
46	second line after eq 2.2	are identical → take the same mathematical forms	John van Opstal
72	eighth line of the caption to fig 2.21	$\alpha = 20 \text{ms} \Rightarrow 1/\alpha = 20 \text{ms}$	Sune Nørhøj Jespersen
134	eqn 4.29	$p_a[r_a] \Rightarrow p[r_a]$	Tatsuo Okubo
181	5 th line below eqn 5.30	The rise time is $1/(\alpha_s + \beta_s) = 0.9$ ms; we are not employing the approximation of eqn 5.28 that $\alpha_s \gg \beta_s$	Sune Nørhøj Jespersen
194	The Connor-Stevens Model	the model we discuss is actually due to Connor, Walter, & McKown (1977)	Sebastian Seung
187	last paragraph	all instances of <i>r</i> should be r	Tatsuo Okubo
235	eqn 7.6	$\ldots v = F(I_s(t))$	Ming Hang
238	rightmost term in eqn 7.9	$-\mathbf{v} \Rightarrow -v_a$	Geoff Goodhill
296	6 th line below eqn 8.22	$N \Rightarrow N_u$	Tatsuo Okubo
296	3 rd line below eqn 8.23	matrix ⇒ vector	Tatsuo Okubo
301	2 nd line below eqn 8.27	$\mathbf{v} \Rightarrow v$	Tatsuo Okubo
	Exercise 2.14	we are only interested in the spatial receptive field of the LGN neuron, so the values of α and β are extraneous	Jack Kilgallen