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Exercises

Chapter 9

1. Implement acquisition and extinction as in figure 9.1 using the
Rescorla-Wagner (delta) rule (equation 9.2).

2. Add a second stimulus and demonstrate that the delta rule can de-
scribe blocking, but that it fails to exhibit secondary conditioning.

3. Consider the case of partial reinforcement (studied in figure 9.1) in
which reward r = 1 is provided randomly with probability p on any
given trial. Assume that there is a single stimulus with u = 1, so that�Æu, with Æ = r � v = r � wu, is equal to �(r � w). By considering
the expected value hw + �(r � w)i and the expected square valueh(w + �(r � w))2i of the new weights, calculate the self-consistent
equilibrium values of the mean and variance of the weight w. What
happens to your expression for the variance if � = 2 or � > 2? To
what features of the learning rule do these e�ects correspond?

4. The original application of temporal di�erence learning to condition-
ing (Sutton & Barto, 1990) considered the use of stimulus traces (as a
preliminary to the linear filter of equation 9.5). That is, the prediction
of sum future reward at time t is v(t) = w � u(t) where ui(t), with pre-
diction weight is wi, marks the presence (when ui(t) = 1) or absence
(when ui(t) = 0) of stimulus i at time t. Also, the temporal di�erence
learning rule of equation 9.10 is replaced by

wi ! wi + �Æ(t)ūi(t) ;
where

ūi(t) = �ūi(t � 1) + (1 � �)ui(t)
is the stimulus trace for stimulus i, and Æ(t) is as in equation 9.10. Here� is the trace parameter which governs the length of the memory of
the past occurrence of stimuli (see equation 9.30). Construct a trace
learning model for a case similar to that of figure 9.2, but taking
r(t) to be the hat-function r(t) = 1=5; 200 � t � 210 and r(t) = 0
otherwise. Note that to match figure 9.2, you must use �t = 5 for
each time step rather than �t = 1. Show the signals as in figure 9.2B
for � = 0:5; 0:9; 0:99, using � = 0:2. Could this model account for the
data on the activity of the dopamine cells? Would it show secondary
conditioning?

5. Use the prediction model of equation 9.5 and the standard temporal
di�erence learning rule of equation 9.10 to reproduce figure 9.2. Take
r(t) to be the hat-function r(t) = 1=5; 200 � t � 210 and r(t) = 0
otherwise. In this figure, the increments of time are in steps of�t = 5,
and � = 0:4. Consider what happens if the time between the stimulus
and the reward is stochastic, drawn from a uniform distribution
between 50 and 150. Show the average prediction error signal Æ(t)
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time-locked to the stimulus and the reward. How does this di�er
from those in figure 9.2.

6. Implement a stochastic three-armed bandit using the indirect actor
and the action choice softmax rule 9.12. Let arm a produce a reward
of pa, with p1 = 1=4; p2 = 1=2; p3 = 3=4, and use a learning rate of� = 0:01; 0:1; 0:5 and � = 1; 10; 100. Consider what happens if after
every 250 trials, the arms swap their reward probabilities at random.
Averaging over a long run, explore to see which values of � and �
lead to the greatest cumulative reward. Can you account for this
behavior?

7. Repeat exercise 6 using the direct actor (with learning rule 9.22).
For r̄, use a low-pass filtered version of the actual reward, which is
obtained by using the update rule

r̄ ! �r̄ + (1 � �)r
with � = 0:95. Study the e�ect of the di�erent values of � and � in
controlling the average rate of rewards when the arms swap their
reward probabilities at random every 250 trials.

8. Implement actor critic learning (equations 9.24 and 9.25) in the maze
of figure 9.7, with learning rate � = 0:5 for both actor and critic, and� = 1 for the critic. Starting from zero weights for both the actor and
critic, plot learning curves as in figures 9.8 and 9.9. Start instead from
a policy in which the agent is biased to go left at both B and C, with
initial probability 0.99. How does this a�ect learning at A?

9. Implement actor critic learning for the maze, as in exercise 8, ex-
cept using vectorial state representations as in equations 9.26, 9.27,
and 9.28. If u(A) = (1; 0; 0);u(B) = (0; 1; 0) and u(C) = (0; 0; 1), then
the result should be exactly as in exercise 8. What happens to the
speed of leaning if u(A) = (1; a; a) (while retaining u(B) = (0; 1; 0) and
u(C) = (0; 0; 1)) for a = +0:5 and a = �0:5, and why?


